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1. Introduction 

In order to construct a covariant field theory of strings, Witten has proposed 

simple forms for the actions which describe open bosonic and supersymmetric 

strings, using the terminology of differential geometry [1,2]. Other than kinetic 

terms, there is only a cubic interaction which essentially glues three strings to- 

gether in a symmetric way. A very fundamental check of the field theory is that 

it should reproduce scattering amplitudes of the dual theory which it seeks to 

generalize; for Witten’s bosonic string field theory Giddings and coworkers [3,4] 

showed how this comes about in the original picture where string world-surfaces 

are glued together by S-string vertices and propagator strips. In this paper, we 

will calculate four-massless-particle scattering amplitudes in Witten’s superstring 

field theory, with the intent of comparing them with standard dual theory re- 

sults. The cal&rlational framework will be related to that of Giddings [3]. We 

-will connect the amplitudes given by the field theory with results obtained in 

the “BRST quantized” formalism of Friedan, Martinet and Shenker (FMS) [5] 

for duality diagrams, showing in particular that the picture-changing of FMS is 

acc.omplished in the field theory. The final formulae agree with those of FMS ex- 

cept for the appearance of a divergent contact term in the four-boson amplitude. 

-- - -Related work has been done by Cai and He 161, although our results will differ. 

Witten% field theory actions have been studied from several other angles as 

well. Explicit constructions of the actions in operator language are exemplified 

by the work of Gross and Jevicki [7], S ue h iro and Kunitomo [8], and Samuel [9]. 

Recently LeClair, Peskin and Preitschopf have constructed the bosonic string 

field theory using the language of 2-dimensional conformal field theory, and con- 

nected this formulation to the operator constructions [lo]; here we will apply 

_some of their ideas to the superstring. The intent of all of the above was to 

develop an explicit framework for calculations and also to study symmetries of 

the theory. Additionally, work done by Horowitz, Strominger and Qiu for the 

bosonic string field theory has brought to light some anomalies in the associativ- 
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ity of the star product which Witten used to define his 3-string vertex, and their 

proper treatment [ll]. 

The plan for the paper is as follows. In Section 2, we will examine the kinetic 

energy term of Witten’s superstring field theory. In the Neveu-Schwarz sector of 

the superstring it looks just like that of bosonic string field theory, so we obtain 

the usual propagator in the Siegel gauge. In the Ramond sector Witten’s action 

includes an extra midpoint insertion of Y, the inverse picture-changing operator 

of FMS. We will choose the gauge bc = @J = 0 and find the propagator subject 

to this gauge condition. The picture-changing effect of this propagator emerges 

later. 

Section 3 lays out the techniques necessary to evaluate the Feynman diagrams 

for four-particle scattering of massless bosons and fermions. For simplicity, we 

treat first a field theory with Witten’s three-string vertices replaced by gen- 

- eralized versions of the Caneschi-Schwimmer-Veneziano dual model vertex, the 
. 

- ‘. difference lying in the way that the world surface defined by a scattering dia- 

gram is mapped onto the complex plane. In any case, there are two types of 

vertex in the theory: the 2-fermion-1-boson vertex may be viewed simply as a 

gluing operation among the three string states, but the three-boson vertex in- 

-- - .cludes an extra midpoint insertion of X, the picture-changing operator of FMS. 

From FMS we do not expect picture changing for the 4-fermion amplitude, and 

indeed in the field theoretic calculation the propagator and vertices are combined 

just as in bosonic string field theory. In 2-fermion-2-boson diagrams containing 

the Ramond propagator, we will find (after overcoming some technical difficul- 

ties) that this propagator picture-changes one boson vertex operator insertion 
- as expected from FMS. In other channels where the Ramond propagator is 

replaced by the Neveu-Schwarz propagator, the X insertion in the 3-boson vertex 

%c&omplishes the same task. 

For the 4-boson diagram there are two 3-boson vertices and hence two X 

insertions, each of which changes the picture of one boson vertex operator. How- 
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ever, extra terms in the amplitude are generated by the necessary manipulations. 

In these extra terms the factor LL1 in the propagator is cancelled by an anti- 

commutator of QBRST with the be from the propagator. The operator LO1 is 

represented by a world-sheet strip whose length is integrated from zero to infin- 

ity; in the absence of L, -’ the length effectively degenerates to zero. We can call 

these terms “contact terms” because the resulting world-sheet looks like the glu- 

ing together of two 3-string vertices with no propagator in between. Their effect 

is to produce an unwanted additional term in the scattering amplitude. However, 

this is for the field theory vertex which is a generalization of the CSV vertex, 

not for Witten’s vertex. In fact the generalization of the CSV vertex has a fatal 

flaw, namely that it defines a fie1.d theory which is not gauge invariant in order 

g2, so it is not too much of a surprise that the desired gauge invariant amplitude 

does not emerge. For bosonic string field theory, the geometry of Witten’s vertex 

ensures a gauge invariant action whereas the CSV-style vertex does not, so one 

-might expect this to fix the superstring action as well. 

- ‘. 

In section 4 we point out what modifications of the foregoing analysis are 

relevant when substituting Witten’s vertices for CSV-style ones. We will argue 

that the previous conclusions still hold, except that something new happens to 

the 4-boson diagram: in the contact terms, when the propagator strip is removed, 
-- - 

-operators are brought together on the world-sheet which have a divergent opera- 

tor product. expansion. These operators are X, the picture-changing operator of 

FMS, and e in terms of which X can be defined. It is the geometry of the vertex 

which makes these operators come exactly together for Witten’s vertex, whereas 

they did not for the CSV-style vertex. Thus the four-boson tree amplitude is 

not defined until one introduces some regulator into the theory which prevents 

the midpoint insertions from meeting at the same point. For a simple regulation 

scheme the extra undesired term in the amplitude appears multiplied by a pure - 
divergence, with no subleading finite piece. 

Section 5 shows that the 4-boson counterterm which would remove the un- 

wanted divergence in the amplitude is also required for gauge invariance of the 
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action. That .is, the order g2 gauge variation of Witten’s action is ambiguous 

because two X insertions come together on the world-sheet, and the X(2)X(w) 

operator product expansion is again divergent as z + w. For our regulation 

scheme the variation is divergent at order g2 without the addition of the 4-boson 

counterterm, after which the order g2 variation is zero. This regulator also seems 

to require additional counterterms to ensure that the action is gauge invariant 

to higher orders in g. 

