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1. INTRODUCTION 

When a charged particle (or bunch of particles) passes through some passive 

but conducting structure, it induces electromagnetic wake fields that are either 

reflected from the structure or remain in it after the particle has passed. Clearly 

the energy needed to establish these fields comes form the particle, and it must 

always be that the wake fields act back on the particle so as to decelerate it. 

It can easily be seen that as the energy (or gamma) of the particle rises, it is 

able to excite ever higher frequency wake fields, and will thus tend to loose ever 

more of its energy. The question then is what the dependence is, and whether 

there is some cutoff. An analogous question concerns bunches of finite length. In 

this case, provided the energy is high enough, the maximum frequency excited 

depends on the bunch length. The question, in this case, is the dependency of 

the energy loss on the bunch length. Does the loss rise without limit as the bunch 

becomes arbitrarily small? 

Before 1972 there was considerable confusion’ about these questions, but, 

at least according to J. D. Lawson, 2 the problem was then solved by E. Keil.3 

In Keil’s introduction he states: 

“Single cavity models 4p5 show an increase of the radiation loss as 7 112 

However, their validity breaks down above some value of 7 when in- 

terference between successive cavities becomes an important factor, and 

periodic models are more appropriate. In cylindrical geometry, they yield 

a radiation loss independent of 7, and in planar geometry decrease of the 

radiation loss6 as 7-‘i-2.” 

The single cavity result can be obtained’ from numerical solutions, includ- 

ing calculation using time dependent general purpose programs like TBCF. The 

single cavity result can also be obtained from diffraction considerations.’ The 

multiple cavity result can, in principle, be obtained from numerical calculations 
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but solutions for very short bunches require an analystic extension using an 

optical resonator model6 

Despite E. Keil’s paper and Lawson’s faith in it, there remains some uncer- 

tainly about the conclusion. The applicability of the optical resonator model 

to this problem is not so obvious, and a true analytical solution of the multiple 

cavity problem is not yet available. 

In this paper I present a qualitative treatment of both single and multiple 

cavity wakefields. Unfortunately, I am unable to obtain quantitative results, but 

I confirm E. Keils conclusion as to the energy and bunch length dependencies. 

And hopefully, I provide some physical insight into why the conclusion should be 

correct. 

2. A SINGLE CAVITY 

Consider a bunch of charged particles, of length d, moving along the axis 

with a relatively large 7. In free space, the lines of electric field will radiate from 

the bunch in a disc (Fig. l), whose thickness w(r) will be given approximately 

by: 

w(r) Ed+; 

The electric field strength at a radius t will be: 

E(r) k! Q 
27r 450 tw(r) 

(24 

(2.2) 

where the units are mks and co w 8.84 10-12. The energy in an interval dr of 

radius is: 

dll, = &,E2dV w Q2 dr 
47r fo tw (r) (2.3) 

If the bunch is travelling down a pipe of radius a then the fields inside a remain 

approximately as given by Eq. (2.3)) although the longitudinal components vanish 
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at the wall. Now we consider what happens when the pipe suddenly opens up 

(Fig. 2). The fields near the bunch cannot at first be effected, since there has not 

yet been time for the information to arrive. The smallest radius (r - 6) at which 

the fields can be modified will be given when the following is satisfied: a signal 

that started when the front of the bunch passed the iris edge (0 in Fig. 2) must 

arrive at the same time (at P in Fig. 2) as the back of the bunch, i.e., when 

Assuming 

6<<a (2.5) 

WC<2 

72 >> 1 P-7) 
then 

smj/TGqq (2.8) 

By a similar argument, there can be no field within the bunch length at a 

radius larger than a + 6. Qualitatively we would thus expect the field energy to 

follow Eq. (2.3) up to a - 6, and then fall to a negligible value by a + 6. And 

if we assume that the energy fall approximately linearly (as in Fig. 3), then the 

energy within the bunch length, in the field outside radius, a will be given by: 

u outside = 
Q2 6 

47rq)aw(a) Li ’ (2-g) 

