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ABSTRACT 

The behavior of the longitudinal and transverse wakefields of short bunches in 

an -accelerating cavity has been examined. Computations of short time wakefields 

have been carried out using. T. Weiland’s computer program TBCI,l which 

integrates Maxwell’s Equations in the time domain. We present also our version 

of the diffraction model of the high frequency impedance of the cavity, a model 

originally suggested by Lawson. 2 This model predicts a longitudinal impedance 

that varies as wm112 and a transverse impedance that varies as wm3i2 at high 

frequencies, with their ratio equal to wa2/(2c), where a is the radius of the beam 

tube. We find that as shorter bunches are used, the computations approach 

asymptotically the predictions of the diffraction model. These asymptotic wakes 
l 

-are also in accord with calculations of Dome3 and of Heifets and Kheifets.4 
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1. Introduction 

Recent studies of possible future linear colliders have shown that it may be 

desirable to accelerate exceedingly short bunches.5’6 As an example, J. Rees6 

has presented a consistent set of parameters for a 1 TeV collider which includes a 

bunch length of 3 x 10m6 meter - about 300 times shorter than the bunch length 

of the Stanford Linear Collider. 

The performance of such a collider will depend critically on the details of the 

electro-magnetic interaction of the bunch with the accelerating structure - that 

is, on the so-called wakefields. These wakefields give rise to a parasitic energy loss 

of the bunch, to an induced energy spread of the electrons in the bunch, and to 

transverse forces that tend to increase the effective beam emittance. It appears 

. 
‘_ that if we want to contemplate seriously the design of any future collider, .we 

will need to understand the nature of the wakes of very short bunches - bunches 

which are orders of magnitude shorter than any of the characteristic lengths of 

a typical accelerating cavity. 

-- As a first step we consider, in this report, the wakefields of short bunches in 

an accelerating cavity consisting of a pillbox with infinitely long beam tubes (see 

Fig. 1). We will consider the problem of a periodic structure in a future paper. 

We begin this report by introducing our notation, and reviewing some properties 

of wake functions and impedances. Then we discuss the relationship between 

wakes of short bunches and the impedances at high frequencies. We then look 

at the high-frequency behavior of wakes that is predicted by a diffraction model, 

-first suggested by J. Lawson2 We give our version of this model in detail in 

Appendix A. Finally we present results of computations using the -code TBCI’ 

to obtain the wakefields of short gaussian bunches in our model structure, and 
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Fig. 1. Our model structure: a single pillbox cavity with infinitely long 

beam tubes. 

compare these results with predictions of the diffraction model. 

2. Wakes and Impedances 

-We review here some definitions of wakes and impedances and introduce our 

notation. For a more thorough discussion of the properties of wakefields see, for 

example, the lectures by Bane, Weiland, and Wilson.7 

2.1 LONGITUDINAL WAKES 
- 

When an ultra-relativistic bunch containing a total charge & passes along 

the axis of a cylindrically-symmetric cavity, a wake field is generated which will 

extract the energy AU(s) f rom any small “test” charge q that travels with the 

bunch some longitudinal distance s from a reference point in the bunch - say, 

the bunch center. We take s to be positive toward the rear of the bunch. It is 

convenient to define the longitudinal wake function IV11 (s) as that energy loss per 

- unit of- both charges, namely by 

. (2-l) 



We will write IVilo(s) to represent the “impulse” wake function, namely the 

one for a point-like bunch. For all practical purposes, the impulse wake for highly 

relativistic bunches is zero for all negative s; then the longitudinal wake function 

for an arbitrary bunch whose longitudinal charge density is X(s) can be expressed, 

in terms of WII,, by 

00 

w,,(s) = ; 
J 

X(s - s’) I$,(s’)ds’ . (2.2) 
0 

It is often useful to characterize the longitudinal wake in terms of a longitu- 

dinal impedance Zll( w w lc is, effectively, the Fourier-transform of IVllo(s) ) h’ h 

Zil(w) = i VV~lo(s) eiwslcds . 
J 
0 

(2.3) 

We will call the real and imaginary parts of the impedance the wake “resistance” 

Ril(w) and “reactance” Xl,(w) : 

The total energy lost by a bunch of unit charge during one passage through 

a cavity is called the loss factor kll, and can be expressed in terms of an integral 

over the wake function or, alternatively, over the cavity resistance: 

00 

kll =$ 
/ w q (4 ds 

-00 

co 
1 

=- rQ2 J 
i2(w)R,,(w) dw , 

0 

(2.5) 

where i(w) is the Fourier-transform of X(s). W e will here be considering only 
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gaussian bunches. For such a bunch, with an r.m.s. length cr, 

03 

kll(4 = & 
J 

wII (s, cr)e-sa/2g2ds 

cm P-6) 
1 =- 
7r / 

R~~(w)e-(W”/c)2dw , 
0 

where WII (s, a) is the wake function of a gaussian bunch. Notice that because 211 

is positive definite, kll is a monotonically decreasing function of 0. 