- We note that Greensite and Klinkhamer have found it necessary to add 4- 

string counterterms to the action in the light-cone formulation of superstring field 

theory [12,13]. Also Green and Seiberg have recently discussed the general issue 

of contact terms, arguing that in-some sense they are ubiquitous in superstring 

theory [14]. It is not ruled out that some other regulator exists for Witten’s 

action where t-he addition of contact terms is unnecessary, but in light of these 

other results one might not be surprised if it does not exist. We will conclude 

-that using the regulated and modified action, at least all the 4-massless-particle 
- ‘. 

scattering amplitudes in Witten’s theory agree with FMS. 

2. Thk Ramond propagator 

-- - 
We begin with Witten’s action for open superstring field theory [l], which 

differs in appearance from bosonic string field theory [2] principally because of 

extra insertions of operators X and Y at points where string segments are joined 

together. X is the picture changing operator of Friedan, Martinet and Shenker 

[5] and Y is its inverse. The action is written in terms of a string field A as 

I= 
f 

A*QA+; 
f 

A*A*A; (1) 
- 

here the * product glues together two string states to make a third, adding 

a midpoint insertion of X, and the integration f sews two halves of a string 

together with an insertion of Y. If one separates the string field into pieces 
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describing Neveu-Schwarz (NS) and Ramond (R) sectors, A = (a, T/J), the action 

breaks up into kinetic energy terms acting separately in the two sectors and into 

vertices connecting three bosons or two fermions and one boson: 

I=/a*Qa+/ Y(i)ll*QI+~JX(j)a*a*a+zla*~*1L (2) 

In this expression, the symbols s and * are similar to $ and * but with no X or 

Y insertions. 

The first task is to fix the gauge and obtain the propagator by inverting the 

kinetic energy operator. In the NS sector, the kinetic energy term in Witten’s 

superstring action is just that of bosonic string field theory. If we choose states 

]a) satisfying the Siegel gauge condition [15] be = 0, then the kinetic energy term 

takes the form* 

(al Q Ia> = (al COLO Ia> . (3) 

. -The propagator follows from the observation c&co = cc and is simply !&LO’. 
- ‘. 

In order to prepare the way for the following, note that the factor bo in the 

propagator enforces the gauge condition bo = 0. Specifically for any state Ix), 

where in general bo Ix) # 0, the propagator satisfies 

-- - bo(bo@ Ix) = (xl (boL,l)bo = 0. (4 

A propagator must always satisfy the gauge condition in this sense. 

The Ramond sector kinetic energy given in [l] includes an additional insertion 

of the inverse picture changing operator Y(a) at the string midpoint (T = t. 

Witten has shown that for states in the gauge bo = /30 = 0, it may be written as 

IR = ($fj2ce-4(iJ)F0j+). (5) 

- 
The C$ which appears here is that used by FMS to “bosonize” the superconformal 

ghosts, p = e -#a[ and 7 = qe 4, where E and 7 are new fermionic fields [5]. It is 

* The notation for operators will be that of FMS [5]. 
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important to note that Fo includes only one term containing ghost zero modes, 

a term 7obo. This term gives zero in the gauge bo = 0 so we may ignore it. The 

factor ce+( z) is all that is left to supply the necessary insertions of ghost zero 

modes. For example, c( 5) must supply the cc which is required to make a nonzero 

matrix element between states satisfying bo = 0, giving IR = ($]2coe-4(!)$‘e]$). 

Now we may ask what the Ramond propagator should look like. The structure 

of the kinetic energy suggests that it contains a factor beF,-’ = boFoL~‘, but this 

does not invert the factor e- 4. Also, the gauge condition be = 0 is enforced by 

~o~‘oL,~ but so far the other condition ,& = 0 is not. 

“, 

This last requirement would be satisfied if the propagator included a factor 

S(pe). In order to see that this is indeed what happens, recall that Yamron [16] 

has pointed out that e-4 is the bosonized version of b(7). A useful representation 

[17] of th e a lg b e ra of the zero modes [7o,Po] = 1 is /?o = -d/dye, which operates 

in a space of functions of 70, or vice versa. The factor e-$(f) = 6(7(t)) may be 

expanded using 
- ‘. 

6(7(a)) =S(70 + n$o yneminu) 

=S(70) + C 7,e -inuS'(70) + C 7m7ne-i(m+n)a~rr(70) + . . . 
n#O m,n#O 

(6) 

Sandwiched between states obeying PO = 0; all the derivatives of S(7o) vanish 

because 6’(70) = -[po,S(70)], S”(7o) = [PO, [PO, S(70)]], and so on. Therefore the 

kinetic energy is simply 

IR = (42'30~(70)~0~$'>- (7) 

-‘may say that the factor 6(70) required between two states satisfying PO = 0 

had to be supplied by e-d(g), just as cc had to come from c( ;). To form the 

propagator from this we only need the identity satisfied by the operators x and 

p in quantum mechanics, b(p)&(x)b(p) = 6(p)/27r. The zero modes PO and 70 
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behave like x and ip, so this becomes 

6(7dwo)~(70) = &ro). (8) 

(This mimics the relation ccbcce = cc since a Grassmann quantity such as bo 

obeys 6(be) = bo.) Th ere ore the Ramond propagator is $~6(~0)beJiJ~~, where f 

now S(&) appears as the inverse of e-4 in the gauge we have chosen. Again the 

only ghost zero mode contribution to FO is annihilated by the factor bu, so this 
_-. propagator ensures PO = 0 as well as bc = 0. 

