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The issue of non-renormalization theorems and vacuum stability in compact- 

ified fermionic string theories has been the focus of considerable attention for the 

last few years. However, genuine progress in these directions has been hampered 

by the complexity of fermionic’string perturbation theory. Until recently most of 

the progress has been achieved through general symmetry and effective lagrangian 

considerations [ 11. Though illuminating, these arguments unfortunately do not 

expose the interplay between the relevant world-sheet dynamics and their space 

time manifestation, nor do they provide a check of the internal consistency of 

string theory. It is therefore very important at this stage to try to establish the 

validity of the non-renormalization theorems and understand vacuum stability 

directly through explicit string perturbative calculations. 

The complexity of fermionic string perturbation theory beyond one loop can 

be essentially traced to the presence of the supermoduli [2]. These are modes 

of the world-sheet gravitino that cannot be gauged away by any world-sheet 

symmetry. On a world-sheet of genus g 2 2 there are 2g - 2 of them. These 

are anologous to the moduli or the modes of the graviton that cannot be gauged 

away. Just as in the latter case, we have to integrate over them in the path 

integral, and the added complexity lies roughly speaking in finding the correct 

integration measure. In some natural setting these modes of the gravitino and 

graviton can be thought of as the odd and even coordinates of the supermoduli 

space parametrizing superconformally inequivalent super Riemann surfaces [3]. 

At this moment, however, not much is known about this space or the structures 

that can exist over it. Consequently a measure [4] on it is not yet known in any 

explicitness that would enable us to carry immediate perturbative calculations 

of string amplitudes. 

An alternate approach to the problem has been to perform the integration 

over the odd moduli in advance in the path integral at the expense of introduc- 

ing new operator insertions on the world-sheet. Although it may deprive us of 

important insights which could only be gained by working on supermoduli space, 

this procedure has the potential of being explicit: The path integral is now car- 
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ried out on ordinary Riemann surfaces with spin structures, with which one is 

certainly more familiar. An associated problem in the path integral is posed by 

the zero modes of the commuting superconformal ghosts. On a world-sheet of 

genus g 2 2 there are 2g - 2 zero modes for the superconformal ghost Pze, the 

counting being the same as that for the gravitino zero modes. These have to be 

removed in a natural way before one can render the path integral well defined. 

Recently Verlinde and Verlinde [5] h ave written down a path integral expres- 

sion for the fermionic string measure after the integration over the supermoduli 

and soaking up of the ghost zero modes have been performed. Unfortunately, this 

does not yet imply that we possess a practical formalism to all orders in the per- 

turbative expansion. As was pointed out in ref.[6], f ermionic string perturbation 

seems to exhibit an inherent ambiguity steming essentially from ambiguities [ 71 in 

defining integration over the variables of a Grassmann algebra on-a non-compact 

space-in this case the Grassmann valued coordinates of the supermoduli space. 

These ambiguities show up in the formalism of ref. [5] through the fact that 

the answer seems to depend on the choice of basis of the super-Beltrami dif- 

ferentials in terms of which we expand the gravitino field. The ambiguity is a 

total derivative in the moduli space which does not integrate to zero in general. 

At genus two nevertheless there exits a natural resolution of these ambiguities. 

Through various considerations of world-sheet supersymmetry, modular invari- 

ance, and decoupling of unphysical states it was shown in ref.[6] that the basis of 

super-Beltrami differentials at the boundary A1 ( where the surface degenerates 

into two tori ) has to go to delta functions concentrated at the two nodes. The 

analogous statement at arbitrary genus is currently not known. 

In this talk we shall use string perturbation to address the question of vac- 

loop cosmological constant in arbitrary supersymmetry preserving backgrounds. 

We shall see that it is zero except for compactifications which possess a Fayet- 

Iliopoulos D-term at one loop [8,9]. In that case we shall find that there is an 

induced cosmological constant given by the square of the one loop coefficient of 

-- 

r uum stability. In particular we shall see how to explicitly calculate the two 
- 
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the Fayet-Iliopoulos terms. This cosmological constant was first calculated in ref. 