2.2 TRANSVERSE WAKES 

Now suppose a bunch passes through a cylindrically-symmetric cavity at a 

small transverse displacement x with respect to the cavity axis. Then the wake- 

fields produced exert a transverse force on accompanying particles that depends 

on x as well as s. We will focus our attention here on the total transverse im- 

pulse AP&) received by a test charge q which accompanies the bunch at the 
- 

longitudinal position s with respect to the bunch center. If the bunch displace- 

ment is small, only the so-called dipole part of the transverse wake is significant, 

and Apz(s) is proportional to the bunch displacement x and independent of the 

transverse position of the test charge. Then it is convenient to define a transverse 

wake function W_L(S) by 

WJS) = cy;f) . P-7) 

Again, we can relate W-L(S) to the impulse wake Wlc(s) (from. a point-like 

bunch) with a convolution integral corresponding to Eq. (2.2). And the trans- 
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verse impedance function 21(w) is defined by 

,qw) = RJW) +X,(W) = -~~W,,(,)eiws/c ds . 

0 

P-8) 

By tradition the negative imaginary unit is introduced in the definition of 21(w) 

so that 21 and 211 appear in quite similar ways in the calculations of transverse 

and longitudinal instabilities. 

It is also useful to define a transverse impulse factor kl for a bunch offset 

from the axis by a fixed amount as c/Q2 times the total transverse momentum 

given to the bunch by its own wake. It is obtained from an- integral over the 

wake function or over the impedance analogous to one of those in Eq. (2.5). For 

a gaussian bunch 

00 

kl(a) =-!- 
&To J 

IV, (s, a) e-s2/2c2 ds 

-00 
00 

1 =-- * 
J 

Xl (w)e-(wa/c)2 dw . 

0 

(2.9) 

- 

Due to the negative imaginary unit introduced in the definition of 21(w) it is 

the transverse reactance, rather than the transverse resistance, that is found in 

the above equation. The reactance can be written in terms of the resistance by 

the use of the Hilbert transform’ 

(2.10) 

with the symbol f indicating that the integral is performed as a Cauchy principal 

value. Substituting Eq. (2.10) into the second integral of Eq. (2.9), and then 
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reversing the order of integration we find that 

kM = &J h(w)W~+) dw , 
0 

with O(x), known as Dawson’s integral, given by 

2 

D(x) = emz2 ey2 dy . 
J 
0 

(2.11) 

(2.12) 

We see that the transverse impulse factor kl(a) can be expressed as an integral 

over the transverse resistance Rl(w), but with an “effective” spectrum given by 

the Dawson Integral o(wa/c). It is easy to see that D(x) M x when x is small, 

whereas D(x) = 1/(2x) when x becomes large. A plot of Dawson’s integral is 

given in Fig. 2, where we show for comparison also the corresponding bunch 

spectrum ewZ2. 

For physical reasons Rl(w) will be positive for positive values of w, will be 

finite for small w, and will tend toward zero for large w. Given these facts and - 

the form of Dawson’s integral it follows that k 1 o is also positive definite, and ( ) 

approaches zero for very small, as well as very large, values of u. 

It is sometimes convenient to make use of the so-called dipole longitudinal 

wake function IV,, (l)(s) which can be defined by 

(2.13) 

See, for example, Bane, et. aZ.’ It can be shown from Maxwell’s Equations that 

IV,il) describes the longitudinal forces associated with the transverse wakefield - 
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D(x) 0.5 

0.0 

Fig. 2. Dawson’s integral. For comparison, the factor emz2 is given by 

the dotted curve. 

from which its name. It turns out that the test charge q (which accompanies the 

bunch at the same transverse displacement x) loses the energy 

AU(‘)(s) = x2qQFVf)(s) . (2.14) 

The relationship between AU(l) and Wl, obtained by combining Eqs. (2.13) and 

(2.14), is often referred to as the Panofsky-Wenzel Theorem. 9 

The dipole longitudinal impedance Z,~‘)(w) and the dipole loss factor ka’) are 

defined in terms of lV,\l) (s) as in Eqs. (2.3) and (2.5). And it follows from these 

definitions that 

z,y(w) = Z&(w) . (2.15) 

We should emphasize that there is, in general, no necessary connection be- 

tween the dipole longitudinal impedance Z$ll (w) and the longitudinal impedance 
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211(w) defined earlier. As we will see later, however, it turns out that the high- 

frequency behavior of the two impedances (and so of the corresponding wake 

functions) in a cavity are very closely connected. 

* * * 

Note that when speaking of the impedances in what follows, we will choose 

to limit our interest to the resistive parts. The imaginary parts can always be 

obtained from the resistive parts by means of the Hilbert transform. 

3. Asymptotic Relations 

The behavior of the wake functions of short bunches and of the cavity impe- 

dances at high frequencies are, of course, intimately related. We develop here 

some of these relations. 

In a single cavity the resistance R(w) (either longitudinal or transverse) will, 

generally, have a number of sharp peaks (corresponding to resonances) at fre- 

quencies below the cut-off frequency wC of the beam pipe. At higher frequencies 

the natural cavity resonances are damped by radiation down the beam pipe; the 

resonances are broadened and the impedance tends to become relatively smooth 

- especially for frequencies well above wC. Since we are, here, only interested 

in the very short-time behavior of the wakefields of gaussian bunches, we need 

not be concerned with any rapid variations of R(w), and can be content with 

describing the “average” or “smoothed” behavior of the resistance. The R(w) 

we use here will refer to such a smoothed junction - which is often called “the 

broad-band impedance”. Speaking roughly, so long as we are only interested in 

the behavior of wake functions over a time interval AT we may take R(w) to be 

a running average with a “bin width” Aw of about 2r/AT. Since we are here 
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interested in- a AT which is generally only some factor like, say, 6 larger than 

o/c, we may think of the smoothing width Aw as the order of c/a. 