3. Scattering for a CSV-like vertex 

For the following, let us adopt the point of view toward string field theory 

advocated by the authors of ref. [lo]. (Th is can be considered to be an explicit 

formulation of Witten’s bosonic string field theory; other constructions have been 

-given in refs. [7,8,9].) It would of course be sufficient to construct the string - ‘- 
scattering worldsheet in Witten’s field theory and then to use Giddings’ map onto 

the upper half plane [3]. However the language of [lo] gives us a unified way of 

visualizing a number of different string field theory vertices in terms of mappings 

onto the complex plane. For bosonic string field theory, it was shown there how -. - 
-to calculate amplitudes in a simple and transparent fashion for the string field 

theory vertex which generalizes the dual model vertex of Caneschi, Schwimmer 

and Veneziano (CSV) [18]. (The CSV vertex was generalized to string field theory 

by DiVecchia, et aL[ 191.) E ven though the field theory based on this vertex does 

not correctly reproduce the Koba-Nielsen integration region in diagrams with 

over four particles, one does obtain the expected Veneziano amplitude for 4- 

particle scattering. In Witten’s theory, the mapping onto the complex plane is 

_di&rent and leads to some complication, although it gives the correct answer for 

all diagrams [4]. With-this in mind, let us develop and explain the calculations for 

the superstring using CSV-style vertices and afterwards modify them for Witten’s 

theory. 
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First we should review some ideas from ref. [lo]. As usual, string states 

are specified by a field functional along some cross section of the string. For 

simplicity, use the standard trick of doubling the open string world sheet and 

considering only the analytic sector. (This trick works because the resulting 

mode algebra is the same.) An external on-shell particle state is represented by 

the insertion of a BRST invariant vertex operator at the center of a unit circle 

in the complex plane, with the boundary of the circle serving as the cross section 

where field functionals are evaluated. Massless bosons and fermions are described 

by cV-1 and cV-~/~, respectively, where the subscripts refer to the 4 charge of 

FMS [5] and thus label the “picture”. We will use the notation of FMS for vertex 

operators: 

VO = (dXp + ik - q!$p)eik’X 

. V-l~2 = e -cj/zSaeik.X 
- ‘I 

(As explained there, Vo is a picture-changed version of V-1.) A more general 

state could be represented by additional insertions, or perhaps it would include 

(9) 

folds in the surface interior to the boundary of the unit circle. Suppose there are 
-- - 

three string states defined by operator insertions OA,OB and 0~ inside flat unit 

circles. We may then define the CSV-style three-string vertex acting on these 

states as the conformal field theory matrix element 

VCSV(A,B,C) = (T2[0A] T[b] h), (10) 

where T is a projective transformation which satisfies T3z = z for cyclic sym- 

metry. For example, T : z + l/(1 - z) is such a mapping. This leads to a 

picture where the original unit circles representing the three strings are mapped 

into one complex plane, along the unit circles centered on z = 0 and-z = 1 and 

along Re z = i which is a circle centered at z = 00 (fig. la). (This picture of the 
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CSV vertex originates with Lovelace [20].) I n order to make it look like Witten’s 

theory, the CSV-style 3-boson superstring vertex should include an insertion of 

the picture changing operator X at the three-fold symmetric point z = 3 + $a. 

Note that just by adding this insertion to the CSV vertex, we are not guaranteed 

to make a superstring vertex which is sensible from any other point of view; the 

motivation for this definition is only that the calculations using this vertex and 

those using Witten’s vertex should be similar. 

- Witten’s three-string vertex can be represented by a similar matrix element 

where the unit circles defining the three states are mapped into 120’ wedges which 

touch at z = 0 and the unit circle is the image of the open string boundary: 

V&&C) = (r2h[oa]Th[08]h[Oc]), (11) 

where h is a map from the unit circle into a 120’ wedge (fig. lb). The joining 

- point is flattened out now, so the only insertion at z = 0 is for the superstring 
- ‘. version of the three-boson vertex where there is a picture changing operator 

X. -The SL(2,C) invariance of the conformal field theory matrix element allows 

an .additional projective transformation which places the states at z = 0, 1,oo 

(fig. lc). 
-. - 

Objects which act between two string states are analogously defined. For 

example, the propagator evaluated between states in the Neveu-Schwarz sector 

is written 

@(A,@ = (I[O~lboL,‘0~). (12) 

Here I : z --+ -l/z is the inversion of the complex plane through the unit circle, 

so that state B, defined by operators inside the unit circle, appears as the image 

of those operators outside the unit circle. The state A appears inside, and the - 
-operator boL&l sits between them. 

The 4-fermion (4F) diagram is the simplest one, and is most like the dia- 

grams in bosonic string field theory. There are two field theory diagrams which 
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together will make up one dual theory diagram (fig. 2); these may be labelled as 

s- and t-channel exchanges. For the CSV style vertex, the s-channel amplitude 

is computed as the correlation function on the complex plane (fig. 3), 

As = ( cV-~,2(+V_c,,2(1)boL,1cV_B,,2 Wcl,2(-1)) (13) 

where A, B, C, D label the quantum numbers of the particles. The Neveu-Schwarz 

propagator is pictured as acting between states defined by boundary conditions 

just outside and just inside the unit circle. One three-string vertex connects 

the outer boundary of the unit circle to two of the external on-shell states, and 

likewise for the inner boundary. The effect of the factor 

LO1 = l &&o-l 
s 
0 

is to shrink everything inside the unit circle by the factor X and then to integrate 

over the thickness of the annulus formed between the shrunken unit circle and the 

unit circle. Since all of the shrunken operators have zero conformal weight, there 

are no additional prefactors. After taking account of this, the bo contour may 

-. - be contracted inwards, where it converts cV~.,~(-X) into -XV_q,,(-X). The 

remaining bc algebra contributes unity. A projective transformation and change 

of integration variable yields 

1 
'i 

w~5l,2P,v_“,,, w-;,, (0)). 

0 

(15) 

The t-channel gives a similar result, and after one more projective transformation 

oneobtains the other half of the Koba-Nielsen integration: $ < $ < 1. The whole 

argument follows directly the analogous computation for the bosonic string [lo]. 

These basic steps are repeated for all diagrams, since both the Ramond and the 

Neveu-Schwarz propagators contain boL,l. 
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The 2-fermion-2-boson (2F2B) amplitude is complicated by the appearance 

of the Ramond propagator !$6(~c)b&L~1in some channels. FMS [5] have 

shown that the correct combination of vertex operators needed to calculate the 

2F2B amplitude is found by ensuring that the total CJS charge on the world-sheet 

is -2. This includes the combination, for example, V-~VOV-,/,V-~/~ but not 

v-1v-1v-1/2v-1/2. The effect of b&g1 is already understood - it provides the 

Koba-Nielsen integration with the correct measure. One might expect that the 

effect of the rest of the Ramond propagator is simply to accomplish the necessary 
- 

picture changing to convert one V-1 to a Vi. It will turn out that this is correct. 