To start our discussion we shall write down an expression for the two loop 

heterotic string partition function following ref.[5], 

W = D[XBC] 
J 

(1) 

where {m;} are the six moduli for the genus two surface and {ca} are the two 

supermoduli [2] ; B d enotes the reparametrization ghosts b,,, &and the super- 

reparametrization ghost PZe. Similarly C stands for the reparametrization ghost 

fields cz, i? as well as the super-reparametrization ghost field 7@. X denotes 

the set of all the matter fields. The inner products (Q ] B), S((x, ] B)) in (l),, 

which are there to soak up the various ghost zero modes, are defined as follows: 

( rli I B) = / d24rlizz bzz + q&z + rl;zePze} 

IB)=J d2 ZXaZBPze (2) (xa 

where r]i, Xa form a basis for the super-Beltrami differentials and are defined 

through the following equations: 

and we have assumed that the world-sheet metric g@(mi) is independent of the 

odd coordinates. At this stage we can carry out the integration over the odd 
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moduli. It is easy to see that -the expression we arrive at is given by: 

W = 
J 

D[XBC] fi dm;esso fJ s((Xa I B)) 
i=l a=1 

2 

[n {ha I T, + $1 fi (rli I B)] 
(4 

a=1 i=l 
p=o’ 

The above expression can be made more explicit through a particular choice 

of basis for the super-Beltrami differentials x,‘$ given by: 

x2 = c~(~)(z - za) (a = 1,2) (5) 

where {za} are apriori arbitrary points on the Riemann surface. Also we shall 

group the six real moduli into three complex moduli (mi,m;) and choose the 

metric such that +z z = 4. z = 0. In this basis the above expression takes the %I 

following form[6]: 

+ Y(+3+2) &-l)j+‘~ n (qi 1 b) 
j=l 3 i#j 

- + y(z2)(3t(z1) &l)j+‘$ r]: (qi 1 b) 
j=l ’ i#j 

- %1)‘3t(z,)k c(-l)j+" r]: (vi Ib)(s$ _ """)] 
j=l k>j i#i,k i dmk Eb?Zj 

(6) 
where Y(q) is the picture changing operator given by[ll]: 

Y =: e+TF := cat + egTFatter - i{aqe2)b + d(qe24b)} = {QB, [} (7) 

with t, 4, v related to the superconformal ghosts through the bosonization 

prescription: p = ate-4, 7 = ve+. QB is the BRST charge. The factor of I 
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is needed to soak up the 6 zero mode. -The final answer is independent of zo. In 

writing down eq.(6) we have dropped terms which vanish by (b, 6) ghost charge 

conservation. 

It is perhaps worth emphasizing at this point that (z,z) denotes a coordi- 

nate system such that gzz = gzz = 0 everywhere on the Riemann surface at the 

particular point {m;} in the moduli space where we are evaluating the string 

integrand. Thus the choice of coordinates (z, Z) varies with the moduli. In defin- 

ing s or the various derivatives appearing in (3) we must keep the coordinate 

system fixed. In other words, after we choose the specific coordinate system (z, Z) 

we evaluate z,(mi + 6mi), gzz(mi + 6mi), gzz(mi + 6mi), xZe(mi + 6mi) in this 

coordinate system and take 6mi + 0 limit of appropriate ratios to calculate & 

and the various super Beltrami differentials. As has become clear from the anal- 

ysis of ref.[6,12,13], the choice s = 0 is not in general consistent with modular 

invariance. So we shall not drop these terms from our analysis. Furthermore 

z,(m,m) is in general not a holomorphic function of the moduli. Terms with 

$$ though drop out from expression (6) by ghost charge conservation of the 

6 system. We should also point out that in view of the results of ref. [6] the 

only constraint we shall impose on z,(mi, mi) is that at the boundary 111 of the 

moduli space the points ~1 and ~2 should coincide with the nodes pr,p2 on the 

tori Tl, T2 respectively. 