As we will see, various methods of calculating the high frequency resistance 

yield results that decrease as some power of the frequency, and in this case the 

relations among the various wake-related functions become particularly simple. 

Lets look first at the longitudinal wakes. 

3.1 THE RELATION BETWEEN k,,(a) AND R,,(W) 

If we know the longitudinal resistance RII (w) f or all frequencies we can find the 

loss factor kll(0) f or all 0 by a numerical integration of Eq. (2.6). If, however, we 

know only the high frequency part of the impedance we can still obtain informa- 

tion about $1(a) for short bunches. And, alternatively, knowing $1(a) for short 

bunches gives us information about the broad-band or “smoothed” impedance at 

high frequencies. We can get some insight into the general nature of the relation- 

ship between Rll(w) for large w and lcll (a) f or small Q from the following simple 

argument. Suppose that we approximate the integral of Eq. (2.6) by replacing 

- the exponential factor in the integral with the rectangular function which is equal 

to 1 out to w = c/a and to 0 beyond. Then we have 

(34 
0 

If we differentiate Eq. (3.1) with respect to (T we get the following heuristic 

relationship between kll and RII : 

= -R,,(c/a) . (34 

Knowing $1 in the neighborhood of some particular Q gives us information of the 
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broad-band impedance at w = c/a. 

From Eq. (3.1) we see that if RII(W) falls off faster than l/w at high frequen- 

cies, then kll( 0 will approach some finite value ko as CT goes toward zero. If, ) 

however, Rll(w) d ecreases more slowly than l/w, then kll (a) will increase without 

limit as Q goes to zero; and the asymptotic behavior of kll(o) for small u will be 

determined by the high frequency part of the impedance. 

If we know that RII (w) h as some specific form at high frequencies we can be 

more precise. Suppose that RI! ( ) w can be described for frequencies above some 

transition frequency wt by 

R,,(W) = Aw-& (w > wt) - P-3) 

We-then consider the second integral of Eq. (2.6) in two parts: the part kill .for 

frequencies below wt and the part kl12 for frequencies above wt. The first part kllr, 

which characterizes the low-frequency structure of the cavity is finite and will 

approach some constant number once cr is less than c/wt. If (Y > 1 the second 

part kllz will - 
kill to give a 

Suppose, 

yields 

also approach, for small Q, some constant value, which will add to 

k,,(a) that is also constant. 

however, that 0 < cr < 1. Substituting Eq. (3.3) into Eq. (2.6) 

kllz = : (i) lma 1 edxazma & . (34 
Wtff/C 

The integral above is the incomplete gamma function. For sufficiently small u 

we can- approximate klla by 

(cI! < 1, u small), (3.5) 



where I’(z) is the usual gamma function. For o sufficiently small, we can neglect 

the second term in Eq. (3.5.). And since the remaining term increases without 

limit as o goes toward zero, kilt will ultimately dominate over the constant part 

Icllr. It can then be used to approximate lcll (a). Thus 

(a < 1,a small) . (3.6) 

When c\! < 1 the longitudinal resistance at high frequencies determines uniquely 

the loss factor for small a; and it follows also if $(a) varies as aam for small O, 

R 11 (w) varies as W-~ at high frequencies. 

3.2 THE RELATION BETWEEN /cl(a) AND R&I) 

-As we saw for the longitudinal wakes, the transverse impulse factor kl(a) at 

small o can be related to the broad-band behavior of Rl(w) at high frequencies. 

To examine the asymptotic relationship we will take that RI(~) falls off as some 

power p of w, for w larger than a transition frequency w,; specifically we set 

- 

R*(w) = Bw-P (w-r) * P-7) 

Note that R ( ) 1 w must decrease at large w faster than w-l. With any slower fall- 

off, the energy loss from the dipole moment of a bunch would be infinite, which 

is non-physical. Therefore p must be greater than 1. 

Consider now Eq. (2.11) which gives the transverse impulse factor of a gaus- 

- sian bunch in terms of an integral over the transverse resistance. Again we may 

divide Eq. (2.11) ’ t m o a low frequency part klr, for frequencies below wr, and a 

high frequency part klz, for frequencies above wr. When o is much less than c/w 
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we may use the small argument approximation for D(z) - namely D(s) M x - 

and then the low frequency part can be approximated by 

RJw)w dw (a small) . 
0 

Then when o is small lclr will approach some constant number times cr. 

The behavior of the high frequency part k 12 depends on whether ,6 is greater 

or less than 2. When p > 2 the high frequency part k12 will also vary linearly 

with o, when o is small, and the total k 1 o will also be proportional to 0. ( ) 

When /? < 2, however, them second part k 12 of the impulse factor can be 

written, for small 0, as 

ku = -?$ (&) (I)‘-’ [f(p) - (y)‘-“] (p < 2, o small) ,, 

where the first term in the square brackets f(P) is 

(3-g) 

f(P) = (2 - P) TW++ dx , (3.10) 
b - 

and the second term just subtracts off that part of the same integral below wr 

(we have again used the small x approximation for D(x)). The function f(P) 

can be evaluated numerically. It is approximately equal to 1, varying from 1.39 

at p = 1, to 1.09 at /3 = 3/2, to 1.00 at /3 = 2. We see that for sufficiently small 

0 the first term in Eq. (3.9) will dominate over the second term, as well as over 

the contribution of kll. Then we can approximate 

-kl(a) = “t:(f) (&) (“)p-’ 
C 

(p < 2, Q small) . (3.11) 

We see there is a direct connection between the high frequency transverse resis- 
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tance and the transverse impulse factor for small a. 