An awkward feature of these diagrams is that if the mode operators PO and 

FO are expressed as contour integrals, 

PO- = f gp28(2) and F. = 
f 

dzz’/2Tzs(z), 
2m 

- ‘. the.integrands are seen to be double valued around z = 0 (due to the factor z1i2) 

and around the locations of insertions V-1/2 (due to p(z) or T,~(z)). This means 

. that if one tries to deform the contour onto the objects inside it, it gets hung 

up around the square root branch cut from z = 0 to the position of the inner 

-. - -v-1/2 (fig. 4). 0 ne may not obtain the value of the integral from a single term 

in the operator product of two operators, as is often the case. In another view 

of the same phenomenon, one cannot simply evaluate the amplitude using the 

algebra of mode operators because the factor e -d/2 in Vvli2 is easily defined only 

in bosonized language. In fact it connects the half-integer modes with the integer 

modes. In V-1 there is a piece e -4 which can be represented without bosonization 

= 6(r), and W.4) h as a bosonized version e4(‘1, but it is not known how to 

unbosonize e- 4i2. Also, trying to bosonize everything by writing the PO in S(pe) 
- 

-in bosonized form is not revealing. 

In the present case where. there are only two insertions of V-1/2, we can pro- 

ceed by performing some projective transformations underneath the Koba-Nielsen 
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integral. The conformal field theory matrix element separates into pieces describ- 

ing conformal ghosts, superconformal ghosts and space fields. Consider first the 

superconformal ghosts. If the locations of the e-4i2 insertions are mapped to 

z = 0 and z = 00 then the effect is to evaluate all the other operators between 

Ramond vacua. The superconformal ghosts are represented everywhere by mode 

- 

operators in the Ramond sector, and we may evaluate the amplitude by using 

the mode algebra. One complication of the projective transformation is that a 

mode number zero operator gets turned into an infinite sum of mode operators: 

if the mapping is z + w(z) , then 

3/2 
= 

w(z) 
-n-3/2 (17) 

E C%.Pn. 
- ‘. n 

Note that this relation holds as well for general conformal transformations w(z) 
- a fact which will be relevant for showing that the method applies equally well 

to Witten’s vertex. The coefficients a, are contour integrals in the cut plane, but 

-- - -we-shall see in a moment that it is unnecessary to calculate them. 

Let the locations of the vertex operators for states A-D be denoted by zr 

through ~4. These points will be in different places for the various diagrams. The 

only part of FO which survives ghost charge counting is that which contains no 

ghosts at all, so for the superconformal ghost part of the Koba-Nielsen integrand 

we are left with the task of computing 

Ap7 = (e-~/2(Y)e-((Z3)~6(PO)e-m(,2)e-~/2(,1)) 
- - 

(18) 

where the second line is obtained by using SL(2,C) to map ~4 --+ co, 23 -+ 1 
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. ._ 

and zr -+ 0: p = z21&3/242z31, i?&j E zi - zje - Also, 10~) = e-#/2(0)10) is the 

superconformal ghost part of the Ramond vacuum. 

The algebra of PO and 70 is just that of x and ip in quantum mechanics, so 

we may separate out the dependence on PO and 70 to obtain 

l/4 
241 $ri 

A/+, = -- 
231242 p1i2ao (oR16(70 + n?jo7n)6(p0 + n~oanPn)G(70 + n50p-n7n)10R)e 

(19) 
_-. The nonzero mode algebra is to be evaluated between Ramond vacua satisfying 

A/OR) = 7nloR) = 0 f or n > 0; it is with respect to this vacuum that normal 

ordering of n # 0 operators will be defined in the following. The zero mode part 

has the structure 

!. 

-4b-Yo - lx = 0IQ-J + Pl)b(X + X)b(p + P2)Ix = 0) (20) 

. . where Pr and P2 commute with each other but not with X.* The x-space wave - ‘. 
function of S(p + P2) Ix = 0) is eeipzz, so this becomes 

fh?l - s 
da: eiPl x 6(x + X)eLip2’ -- - 1. s dx 

da = 
52 

eiP~x+ia(x+X)-iPzz . . exp [-ax@> - G2)] 

= s dx . ,ip~Z-i&T . S(i(x +X) - x(&k - ii+)) : 
(21) 

-i = : exp 
[ 

-i(Pl - 35)X . 

1 + i(Pz - X+2) 1 1 +i(Pz-- fip2) . 

- 
in which the symbol 2 denotes a Wick contraction. Sandwiched between Ra- 

mond vacua, the exponential term in this object contributes a factor of unity, so 

* In this context X is not the picture-changing operator. 
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. ._ 

that the superconformal ghost part of the amplitude is 

1 i/4 

AP-Y= 4 & 
( > 

p-112 

a0 -t n:. an + n-o anPn ’ 

- 

It remains to evaluate the space part of the Koba-Nielsen integrand, for which 

we will use the same projective transformation which puts the spin operators at 

z = 0 and z = 00. It appears as (fig. 5): 

A 
4 

x+ = l/4 
s 

ff4 
,ikKX(,)q.keiks.X 

‘41 ‘31’42 (23) 
x ~~2eik2.X(p)S,leikl.x 

(0)) 3 

where @n = -dz f %z n+llQ . q z 1s the part of Fn which survives ghost charge ) - 

. . -counting in this amplitude. For n > 0 it is useful to deform the Fn contour 
- ‘. 

inward. The contribution from the vertex operator sitting at z = 0 vanishes, 

leaving the portion of the contour encircling z = p which effectively changes 

V-i(p) into pn+li2Vo(p): . 

-- - -dz 

f 
-~~+l/~$j .3X(z)$~P2e~~2’~(p) 
27ri 

f 
dz ~ Zn+W 

gh2 
= 

27rz 
--+ : qhf!J’“2(p) : + - - * 

Z-P (24) 

X 
ik; --eik2’X(p)+ : axxeik2’X p : . . . 

Z-P 
o+ ) 

- 
= -p n+1/2 : (aXP2 + ik2 . $+P2) eik2’X(p) : 

Similarly for n 5 0, deforming the contour outwards has the effect of changing 

V-r(l) into&(l). (S o ar i is only the space part of these vertex operators which f t 

are being turned into each other.) Now we have separate expressions for terms 
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. ._ 

n 2 0 and n < 0. In one the V-l(p) is picture changed, and for the other it is 

V-r(l). An easy way to relate.them is to observe that the expressions must agree 

for n = 0. This yields the identity 

S a4 eik4’X(,)(dXP3 + ik3 . ~~~3)eik3’X(1)~~2eik2’X(p)Sa1eP’kl’X 

- 

=P 
l/2 saleikcX 

( 
(oo)$P3eik3’X(l)(dXP2 + ik2 - q!qb~2)eik2’X(p)Saleik1’X 0 

( ,> 
. 