- Before we evaluate the cosmological constant consider the following ampli- 

tude: 

A= 
/ d2Y(WY)WY)) (8) 

M-{z1 ,z2) 

with the correlator defined using the path integral in expression (6), and the y 

integration runs over the Riemann surface with the points 21, z2 removed. The 

correlator in (8) is given by: (Im0),i’ui(y)Qj(g)( I ) where wi are the normalized 

abelian differentials and n is the period matrix, plus terms which come from the 
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contraction of 3X(y) with aX(zr) in Y-(~1) and ax(g) with aX(z2) in Y (~2) and 

vice versa. It is easy to see that the y dependence in these latter correlators is 

given by a total derivative of the form: E$,((aX(zr)X(y))(c3X(z2)3X(y)) + (zr t) 

~2)). This total derivative could contribute at the boundary of the y integral, 

namely at (~1, z2), iff the correlator in question develops a pole of the form 

(g - za)-k By examining the correlator in question we can see that such poles 

do not arise. Consequently these total derivatives integrate to zero. Using the 

fact that Jd2y~i(y)aj(g) = (Imn)ij, we immediately conclude that on a given 

genus surface, A as defined in (8) is the partition function ( I ) up to an overall 

numerical factor. 

At this stage we can express aXdX as the contour integral of the suprsym- 

metry current around the dilatino vertex: 

-where J, (= e-f S+S,) is the +ve chirality 4-dimensional supersymmetry cur- 

rent, and V* (y) is given by: 

Va(y) =BX~(7p)pB[e~9aXy(7~)~~~-S7 

+ iegsqb,!?-Sb + e”“Sb l&~~(w - z)‘/~~“~~~(w),$-(z)] 
- 

(10) 

in the notation of ref. [lo]. W e can now deform the supersymmetry contour and 

attempt to shrink it to a point. If the supersymmetry current Ja(z) had only 

the physical pole at x = y then contour deformation would lead to zero answer 

for (9). We would then conclude that the cosmological constant is zero in all 

theories which possess a space-time super current Jor(x)[14]. However as was 

first pointed out in ref. [5] th e supersymmetry current possesses spurious poles- 

gales not dictated by the operator product expansion. The origin of those poles 

was explained in ref.[ lo]. Th eir implication to contour deformation is that (9) 
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may be expressed as the sum of residues at the spurious poles. Let {tl} denote the 

location of these poles on the surface. For g = 2 it turns out that 1 = 1, .. -8 (in 

general there are 22g-2 g of these on a genus g surface [lo]) and they are given in 

this case by the zeros of the function f(x) = n, d[6](-$Z+ iy’+ xi=, Za - 2L) 

in the x-plane. After contour deformation the expression for the cosmological 

constant takes the form: 

A=-/[JJdmidmijC/d’yf 
i 1 

~~[XBC]e-~O~~(x)V~(y) fi(q; I ~)E(zo) 
rt i=l 

[ 
Ye rl[ (vi 1 b) + Y(zl)dt(~) e(-)j+l$ J-J (vi 1 b) 

i j=l ‘i#j 

+ Y(z2)at(zl) k(-)“‘s JJ (vi 1 b)] 
j=l 3 i#j 

(11) 
In expression (11) we have dropped terms that vanish by independent ghost 

charge conservation in the holomorphic and the anti-holomorphic sectors. Also, 

no sum over cx is implied in this equation. We shall now show that (11) is a total 

derivative on the moduli space: Let us first observe that replacing zr by 21, the 

spurious poles will shift to (t-i}. By choosing Hr appropriately we can ensure that 

h) n+;> = 0. c onsequently in equation (11) for the cosmological constant we 

can replace Y(z1) and a[(zr)s by Y(zr)-Y(&) and (aE(zr)~-a~(&)~} 

respectively, without changing the answer for the A. 

Now we write 

. 
y(z1) - Y(h) = f $BRST(z)(E(~l) - t(k)) (12) 

and deform the BRST contour and try to shrink it to a point in the first two terms 

in eq. (11). The obstructions to this deformation are the poles in the argument 
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of the BRST current at the locations of Va(y), ac(zs), (vi 1 b) and ((~0). The 

latter residue vanishes identically due to the absence of a [ mode in the correlator 

that can be used to soak up the zero mode. Had we not carried out the above 

subtraction we would have had to worry about this residue. Va(y) in (10) is 

BRST invariant up to total derivative in y. Consequently the residue of the BRST 

current at the location y will be a total derivative in y. This could contribute 

at the boundary (zr, ~2) of the y integration only if the integrand develops a 

(g - za)-l pole. Remembering that the only JJ dependence in the problem comes 

through the 8X(y) f ac or t in (10) we can see that no such singularity exists. 