3.3 THE DIFFRACTION MODEL: THE LONGITUDINAL WAKES 

In 1968 J. Lawson2 applied the methods of optical diffraction theory to 

calculate the energy loss of a point bunch passing through a single accelerating 

cavity. We believe that these methods can be used to obtain a reasonable estimate 

of the high-frequency part of the longitudinal resistance of a cavity. We will call 

such a calculation the diflruction model. Inasmuch as the original Lawson paper 

is not generally available, we present our version of the model in some detail in 

Appendix A. We also show there how the model can be extended to give the 

transverse resistance. 

According to the diffraction model - see Eq. (A.8) in Appendix A - the wake 

resistance of a cavity at high frequencies is 

20 
W) = 21r3/2 z ’ \i 

(3.12) 

with 20 = 377 R, the impedance of free space, and a and g are the cavity dimen- 

sions as shown in Fig. 1. The diffraction model gives for the RII(W) of a single 

cavity with beam tubes a high frequency dependence of W-I/~. 

We should expect the optical model used for the derivation of Eq. (3.12) 

to be valid only when the reduced wavelength X/27r of the fields are somewhat 

smaller than the beam pipe radius a. This means that we should use Eq. (3.12) 

only for frequencies w that are at least a few times greater than c/a. Since the 

- wakefields for frequencies lower than the pipe cut-off frequency we = 2.4c/a arise 

from trapped resonant modes we would like to define the diflractiye part as the 

part due to frequencies greater than wC, which is a frequency high enough that 
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we should expect the optical model - Eq. (3.12) - to apply. So we will assume 

here that Eq. (3.12) is applicable for all w > w,. 

G. Dome3 has derived an analytical approximation for the wakefields of a 

cavity with beam tubes based on the mode structure of a closed cavity. In the 

limit of high frequencies his expression for the longitudinal resistance is identical 

to our result. Recently S. Heifets and S. Kheifets4 have described a different 

frequency domain calculation of the longitudinal impedance of a single cavity. 

Their results also give a smoothed impedance that is in agreement with Eq. 

(3.12). Note that our result differs from that of the Sessler-Vainsteyn model,l’ 

which is often used to calculate the impedance of periodic structures, and which 

.’ 
predicts a high frequency variation of Rll(w) of wm3i2. 

-You will notice that the depth b of the cavity does not appear in Eq. (3.12). 

The reason is that the diffraction model considers only fields generated at the 

cavity “edge” - where the beam pipe meets the cavity. And we would argue on 

physical grounds that this limitation is appropriate for the short-time wakefields - 

in which we are interested here. We can understand why by the following quali- - 
tative argument. Some of the fields generated when the leading edge of the bunch 

reaches the entrance to the cavity will propagate out to the outer wall at radius b 

and then back again to the exit port of the cavity, where they then proceed down 

the beam pipe. If these fields arrive at the exit port after the tail of the bunch 

has already left the cavity they will never catch up to the bunch, and will never 

affect the short-time part of the wakefields, or the loss factor kll - which depends 

- only on the wakefields over the bunch. (We are assuming that all bunches have a 

finite length, and so ignore the theoretically infinite tails that would be present 

in ideal gaussian bunches. In the later numerical work, the bunches are, in fact, 
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truncated at f4a.) In this case the short-time wakes cannot depend on b. In more 

quantitative terms, so long as b is sufficiently large that the relation 

(g + l/2)l/2 < (b - u)~ (3.13) 

holds, with e the total bunch length, we can expect to ignore the effects of a finite 

cavity depth. 

We will define kilo(a) to be the diffractive part of the loss factor - namely 

that part of the integral of Eq. (2.6) for which w is greater than wC = 2.4c/u. 

Then, +I&) is just the kll, of Eq. (3.6), when we take cx = l/2 and wt = we. 

We find that 

kp(4 = s 6 [I(I/4) - 4 (y)1’2] (asmall) , (3.14) 

@ ‘(l/4) = 3.63.. .). 

We will refer to the asymptotic form of the loss factor as the limiting form of 

Eq. (3.14) as u goes to zero: 

q1/4>zoc 
kll(a) = &5/Zu 

(3.15) 

Note that if we had used the simple approximation Eq. (3.1) for calculating the 

loss factor, our result would only have changed by 10%. 

- Since the resistance of Eq. (3.12) falls off more slowly than l/w the high 

frequency impedance will dominate the wake functions at small f. Using Eq. 

(3.12) for RII(w), and assuming it is valid for all frequencies, we can take the 
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inverse transform of Eq. (2.3) to find the asymptotic form of the impulse wake 

function for small s. We get. 

(3.16) 

Using this form for IV~le(s) in Eq. (2.2) the wake for short gaussian bunches 

becomes 

Jq(%4 = qow(+) 9 (3.17) 

with the normalized wake function F(x) given by 

A graph of the function F(z) is shown in Fig. 3. 

1.0 

- 

0.5 

0.0 

(3.18) 

X 

Fig. 3. The normalized asymptotic wake functions F(x) and G(x). 
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3.4 THE DIFFRACTION MODEL: THE TRANSVERSE WAKES 

We show in Appendix A how the diffraction model can be used to derive 

the transverse resistance Rl(w) of a cavity at high frequencies - namely for 

frequencies somewhat larger than c/u. We find there - see Eq. (A.15) - that 

m4 = a2, 11 2c R (w) . (3.19) 

This equation is identical to what one finds for a pipe with a short resistive gap. 