(25) 

All terms can now be written in the same form, 

A 
4 

x+ = - l/4 
‘41 ‘31’42 

a0 + n:. an + ,Fo %2Pn 
> 

(oo)(~X~~ + ik3 - ~~‘13)eik3’X(l)~p2eik2’X(p)S~~eikl.X (0)). 

(26) 

When we multiply the space part by the superconformal ghost part of the am- 
. 

- ‘I plitude, the factors containing infinite sums of a, cancel, so that we never need 

the-explicit form of a,. (This cancellation between factors arising from S(pc) 

and Fo is reminiscent of a cancellation found by Giddings for bosonic string field 

theory scattering; the counterparts there were be and Lo’.) The answer is ex- 

-- - -pressed in terms of the space part of a correlation function of vertex operators 

v-l/2~ow~1/2; if written in terms of the space plus superconformal ghost part 

of the same correlation function it simplifies-further. Returning to the untrans- 

formed coordinates, what we have just shown is that 

(27) =-- ( v_q,,(z4)v~(z,)v-~(~~)~~,~(~~))~ - 
That is, the Ramond propagator includes a piece which accomplishes the picture 

changing of FMS. So we know how to calculate those channels of 2F2B diagrams 

which contain the Ramond propagator. Note that it may be hard to generalize 
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this procedure to diagrams with more than four particles; maybe in some gauge 

other than PO = 0 the propagator would be simpler to deal with. 

:.; 

The other channel of some 2F2B diagrams and both channels of the 4-boson 

(4B) diagram involve the 3-boson vertex. This vertex includes an insertion of 

X = {QBRST, t}, the picture changing operator of FMS. In each of these dia- 

grams we would end up with a string of vertex operators which agrees with that 

set down by FMS if each X could be used to accomplish the picture changing 

of one vertex operator. This might happen, for instance, if X could be freely .-. 
moved from its original position over to the position of some cV-1. In some cir- 

cumstances, it is true that insertions of X may be moved around on the complex 

plane with impunity [l]. T o see- when, consider a general correlation function 

containing X(z), written in the “small algebra” of FMS. (Recall that X contains 

only derivatives of E so that it exists within the small algebra.) As long as we are 

restricted to the small algebra, X cannot be written in its BRST commutator 

-form: This is in fact why it is not zero in a correlation function with other BRST . 
- ‘I 

invariant objects. However, the effect of moving it from zr to z2 can be written 

as a BRST commutator within the small algebra, 

(28) 

If everything else in a correlation function is BRST invariant, the QBRST contour 

may be deformed away from s at onto the other operators, giving zero. This is 

why the X insertion in the 3-boson vertex can be defined equally well in terms 

of the right movers or the left movers, at least for BRST invariant states. In the 

present application however, there is an operator bo from the propagator which 

does not commute with QBRST, 
- 

(QBRsT,~~) = Lo, (29) 

so any attempt to move X will generate extra terms. Although we will not 

17 



actually move X around in the following, we will perform an equivalent procedure 

which leads to these extra terms. 

- 

First consider a 2F2B diagram which has the 3-boson vertex and a Neveu- 

Schwarz propagator (fig. 6). Th ere is a single X(U) at the joining point of the 

3-boson vertex. In the large algebra, we may manipulate X using the definition 

X = {Q, c}. So attach 6 to cV-r(l), p assing to the large algebra, and then pull 

the QBRST contour off of e(u). When QBRST encircles EcV-1 (l), it converts it 

into $cVe(l) plus something which gives zero in this correlation function. The 

contour annihilates everything else, except that an anticommutator with bo is 

generated; however in this case the extra term vanishes. After passing to the 

small algebra the proper structure emerges to yield the other half of the Koba- 

Nielsen integration, with one V-1 picture changed to a Vi. 

We should mention that when adding together the two channels of 2F2B 

diagrams, it becomes necessary to add apparently dissimilar terms 

. - ‘. 

~d~(V~(rn)V~(I)V~,,(I)V~,2(0)) + j dr(V,D(~)V_C,(1)V_B,/zov_Aliz(o)). 
0 1 

T 

(30) - 

-- - One may use the picture changing operation of ref. [5] to switch the pictures of 

Vc and VD, modulo a few extra pieces. When dealing with the full range of the 

Koba-Nielsen integral, these pieces go away because they are total derivatives. In 

the present situation a given term includes only part of the integration region so 

that argument does not apply. Luckily, for the 2F2B amplitude the extra terms 

give zero because they have the wrong number of conformal or superconformal 

ghosts. The complete 2F2B amplitudes look like 

1 
- 

&FZB = 
. 

0 

(31) 

Lastly there is the 4-boson diagram, which yields a little surprise. Each 
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4-boson field theory diagram can be written like (fig. 7) 

A, = 4 ] ~(~V~~(m)cVc,(l)X(u) f ~wb(w)X(z/u)cVB,(0)cV~l(z/u)). 
-1 

(32) 

.-. 

There are now two insertions of X coming from the two 3-boson vertices. We 

know from ref. [5] that one obtains the correct amplitude using a set of vertex 

operators V-IV-lVoV0, so obviously we should try to use the picture changing 

operators to convert two V-l’s into Vo’s. First let us pass to the large algebra 

by attaching E(0). Th is will allow X to be manipulated as a 

Now write 

X(+4 = f $~~BRsT(S)E(Z/~ 

and -deform the s contour onto the other operators, giving 
. 

- ‘. When the contour encircles z = 0 it produces a picture 

cb(O), 

BRST commutator. 

[QBRST, EcV-l(y)] = &Vi - ivem@‘eik.x(y). (34 - 

(33) 

two nonzero terms. 

changed version of 

-- - One may think of this object as the BRST invariant picture changed version 

of cV-1. (Note cK.0 is not by itself BRST invariant.) The commutator with bo 

generates another term with bo replaced by Lo. This cancels the Lil which gave 

rise to the integral over z, resulting in a contact term. In the first term, the 

leftover [(z/ ) u must provide the 50 for the large algebra, so we may freely move 

it onto cV-l(z). Then moving the BRST contour off of X(u) leads to one piece 

with a picture changed cV-l(z), plus one more piece where LO1 has been canceled 

by {QBRST, bo}. Fig. 8 shows the form of the three pieces we have found after - 
discarding terms with the wrong bc charge. 