Finally the residue of JBRST at at(z2) is aY(z2) and at the location of (vi I b) 

is given by (vi I T), w h ere T is the stress tensor on the world sheet. The latter 

insertion in the correlator may in turn be expressed as -$$. Combining these 

results together, we may express A as, 

A = 
/ 

[fi dmidmi] C &Mj 
i= 1 i i 

where the density Mj is given by: 

Y(z2) n(Vi 1 b) JJ(ql 16)Ja(X)V”(Y) 
i#i i=l 

(13) 

In writing down eq. (14) we have dropped terms that vanish by (b,h) ghost 

charge conservation, and have set zo = il. Notice that so far we have been 

working entirely in a model independent setting. We have carried out world- 

sheet manipulations in a manner that is independent of the background fields 

except that they must allow the existence of a spacetime supersymmetry current 

at the string tree level. 
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Being a total derivative inmoduli, expression (14) can be written as a bound- 

ary term. The boundary of genus two moduli space has two distinct components 

denoted by A0 and Al. The first is where the Riemann surface degenerates by 

pinching a nontrivial homology cycle. This is conformally equivalent to one of 

the handles becoming infinitely long. It is not difficult to see that no contribution 

can result from this boundary* : If s stands for the length of the handle in some 

appropriate coordinates, then A0 corresponds to s + 00. The string integrand in 

these coordinates behaves like -$e--m2s. The polynomial factor comes from the 

degeneration of the (detlmfl)-5 factor in the measure and e--ma, is the effect of 

space-time propagation of the string modes in the long tube of length s. In the 

absence of tachyons the limit s + 00 yields a vanishing contribution. 

. 

The other boundary A1 is where the Riemann surface degenerates by pinching 

a trivial homology cycle and can be pictured as a genus two surface breaking up 

into two tori Tl and T2 connected by a thin (long) tube. We shall next see that 

A receives a contribution from this boundary: In the neighborhood of A1 we can 

parametrize the moduli space by (71 = Rrr,~ = $222, t = !212) where 71, 72 are 

the modular parameters of the tori Tl and T2 respectively. t can be thought of 

as the pluming fixture variable (see for e.g. [17]) and can be written as t = reie 

where r is the radius of the cylinder connecting the two tori. The boundary in 

question corresponds to t + 0. Since the boundary is a point of measure zero 

the integral 

A = 
/ 

dtdfgMt(t, f) (15) 

would be non-vanishing on the boundary only if 

lim Mt(t,f) - i. t-0 (16) 

We shall now briefly sketch the calculation of Mt (for details see ref.[lO]). 

The fastest way to determine the behaviour of Mt near the boundary is to use 

* J. J. A would like to thank G. Moore for discussions on this point 

10 



the factorization theorem [15]+ _ 

.: 

. 

(A&l)Ada))g=2 - C(A~(ZI)~(PI))TI(~+(P~)A~(.~~))T,~~'~' (17) 
cp' 

where (hi, 71a) are the conformal dimensions of the field <p propagating in the 

narrow tube connecting the two tori; ~1, 412 are the nodes on Ti and T2 respec- 

. tively. 

In view of the results of ref. [6] we shall take in the correlator in eq. (14) ~1 

and 22 to lie on 2’1 and 2’2 respectively. Ultimately we have to take the zr --) pl 

and 22 + p2 limit. We shall also take 21 to lie on T2 for convenience, although 

the final result may be shown to be manifestly independent of the location of 81. 

The y integration runs over the tori 2’1 and T2. Let us take for definiteness y 

on 2’1. It is not hard to prove that the other case gives the same contribution 

[lo]. In this case, the positions rl of the spurious poles in the t + 0 limit may be 

found by analyzing the behavior of S[S](-+Z+ $j’+ cf=, z’, - 2A) in this limit. 

-It can be seen that four of these poles lie on 2’1, and the other four lie on T2 [lO]. 