See, for example, F. Sacherer.” We should, perhaps, not be too surprised, 

because the diffractive energy loss mechanism is much like what we would expect 

for a lossy beam tube. Although Eq. (3.19) has been used to estimate the 

transverse impedance of a variety of structures when their longitudinal impedance 

is known, we would emphasize that this equation is not true in general. 

We can make use of Eq. (3.19) t o obtain some useful relations between the 

corresponding wake functions for small times. If we multiply both sides of Eq. 

(3.19) by w and then take the inverse Fourier-transform we find that the impulse 

transverse wake Wl,-,(s) is proportional to the integral of the impulse longitudinal 
- 

wake VVllo(s) for very small s : 

vLo(s) = 

9 

2 
2 / 

Wllo (s’) ds’ . 

Similarly Eq. (3.19) implies also 

proportional to the integral over s 

that the transverse wake function Wl(s) is 

of W,,(s) for short bunches: 

s - 
&(s) = $ / Wll(s’) ds’ . 

(3.20) 

--CO 

(3.21) 

If we then make use of Eq. (2.13), we can rewrite the above equation to give the 
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longitudinal dipole wake function W,\1) (s) in terms of the longitudinal (monopole) 

wake function WII (s) 

vvl~qs) = fvvl (s) . (3.22) 

The diffraction model predicts that the two longitudinal wake functions will have 

the same form for short bunches. 

Using Eq. (3.19) with Eq. (3.12) we can obtain the high frequency depen- 

dence of Rl(w) 

Rlcwj = -$!$ (i)3’2 . (3.23) 

The transverse resistance decreases as w -‘i2 at high frequencies. 

As in the longitudinal case we define klD(a), the diffractive part of the trans- 

verse impulse factor, as that part of Eq. (2.11) for which w > we.* Taking Eq. 

(3.9) with /3 = 3/2 and wr = wc yields 

- h&) = f$$&G [f(3/2) - (Y)“~] (asmall) , (3.24) 

(with f(3/2) = 1.09.. .). The asymptotic form of the impulse factor then becomes 

kl(a) = 4f(3/2)-&@ = (4.36.. .)$+F . 

The transverse impulse factor of a gaussian bunch goes to zero as a1/2. - 

(3.25) 

* We axe aware that the pipe cut-off frequency is different for the transverse and longitudinal 
waveguide modes; we will, however, use the longitudinal cut-off frequency wc = 2.4c/a as 
the limit of validity of the diffraction model also for the transverse wakefields. 
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Combining Eqs. (3.16) and (3.20) we find that the impulse transverse wake 

is given, for asymptotically small s, by 

(3.26) 

Using this impulse wake, we find the transverse wake function of a short gaussian 

bunch has the universal form 

(3.27) 

in which the normalized wake function G(x) is given by 

(3.28) 

G(x) is also shown in Fig. 3. 

* * * 

We note here that the functions kll (a), IV~lu(s), k*(a) and W_~c(s) have also 

been evaluated by Dome3 using his resonant mode model; and our results are in 

accord with his in the limit of small argument - differing only by a few percent 

in the numerical factors. 
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4. The Time Domain Computations 

The computer program TBCI’ was used to compute the wakefields, loss 

factors and transverse impulse factors of short gaussian bunches in the cavity 

shown in Fig. 1. To be specific, we have chosen the dimensions to represent a 

typical cell of the SLAC linac structure, namely g/u = 2.51 and b/u = 3.55. 

Computations were done for gaussian bunches with r.m.s. length from a/u = 

0.0086 to a/u = 0.172. (The gaussian distributions were truncated at f4a.) We 

therefore probed the broad-band impedance up to frequencies w - lOOc/u. For 

numerical stability something like six mesh points are needed per 0 of length. 

I( Therefore the shortest bunch lengths computed required a very large amount of 

computer memory, as well as lots of CPU time. The longest bunches considered 

here are those for which the inequality of Eq. (3.13) (taking f? = 80) is still 

satisfied for the dimensions of the SLAC structure. So for all the results given 

here the cavity radius b has no effect on the short range wakefield; the bunch 

does not know that the outer wall is there. Taking advantage of this fact in order 

to reduce the number of mesh points required for the shorter bunch lengths, the 

value of b was adjusted, in the actual computations, to be just large enough that 

Eq. (3.13) was still satisfied. 

- 

4.1 COMPUTATIONS OF THE LONGITUDINAL WAKES 

The computed loss factor kll for several bunch length is shown by the dia- 

-mends in Fig. 4. The solid curve gives the asymptotic results of the diffraction 

model, Eq. (3.15). W  e want to emphasize that no normalization factor has been 

applied to either the computation or theory. 
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We show by the dotted curve in Fig. 4 the contribution to k/l(a) from the 

diffractive part of the wakefields, as given the by approximate-formula Eq. (3.14). 

The graph shows that the computed results approach very closely the diffraction 

asymptote - which varies as Q -112 - as a/u approaches zero. Indeed it appears 

that for the bunch lengths considered the asymptotic diffraction formula repre- 

sents the loss factor rather well - certainly better than we might expect from the 

diffractive part of the wake alone. 

1.0 

0.5 
klla 

ZOC 

0.2 

0.1 

a/a - 
Fig. 4. The loss factor kll as a function of bunch length Q for our structure 

(with g/u = 2.51). Th e d’ ramonds display the results computed by TBCI. 