The structure of the result emerges after we evaluate the conformal and 

superconformal ghost parts of the correlation functions. If the space parts of 
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vertex operators are written Vx$, we have 

V$o)V-“,(l)V,“(x)V~(O)) 

0 (35) 

The first term looks like half of the Koba-Nielsen integral we need to get the 

expected amplitude. There is also a troublesome contact term. Since we will 

encounter it again, define 

(36) 

. . 

The t-channel amplitude is similar, except that labels ABCD are permuted 

to j3CDA so that it is VA and VD which are in the minus-one picture. In order 

_ that-the first terms in A, and At fit neatly together to make up the expected 

amplitude, the pictures of VA and Vc must be switched in At. For this one may 

use. the picture-changing operation of FMS to obtain the identity 

-- - 
+ -&FABcD(~). 

(37) 

(An easy proof makes use of the BRST invariant object defined in Equation (34).) 

When integrated over 0 < x < i the second term in this identity gives FABCD( k), 

another contribution to the contact term. Noting that FBCDA(X) = FABCD(~ - 

x), we find the result 

- A, + At = V-~(-)v-“,(1)v,Bovd4(0)) 
0 (38) 

+ 4’(: - ~)FABcD(~). 
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What should we make of the extra term in the 4B amplitude? For bosonic 

string field theory, the CSV-style vertex gives the correct 4B amplitude. This 

was traced in ref. [lo] to the fact that on-shell, the four-string vertex constructed 

out of two three-string vertices is cyclically symmetric - a condition needed in 

the proof of gauge invariance to order g2. The condition is not true off-shell, 

so the CSV vertex does not lead to an acceptable string field theory. In the 

present case, the presence of the X insertions spoils the four-fold symmetry even 

for on-shell states. So again it seems that the condition of gauge invariance is 

related to getting the right answer for the scattering amplitude. This connection 

will appear again when we discuss Witten’s form of the vertex. The geometry of 

the latter is such as to give a four-fold symmetric figure when two three-string 

vertices are glued together, so it has a better chance to give the right amplitude. 

(One might ask whether the extra contact term cancels out if the CSV-style 

superstring vertex is defined with a symmetrical combination of X insertions 

involving left and right movers; in fact this does not help.) 

4. Scattering for Witten’s vertex 

Now we will discuss what part of the above analysis is modified when Witten 
-- - 

style vertices are substituted for CSV ones. One complication arises as follows 

in the picture where states are mapped into.120’ wedges [lo]. Using the three- 

string vertex, we join a pair of external states into a single string state, which 

is represented by the unused wedge in the vertex. Suppose that we think of the 

propagator as acting between one such state defined inside the unit circle and 

another defined outside. The unused wedges must then be conformally mapped 

into the regions inside and outside the unit circle. Because these mappings are 

not projective transformations, the inverse mapping from the new coordinates - 
onto the string surface will have branch cuts which demonstrate that the string 

surface has not been smoothed out into a flat conformal plane. An- additional 

conformal transformation will smooth out the folds, but at the cost of converting 
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a mode number zero operator like bo = f $zb( ) ’ t z m o a much more complicated 

integral. Now that the folds are smoothed out, the conformal field theory matrix 

element may be evaluated using the simple contractions of fields characteristic of 

the flat z plane. Equivalently, we could take the viewpoint of Giddings [3] and 

start with a vertex which includes a curvature singularity at the joining point. 

In any case the result is the same map of the surface onto the upper half plane. 

For bosonic string field theory, Giddings showed that the effect of LO1 and the 

image of bo under this mapping is to give the Koba-Nielsen integration with the 

right measure. This conclusion is still valid for the superstring, since boL,’ is 

present in both Ramond and Neveu-Schwarz propagators. 

In diagrams containing the Ramond propagator the resmoothing will also 

convert PO and Fo into complicated integrals. However a small modification to 

the CSV-style calculation will take care of this. Expand the transformed versions 

of PO and Fo in Laurent series, so that they become infinite sums CA,.& and 

C AiF,. (Again the coefficients A, are the same for each series because /3 and 

T,e have the same dimension.) In our argument which showed that G(/3o)Fo has 

the-effect of picture changing one of the boson vertex operators in the 2F2B am- 

plitude, we immediately did a ‘projective transformation in order to put the spin 

operators at z = 0 and z = 00. After that, we always worked with the trans- 

formed versions C anPn and C anFn. The argument may be transcribed exactly 

provided that we understand an to describe the combination of the two map- 

pings: the first map is a conformal transformation which smoothes out the plane 

and the second is a projective transformation which moves the spin operators to 

where we want them. The conclusion is the same. 

The 4F and 2F2B scattering diagrams thus give nothing new when the Witten 

style vertex is used. For the 4B amplitude however, recall that the CSV-style 

_vertex gave the Veneziano amplitude plus an extra contact term. The extra 

term shows up when-the QBRST contour is pulled off of one X insertion and 

anticommuted with the bo from the propagator. The anticommutator cancels 

the ~50’ part of the propagator, so that the term looks like a contact interaction. 
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Since the geometry of the Witten vertex is different, we might expect that the 

contact term is changed or maybe absent. 

There is however a new complication in finding the contact term. When the 

strip representing LO1 is taken away, the E left over from the first X insertion is 

placed right on top of the X insertion from the other S-string vertex. This gives 

a divergent result due to the singular operator product between X and I, 

X(z)I(w) - -i (z ‘,,, b,2”(?) + o(l). (39) 

(For the CSV style vertex, this is not a problem because the joining points of 

the S-string vertices do not come together when the propagator degenerates.) 

There is in addition a nonsingular contact term generated in a similar fashion 

(cf. fig. 8). 