Let us first, take x on 2’2. Application of the factorization theorem to the 

correlator in eq. (14) yields: 

- (18) 

where we have explicitly exhibited the contribution from the factorization of the 

antiholomorphic ghost determinant. We also used the fact that (~1 ] b)o, (72 ] b)e 

in the limit t + 0 reduce to b(wi), b(w2) inserted at arbitrary points WI, w2 

t One of course can calculate all the ghost correlators and the free matter part at two loops 
explicitly in terms of &functions and prime forms and then the effect of these correlators 
on the behaviour of M near the boundary can be inferred using well known formulae for 
degeneration of &functions [16]. Nevertheless one would still have to use the factorization 
theorem to exhibit the contribution of the interacting part of the matter correlators. In 
ref.[lO] the analysis is carried along these lines. 
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on 7’1, T2 respectively. Using various -ghost charge conservations and the fact 

that the operator Q has to have dimension (0,l) in order to contribute at the 

boundary we can determine what @  has to be: 

W-4 = c(n)e- ~~~~~‘2~+(p1)soL(p~)u(~) (19) 

where U(Z) is any operator of conformal dimension (0,l) and neutral under all 

ghost charges. The only such operators in the heterotic string are associated with 

gauge currents (recall that for every dim. (0,l) operator we can construct the 

vertex operator for a massless gauge boson by adjoing it with (aX+iCc.$~$)e~“‘~). 

It is clear that the only nonvanishing contribution to that matrix element could 

come from the (0,l) operators associated with the abelian factors of the unbroken 

gauge group. We now have to compute the one loop matrix elements appearing 

in eq.(18), with !I? as given in eq. (19). The superconformal ghost correlator can 

be calculated readily. In that one finds that there exists a simple pole in x on 

2’2. This pole accounts for four of the spurios poles on the genus two surface 

before degeneration since it exists on 7’2 for each spin structure on 2’1. Finally 

the one-loop matrix elements of the interacting matter fields can be computed 

by applying the results of ref. [9], and the answer can be exhibited entirely in 

terms of properties of the massless spectrum. From this one can easily calculate 

- the residue of the correlator at the spurious poles. 

The other four poles in the x plane lie on the torus Ti. The contribution to 

A4t from these poles may be analyzed by taking x on the torus Ti, and analyzing 

the resulting correlator using factorization theorem. The relevant intermediate 

operator @(PI) is given by c(pl) : [(pl)r,~(pl) : U(pi). We find a simple pole on 

2’1, whose position is independent of the spin structure on the torus 7’2. This 

accounts for the other four poles. The residue at this pole however can be seen l 

to vanish after summing over spin structures on 2’2. 

Combining all the results, we find that the cosmological constant at two loops 
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is given by: 

where ~(“1 is the coefficient of the Fayet-Iliopoulos D term associated with the 

a’th abelian factor in the gauge group, induced at one loop [8,9]. More explicitly 

it is given by 

J4 = --!I- c niphi 
1927r2 i 

(21) 

where ni is the number of massless fermions (bosons) with chirality hi and Uca) (1) 

charge qf “’ . Needless to say this means that the cosmological constant at two 

loops vanishes for all string vacua which have tree-level supersymmetry and which 

do not develop a one loop Fayet-Iliopoulos D-term. These include among other 

things flat space-time and the standard compactifications of the Es x Es heterotic 

string on Calabi-Yau backgrounds. 

It is important to see whether one can push string perturbation theory at 

high.er loops to the same level of explicitness that we have witnessed at two loops. 

One obstacle in that direction seems to be the ambiguities alluded to earlier. 

Another interesting question is the connection between the boundary terms in 

_ the moduli space and the vev’s of the auxiliary fields. In our analysis above we 

found that the two loop boundary term was related to the square of the vev of 

the auxialiary D term. One is tempted at this stage to conjecture a correlation 

between the two. It is therefore important to try to calculate within string 

perturbation directly the vev’s of the auxiliary fields, e.g. ( F ) and ( D ) at higher 

loops. At one loop it can be shown through some variant of contour deformation 

arguments that ( F ) = 0. H owever at higher genus no such statement exists 

so far. It is therefore safe to say that the F-term non renormalization theorems 

at higher loops have not yet explicitly been established in string perturbation 

theory. 
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