The solid curve is the diffractive asymptote, Eq. (3.15). The dotted 

curve shows the contribution of the diffractive part of the wakefields, Eq. 

(3.14). 

T. -Weiland has obtained similar results for short bunches using TBCI. He 

has kindly provided us with his values for kll(a) for the PETRA cavity with a/u 

between 0.033 and 0.33. In this region he finds that kll(a) follows very closely 

23 



the crw1i2 dependence we observe. 

The computed wake functions IV~l(s,o) are plotted in Fig. 5 for gaussian 

bunches with three different bunch lengths: a/u = 0.0086 (dashes), 0.043 (dots) 

and 0.167 (dotdash). Note that the ordinate is scaled by the factor (a~)~/~. The 

solid curve gives the asymptotic form obtained from the diffraction model, Eq. 

(3.17). The bunch form is shown in the bottom frame, with the head to the left. 

The form of WII is roughly the same for the three examples. And in more 

detail, as we move toward the smaller values of 0 the curve of VVll does seem 

to be approaching more closely-the asymptotic curve. There appears, however, 

to be a slight discrepancy between the diffraction asymptote and the direction 

the numerical results seem to be heading. This discrepancy might be due to the 

approximate nature of the diffraction model; or it might be due to numerical 

inaccuracies in the computations. 

To find the variation of the loss factor ICI1 with the cavity gap g, we have 

computed it with TBCI for several values of g/u, keeping constant a bunch length 

a/u = 0.021. The results are shown in Fig. 6 by the diamonds. The asymptotic - 
dependence of the diffraction model Eq. (3.15) is shown by the solid curve - 

which varies as g / 1 2. We see that over the calculated range, the computed results 

also increase very nearly as g1i2. 

4.2 COMPUTATIONS OF THE TRANSVERSE WAKES 

The transverse wakefields of short bunches in our model structure were also 

- computed with the code TBCI. The impulse parameter kl is shown for various 

bunch lengths by the diamonds in the top frame of Fig. 7. The solid line is the 

diffraction asymptote, Eq. (3.25). The dotted curve shows the diffractive part for 
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Wll[aa] “’ 

ZOC 0.05 

P 

0.00 

-4 -2 0 2 4 

(head) s/a (tail) 

. . Fig. 5. The wake function WII( s,~) of a gaussian bunch in our exam- 

ple structure. Results are given for a/u equals 0.0086 (dashes), 0.043 

(dots), and 0.167 (dotdashes), with g/u = 2.51. The solid curve gives the 

diffraction asymptote, Eq. (3.17). The charge distribution is given by 

the dotted curve in the lower frame, with the head of the bunch to the 

- 
left. 
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0.2 

Fig. 6. The loss factor kll( ) 0 as a function of the gap g for a bunch 

with a/a = 0.021, which corresponds to one of the points in Fig. 4. 

The diamonds give the results computed by TBCI. The curve gives the 

diffraction asymptote, given by Eq. (3.15). 

each Q, as given by the approximate formula Eq. (3.24). The computed results 

agree rather well with the diffraction asymptote for small o. The bottom frame 

gives the dipole loss factor kh’) as function of cr. These curves are very similar - 
in form to those for the monopole loss factor given earlier (see Fig. 4). Note, 

however, that the scaling in the two graphs differs by the factor 2/u2. 

The dipole wake function W_~(s,a) is shown in Fig. 8 for bunch lengths 

(T/U = 0.0086 (dashes), 0.043 (dots) and 0.167 (dotdash). The asymptotic form 

of the diffraction model is given as the solid curve. The wake form does seem to 

be approaching the asymptotic one as Q approaches zero. In the middle frame we 

-give the dipole longitudinal wake IVlil) for these cases. From Eq. (2.13) we know 

that this function is equal to dWJds. Note that the structure of these curves is 

similar to that of the longitudinal wakefields. We may note that the fact that the 
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k,a2 0.05 

Z0= 

0.02 

1.0 

4 a 1) 3 0.5 
2z,c 

0.2 

0.1 
0.01 0.1 

Fig. 7. The functions kl and kh’) are shown for various a/u for our 

structure with g/u = 2.51. The solid curve in the upper frame shows 

- the asymptotic behavior predicted by the diffraction model, Eq. (3.25), 

and the dotted curve shows the diffractive part of the impulse factor, Eq. 

(3.24); the curves in the lower frame give their longitudinal counterpart. 
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W,a2 a Ii2 o 5 -- [I * zfJc (T 

WI oa3 [T l/3 
-- [I 2Z,c a 0.05 

: 
0.00 

P 

-4 -2 0 2 4 

(head) s/a (tail) 

Fig. 8. The transverse wake function W_L(S,~) and the dipole longitu- 

dinal function W,il) (s,Q) along a gaussian bunch in our structure. The 

results are given for a/a = 0.0086 (dashes), 0.043 (dots), and a/a = 0.167 

(dotdashes), with g/a = 2.51. The asymptotic diffraction model results, 

Eq. (3.27), are shown by the solid curves. The charge distribution is 

given by the dotted curve in the bottom frame. 
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dipole longitudinal wake function FY,\l) approaches, for small 0, the (monopole) 

wake function WII times 2/a2. is rigorously predicted by the diffraction model. 

* * * 

We should note that V. Balakin and A. Novokhatsky have previously used 

a time domain code similar to TBCI to investigate the wake functions ~II(s,~) 

and W_L(S, a) for gaussian bunches with various values of a/a in a periodic struc- 

ture. Although they have not described their method they report results12 that 

resemble ours. 