-In order tdcontrol the divergence, some regulator is necessary. Suppose that 

-when gluing together two string states, we insert a thin strip of width E and then 

take E --+ 0 at the end. This results in a picture like that shown in fig. 9 for the 

divergent contact term. Using Giddings’ map [3] from this string surface onto 

the. upper half plane, the joining points are mapped to z = i7 and z = i6 = i/7, 

which approach each other at z = i in the E -+ 0 limit. The. string scattering 

states are represented by vertex operator insertions at z = -p, -o., (Y, p where 

o$’ = 1 and 

Giddings showed how to determine cr, p, 7 and S from the value of E using some 

elliptic integrals. By making an expansion near E = 0, one finds that Q and 7 are 

related by 

a=cYo- 
- - 

s i+ln% c2+o(c3), 
( ) 

where c = 1 - 7 will be a convenient expansion parameter, related to E by 

E = fc” + fc” + $c4 + o(c5). (42) 
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First evaluate the ghost factor of the contact term; it gives something pro- 

portional to (7 - S)-2 pl us ess singular terms. It is independent of the quantum 1 

numbers of the external states, so the same factor will occur in s and t channels. 

This should be multiplied by the space part of the correlator, which depends 

on E through CY. We may convert the space part into a standard form using a 

projective transformation: 

v_cixqp)v~x~(cx)v~~x~ (-c~)v-~~'(-p)) = (,:p)ZF~~CD(x~), (43) 

where xE = 4/(a + p)2 approaches one-half as the regulator goes to zero. Assem- 

bling the contact terms with the rest of the amplitude, the s-channel gives 

V$o)V_“,(l)V,“(x)V~(O)) 

0 

+ -& + ; - ; + o(C) FABcD(~& 
> 

(44 

Now make explicit the dependence of FABCD(X~) on c, expanding near c = 0: 
-- - 

FABCD(~E) = FABCD(~)+ (x6 - ~)$FABcD(z) 
1 
2 

d2 
+ fb-- f)'sFa~cD(x) 

(45) 
+ . . . 

1 
2 

where 

- - xE-~=-(~+~ln~)c2+o(c3). (46) 

Note that the worst divergence from the ghost part of the contact term was 1/c2, 

whereas the coefficient of d2F/dx2 in the above is o(c4). Thus in A,, only F(i) 
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and dF/dx( f) survive the limiting procedure. The t-channel contact terms give 

exactly the same thing, except that since FBCDA(X) = FABCD(~ - x), the sign 

of the dF/dx term is changed and it cancels between s and t channels. Finally, 

making use of the identity (eqn. (37)) f or combining the integrals in A, and At, 

we have 1 A, + At = V-~(co)V~(l)Vf(x)Vf(O)) 

0 

+ -; + ; - + + O(C) 
> 

FABcD(;) (47) 

= ' dx v~(~)V_",(1,V,B(x)V,A(O)) - (2 + O(c)) FABCD(;). 
J ( 
0 

5. Gauge invariance of Witten’s action 

A related problem appears when trying to prove that Witten’s superstring 

action is gauge invariant to order g2. That proof hinges on the associativity - 

of the modified star product, which is used to define the three-string vertex. 
-- - 

The associativity is problematic because the modified star product of two string 

fields in the Neveu-Schwarz sector involves an X insertion at the midpoint, a* b = 

X( $)a * b, and these insertions come together in a string of several star products. 

The operator product of X(x)X(w) is quadratically divergent just like X(z) t(w), 

so some regulation scheme is called for. (The connection between these operator 

products may be seen by deforming the BRST contour off of c in one X to enclose 

both c and the other X.) To see why associativity matters, recall the form of 

the three-boson interaction [l] - 

&B = $I 
f 

a*a*a (48) 

and the variation of the string field a under a gauge transformation parametrized 
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6a=&X+g(a*X-A**). (49) 

The order g2 terms generated in 61s~ would cancel if * were associative and if 

f( a*a*a*X-X*a*a*a) werezero. 

If the operator insertions specified by f and * are written explicitly then the 

three-boson interaction appears as IsB = ;g s x(;)a*a*a. (50) 
Here, two X insertions (from *) and one Y insertion (from f) have come together 

at the same point to produce a single X insertion. The action is gauge invariant to 

order g, but there is a problem at order g2 because the X(g) from the variation 

6a comes together with the X(t) in the interaction. (The 2-fermion-1-boson 

interaction, see eqn. (2), has no insertion so it is not afflicted with this problem.) 

In the 4B scattering amplitude, we inserted a strip of finite width to prevent the 

midpoint insertions from coming exactly together; perhaps we could do something 

similar here. Such strips could for example be included in the definition of the 

three string vertex, a device used by Horowitz, Strominger and Qiu 

some questions in bosonic string field theory. 
-- - 

111 to analyze 

the theory is 

the following 

Whatever regulator scheme is chosen, one must ensure that 

gauge invariant even before the regulator E shrinks to zero, for 

reason. Consider an action which is gauge invariant for nonzero E. When ampli- 

tudes are computed in perturbation theory, terms will appear which are singular 

as E --+ 0, as discovered above. However, whatever amplitude comes out, it will 

be gauge invariant for every E, including E -+ 0 if divergent terms cancel so that 

the limit is defined. If now we add extra non-gauge invariant terms to this action, 

bu-t which vanish for E + 0, they will conspire with the singularities to produce 

extra non-gauge invariant terms in the amplitude which do not vanish in the 

limit. In order not to introduce these into the theory accidentally,-the action 

should be gauge invariant to all orders in E. 
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There exists a simple regulation scheme where a strip of width c appears both 

in the propagator and in the definition of the gauge variation. This scheme seems 

natural when Witten’s theory is rewritten in a more traditional language.* In 

such a language the bosonic part of Witten’s action is 

IB = (11211uh @ b-42 + 3(XV123~ la)1 @I l(q2 @ lu)3 (51) 

and the gauge variation law is 

+)l = SlWl + g(XV234~~-2;2) @ (I& gl IX), - IX), fgj lu)4) . (52) 

Here the three-string vertex including the X insertion, (XV123 I, acts on the direct 

product of the Fock spaces of three strings; the integer subscripts label the dif- 

ferent Fock spaces. There are also gluing operators (112 I and /1r2), which in the 

-original formulation are intended to behave as (u/b) = (Xrzl lu)r @ lb)z. For the 

present case we will alter the definition of 11 12 in order to regulate the theory. ) 

Redefine 1112) to insert a strip of width E between the states it glues together, 

and (1121 to be the inverse (1r21123) = 113. Then the action (eqn. (51)) is invari- 

ant under the gauge transformation (eqn. (52)) for any E up to order g, and the 

-- - propagator will contain the extra strip as advertised. In Witten’s language the 

effect is to define the gauge variation in the NS sector as 

6u = QX + gCLo X(Z)(u * x - x * a). (53) 

Fig. 10 depicts the regulated variation of 13~ in order g2. 