5. Conclusions 

i. The longitudinal and transverse wakefields produced by very short gaussian 

bunches in an accelerating cavity with infinite beam tubes have been studied 

using the numerical program TBCI. Calculations were done for bunches with 

rms bunch length cr ranging from l/5 to l/100 of the pipe radius a. In all cases 

considered the cavity depth b’ was large enough so that it has no influence on the 

- wakefields at the bunch itself. We presented the computed loss factor lcll (a), the 

longitudinal wake function WII (s, a), the impulse factor Icl (a) and the transverse 

wake function Wl(s,o) for several bunch lengths in our range of interest. 

We have also described an analytic model, the “diffraction model”, based on 

an original idea by J. Lawson, which we expect to be applicable for short bunches. 

The model gives a longitudinal resistance RII (w) that decreases as w-112 at high 

frequencies and a transverse resistance Rl(w) that decreases as wm3j2 - with their 

-ratio equal to wu2/(2c). We note that the high frequency part of the longitudinal 

impedance predicted by the diffraction model is identical to that given by Dome, 

and Heifets and Kheifets. 
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In order -to compare the diffraction model with the TBCI results we have 

used the high frequency impedances predicted by the model to calculate the 

asymptotic forms of the loss factor, impulse factor and wake functions for small 

0. Because we expect the wakefields to be accurately described by the diffraction 

model only for frequencies w greater than a few times c/a, we have also obtained 

from the model an estimate of what we call the “diffractive part” of the wakefields, 

namely the contribution to the bunch factors and wake functions from frequencies 

above a cut-off frequency which we take equal to wc = 2.4c/a. 

We find that the bunch factors and wake functions obtained by TBCI agree 

very well with the diffraction model for the shortest bunch lengths studied. For 

the longer bunch lengths the TBCI results still continue to follow rather closely 

the power dependence of the asymptotic forms obtained from the diffraction 

model. This result is somewhat surprising to us since our estimate of that part 

of -the wake functions contributed by the “diffractive part” of the wakefields 

begins to fall noticeably below the asymptotic form for the longer bunch lengths 

studied. 

We have also confirmed that at short bunch lengths the loss factor +~(a) 

obtained from TBCI is proportional to the square-root of the cavity gap g, as 

predicted by the diffraction model. 

Finally we may mention that in our computations of the transverse wakes we 

have also obtained the the longitudinal dipole wake function VVII1)(s, a), and have 

found that it approaches 2/a2 times the longitudinal wake function IVll(s,a) for 

-small bunches, as predicted by the diffraction model. 
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APPENDIX A 

The Diffraction Model for Short-Time Wakes 

In 1968 J. Lawson’ proposed a method for estimating the energy loss of 

a point-like bunch in passing through an accelerating cavity by drawing on the 

results of optical diffraction theory. We have adapted Lawson’s method for cal- 

culating the high-frequency behavior of the wakefields of a cavity. The results 

are expected to be reliable for the diffractive part of the wakefields - namely for 

- the contribution from frequencies somewhat higher than the cut-off frequency w, 

of the beam tube. 

Lawson considered only the special case of the total energy lost by a point 

bunch, and his result is therefore only applicable for bunch lengths cr that are 

less than a/r - where a is the radius of the beam tube. We may call this the 

“low-energy regime”. We, on the other hand, are interested here only in the 

“high-energy regime”, in which the bunch is much longer than a/7 - although 

still less than a itself. We have adapted Lawson’s ideas to obtain the smoothed 

high-frequency behavior of the longitudinal resistance RII (w) and of the transverse 

resistance R*(w). Our results differ importantly from Lawson’s in that the 7 

dependence found in his result is no longer present. 
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A. 1 THE DIFFRACTION MODEL 

We consider the geometry shown in Fig. 10. A particle bunch travels along 

the axis of a perfectly conducting cylindrical beam pipe of radius a and passes 

through a cavity gap of length g before re-entering the beam pipe. We assume 

that for the bunch lengths of interest here the outer wall of the cavity is far 

enough away that it can be ignored. 

I & -x ---- 
v 

11-87 5902Al 

Fig. 10. An ultra-relativistic bunch enters a cavity with gap g and tube 

radius a. 

- In the beam pipe the bunch is accompanied by an electric field & which we 

may take to be radial and proportional to the instantaneous bunch current. This 

assumption is justified provided that we are in the high-energy regime defined 

above. This restriction is not necessary but is convenient for the present purposes. 

Then Gauss’s Law gives us that the electric field at the wall Ea is related to the 

local bunch current I by 

&a=% , (A4 

with Zc = l/ccc, the “characteristic impedance” of the vacuum. The associated 

magnetic field at the wall B, is azimuthal and of magnitude &,/c, so the electric 
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and magnetic fields at the wall look, locally, just like those in a free plane wave. 

Lawson’s proposal was that for high frequencies, the spreading of the elec- 

tromagnetic fields in the cavity gap should be just as would occur when a plane 

wave passes an obscuring edge, so that we may use the classical diffraction theory 

of optics to calculate the spreading fields. Clearly, we may only expect this as- 

sumption to be reasonable for reduced wavelengths in the field somewhat shorter 

than the pipe radius a - meaning for bunch frequencies w somewhat greater than 

c/a. For these frequencies we may consider the diffracted fields associated with 

some small azimuthal segment of the edge of the gap in Fig. 1 to correspond 

closely to those in an optical wave which is diffracted by a screen with a straight 

edge. 