Of course the variation in order g2 is not zero because of the singular operator 

product in the limit E + 0. Is it possible to fix up the action within this regulation 
- 

scheme so that it is gauge invariant to order g 2? We can answer this question in 

a restricted sense. If the state a is BRST invariant, then there exists a simple 

* This suggestion is due to C. Preitschopf. 
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four boson counterterm whose gauge variation cancels that of the three boson 

interaction to order g2 (fig. l.l), 

14~ = g2 
J 

T(t) [X(z)(u * u)] * emELo [E(z)(a * a)] + o(c). (54 

Here z is the right mover if E and X are left movers, and the conformal field theory 

matrix element must be evaluated in the “large algebra” of FMS. (The divergent 

part of this counterterm is simply a four-boson interaction where the operator 

be24 sits at the joining point.) Remarkably, the addition of this counterterm also 

exactly cancels the extra contact term we found in the 4B amplitude, including 

divergent and finite pieces. In fact this form for the counterterm was roughly 

inspired by the extra piece of that amplitude. There may well be a generalization 

‘: 

. . 

of 14~ which also works for off-shell states, but so far we have found only the 

on-shell restriction of it. Certainly it is only that restriction which contributes 

_ to the 4B scattering amplitude, which involves physical states. One would also 

like to find the O(E) terms in 14~ which make the action gauge invariant for finite 

E, hut again these do not affect the 4B scattering amplitude in the limit E + 0. 

Also in another respect the situation is not satisfactory, because with the above _ 

form for 14~ there will be an order g3 term in the gauge variation, which is 

-- - apparently also divergent, suggesting that even more counterterms are needed to 

ensure gauge invariance to higher orders in g. 

6. Conclusion 

We have seen how to calculate four-particle scattering amplitudes in Wit- 

ten’s superstring field theory. The Ramond sector propagator was constructed 

in the & = 0 gauge, which turned out to be awkward for calculations, although 

workable. It differed from the NS propagator by the presence of G(pc)Fo, the 

effect of which was to-change the picture of one boson in a 2F2B amplitude. All 

diagrams gave the same results as the first quantized formalism of Friedan, Mar- 

tinec and Shenker, except that extra divergent terms appeared in the four-boson 

28 



amplitude. The divergences occurred when picture changing operator insertions 

approached each other, which,also happens when considering the gauge variation 

of the action. The implication is that without some regulation scheme, the per- 

turbation series for Witten’s action is not well defined, and likewise the gauge 

variation of the action. Within a simple regulation scheme, the action is gauge 

invariant to order g2 only after the addition of a four-boson counterterm; the 

same counterterm cancels all extra terms in the four-boson amplitude. The form 

of this counterterm was found only for on-shell states and in the limit where the 

regulator shrinks to zero. More counterterms may be needed for gauge invariance 

at higher orders in g. 

Perhaps the counterterms would not be necessary in a more cleverly chosen 

regulation scheme. Or perhaps one may consistently drop all the terms divergent 

as l/e, both in the amplitudes and in the definition of the gauge transformation 

law. To this end one may observe that in the 4B amplitude, the contact term in- 

cludes a contribution only from c-l, and not from E’. However it is not clear what . 
- . 

would justify such a procedure in general. On the other hand such counterterms 

are necessary in other approaches to superstring theory, so it is certainly possible 

that there is no regulator where Witten’s action is complete without countert- - 

erms. For example, Greensite and Klinkhamer have found that in the light-cone 
-- - 

formulation of superstring field theory, spacetime supersymmetry requires the 

action to contain extra contact terms [12]. Very recently they have also shown 

that four-particle scattering amplitudes are divergent without these extra terms 

[ 131, a situation reminiscent of our present results for Witten’s theory. Green and 

Seiberg have discussed how contact terms appear in various guises in different 

approaches to superstring theory [14]. As they explained, in the first-quantized 

covariant approach one may often avoid contact terms by analytically continuing 

in-the external momenta, but in calculations where this is not possible they can- 

not be avoided. They showed that world-sheet supersymmetry can be used to 

determine their form in this case. (For the contact term we have found here, there 

is no possibility of analytic continuation because the divergence is due to ghostly 
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operator products on the world-sheet which are independent of momenta.) Even 

if counterterms are not surprising, Witten’s program of describing superstring 

field theory in the language of differential geometry is an attractive one, and in 

order fully to implement this program it would seem incumbent to find some way 

of avoiding the counterterms (unless they too could be shown to fit somehow into 

this language). 

The four particle scattering amplitudes have also been studied by Cai and He 

[6]. They obtained a different result for the propagator in the Ramond sector, 

which seems to make the picture-changing effect more apparent, but it does not 

respect their gauge condition PO = 0. In the 4B amplitude, they have apparently 

missed the extra contact term. 

The author would like to thank Joseph Atick, Tom Banks, Paul Griffin, Igor 

Klebanov, Michael Peskin and Christian Preitschopf for many useful discussions 

and suggestions. 
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FIGURE CAPTIONS 

1. Definition of field theory vertices by mappings of three states into the com- 

plex plane. (a) CSV-style vertex; (b) Witten’s vertex; (c) Witten’s vertex 

after an additional projective transformation. 

2. The two field theory diagrams which together will make one dual theory 

diagram. The arrows are for orientation of Chan-Paton factors. 

3. The s-channel four fermion scattering amplitude for the CSV style vertex. 

4. A 2F2B diagram with the Ramond propagator, showing the analytic struc- 

ture of the integrands in ,& and Fo. 

5. Space part of the 2F2B Koba-Nielsen integrand when the propagator is in 

the Ramond sector, after a projective transformation, showing the trans- 

formed PO contour. 

6: A 2F2B diagram containing the 3-boson vertex. The propagator is in the . . 
- .. Neveu-Schwarz sector. 

7. Four boson scattering amplitude, containing two insertions of the picture 

changing operator X. ’ 

-- - .8. The 4B amplitude separates into three terms: (a) is part of the standard 

Koba-Nielsen integral; (b),(c) are extra contact terms. 

9. Regulated contact term of fig. 8c. (a) A strip of width E separates two 

midpoint insertions. (b) Th e same figure after mapping onto the upper half 

plane. 

10. World-sheet picture showing regulated variation of 13~ to order g2. 

11. The four-boson counterterm which restores gauge invariance on-shell in 

- - order g2. 
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