-The diffraction geometry is sketched in Fig. 11. A monochromatic plane 

wave of intensity Jo - which we may take as the time-averaged Poynting vector 

- is incident perpendicular to an obscuring screen with a straight edge. The 

intensity J of the diffracted wave observed at a point P, which is at a distance 

~. - g beyond the screen, varies with the distance y from the edge of the geometric 

shadow as sketched in the graph in Fig. 11. The relative intensity J/Jo is l/4 

at the edge, falls to zero inside the shadow, and approaches 1 asymptotically in 

the non-shadow region. The characteristic scale of the variation of J with y is of 

the order of fi where X is the wavelength of the free wave. 

According to standard diffraction theory13 the intensity on the plane at g de- 

pends on the transverse position y only through a single dimensionless parameter 

u which we can take as 

u= 
$ 

Ly . 
hl (A.4 
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Opaque ScTeen /Observing Plane 

\ 
Incident Monochromatic 

1 l-87 Plane Wave 5902A3 

Fig. 11. The diffraction geometry. 

The intensity at y can then be written as 

J(y) = 
Jo F(u) = $(C(u) - 1/2)2 + (S(u) - 1/2)2] , (A-3) 

where C(u) and S(u) are the Fresnel Integrals. 

Lawson then proposed that the energy diffracted into the geometric shadow 

in Fig. 11 corresponds to the,energy deposited in the cavity of Fig. 10, and thus 

gives us the energy lost by the beam. Except for a factor of two! In addition to 
- 

the loss into the cavity there is also a loss into diffractive fields that propagate 

down the beam pipe. It is these fields which, interfering with the undiffracted 

wave, give rise to the oscillations of J/Jo in the region just outside the geometric 

shadow. From a well-known scattering theorem - which in optics is a consequence 

of Babinet’s Principle - the two parts of the diffracted fields carry equal energy. 

The total energy diffracted is twice the energy diffracted into the shadow. 

- 
Consider now a segment Al of the edge of the screen in Fig. 11 (taken 

perpendicular to the plane of the figure). We may think that the -.power Al’0 

diffracted by this segment is given by twice the integral of J over a strip of width 
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A!, extending from y = 0 to y = 00. Namely, 

co co 

APO = 2Ae J(y) dy = AlJoG F(u) du . 
J s 
0 0 

(A4 

The integral of the Fresnel function F(u) is just equal to14 1/(27r). Then, re- 

placing X by 27rc/w we find that 

APD = (A-5) 

A .2 THE LONGITUDINAL RESISTANCE 

We are now in a position to look at the diffractive energy loss by a beam. In 

the situation sketched in Fig. 10, when there is a sinusoidal beam current I(w) 

the Poynting vector at the wall is (using Eq. (A.l)) 

(A-6) 

where the pointed brackets indicate a time average. Putting this intensity into 

Eq. (A.5), we get the power diffracted by each element A!. of the perimeter of the 

cavity opening. Adding up the contributions from the full perimeter of length 

27ra, we get a total diffracted power at w of 

pdw) = &&r2(w)) - P-7) 

The ratio of PO(W) to (12(w)) is th e resistive part RII(W) of the longitudinal 

cavity impedance; so we find that 
- 

20 
RII(w)=* (A4 

At high frequencies the longitudinal resistance varies as wm1i2. As discussed in 
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the body of the report, this result is identical to results obtained by others using 

widely different methods. 

A. 3 THE TRANSVERSE RESISTANCE 

The diffraction model can be extended to obtain also the transverse wake 

impedance for short bunches. As we will see, the model gives easily the dipole 

longitudinal resistance R\,l)(w) defined in Section 2.2. We can then use Eq. (2.15) 

to get Rl(w). 

Consider a horizontal dipole current of strength Id on the central beam line. 

By a dipole current we mean a positive current I, together with an equal negative 

current (-I), separated by the small distance d. Then RS) (w) is equal to the 

(1) ratio of PD (w), the power dissipated by a sinusoidal dipole current, to the mean 

square of the dipole current strength 

Pg’ (w) 
$)(w) = (12(W)d2) ’ (A-9) 

- Here we take that the total power loss is just that into the diffracted fields. 

So long as the reduced wavelength c/w is noticeably smaller than the pipe 

radius a, we can consider that the power diffracted by each element AZ of the 

perimeter of the cavity edge is determined only by the local field strength &a at 

that element. For a dipole beam, Eq. (A.l) gets replaced by 

&a(l) &I = G IdcosO , (A.lO) 

where 8 is the azimuthal angle from the dipole axis. Then the diffracted power 

APg’(B) at an element AZ of the edge is given in terms of AP$)’ the power for 
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a simple beam current I (a “monopole” beam) by 

(A.ll) 

Integrating around the perimeter, we get the total dipole power in terms of the 

monopole power 

(A.12) 

It follows that R[ll’( w is ) g iven in terms of the monopole resistance R/lc)(w) by 

q;)(w) = -$$yw) . (A.13) 

Taking R/,o) from Eq. (A.8), we get that 

- 
Alternatively, using Eq. (2.15) to relate RllrJ to RI, we find that 

from which 

RI(W) = g$ (;)3’2 . 

(A.14) 

(A.15) 

(A.16) 

The transverse resistance drops off as we3i2 - one power of w faster than R!!(w). 

-Note that Eq. (A.15) for th e relation between RI(w) and RII (w) is identical 

to what one finds for a pipe with a short resistive gap. See, for -example, F. 

Sacherer. l1 
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