The field lines cannot, of course, just stop, they must bend backwards as indicated 

in Fig. 2b. And the fields behind the bunch will also contain some energy; this 

will not however be a large contribution since the extent of the fields in z is 

rapidly increasing, and thus the magnitude of the fields and their stored energy, 

are small. 
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If the cavity ends after a distance g, all the energy outside the radius a will 

be reflected at the wall and will be lost to the bunch. In addition Lawson (Ref. 4) 

has shown that there is an equal energy inside a that has been retarded so that 

it cannot catch up with the bunch; that too will be lost. So the total energy lost 

by the bunch will be twice that given by Eq. (2.9). With the cavity length g 

substituted for E, and some factor Fr to correct for our approximate treatment, 

the total energy loss will be: 

u = 2Fl Q2 6 
47rcoaw (a) 4 

(2.10) 

(2.11) 

We can now apply this result to three cases: 

Point Charge 

If we consider the case of a bunch of negligible length, then from Eq. (2.1) 

we substitute a/y for w(a) in Eq. (2.11), and obtain: 

u 
Fl Q2 g++ =-- 
fi 47rfoJ- 

(2.12) 

In Ref. 4, this same calculation is performed exactly using a Fourier sum of 

frequencies to form the bunch, and Fresnel integrals to determine the diffraction 

of the waves at the edge. The result then obtained is identical to the above but 

for the factor Fr/fi which is replaced by 0.6, i.e., 

Fl k: .85 (2.13) 

Thus we see that the approximations used, though crude, give a give a result 

that is correct qualitatively, and is even within fifteen percent of a more accurate 

determination. 



We note that the energy loss rises as fi, as quoted in our introduction from 

Ref. 3. This apparent divergence of the energy loss does not, of course, violate 

energy conservation: the fraction of energy lost falls as l/a. 

Infinite Gamma 

In this case we can use Eq. (2.11) with w(a) replaced by the bunch length 

d, and Fl = .85. For a gaussian bunch, we should obtain an approximately 

correct result by replacing w by 2.5 oz. The energy loss in this case is commonly 

expressed by a loss factor k(oz), where 

U = Q2 k(o,) (2.14) 

so we have 

(2.15) 

Calculations using the program TBCI (Ref. 7) agree quite closely with this result, 

providing a, is sufficiently small; i.e., providing Eq. (2.5) and Eq.(2.6) are well 

satisfied. 

It is convenient to note here that the loss factor is related to a wake function 

W(z) by 

W(S - M1) tf~ 
I 

t&W (2.16) 

where g(z) is the charge density along the bunch. 

Impedance 

Instead of considering a single bunch, we now consider a continuous but 

periodic current, with a periodicity A. Simple diffraction theory (Ref. 4) shows 

that the field would be little effected inside r - 6, and negligible above r + 6. 

Where 6 is now given by 
- 

(2.17) 
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The field energy in an interval of dr must now be expressed per unit of length dl 

and charge density g, and will be 

dU q2d & 
-== dz 

(2.18) 

and the resulting impedance is 

(2.19) 

where F2 is a new factor to cover the approximations. Eq. (2.19) shows the 

familiar wi fall off of impedance with frequency, that is not sufficient to stop the 

divergence of the wake field for short bunches. 
. - 

3. MULTIPLE CAVITIES 

Consider a sequence of n identical cavities with vertical thin iris walls at a 

spacing of g (Fig. 4). Just before the nth iris, the fields will not extend out beyond 

r + bout, where 60ut is the same as the distance 6 that we calculated in Eq. (2.8). 

But the fields on the inside of the iris will be depleted down to I - 6i,,, where Si,, 

is larger than our old 6. This follows from the causality argument used above. 

The waves have travelled a longer distance z = ng since the first disturbance, and 

since the extent of the disturbance goes as the root of this distance [Eq. (2.8)], 

so one obtains 

4, = fi bout (34 
. 

and the total distance over which the field energy, within the bunch length, must 

fall (Fig. 5) will be 

&n + bout = (1 + l/q bout (3.2) 



If again we assume the field energy to fall linearly between r - Si, and r + 60ut 

(see Fig. Sa), then the energy reflected by the nth iris will be 

u fi: z&Q2 1 cut 
n 47rc,aw(a) 5 bout + &n 

Un k: 2FlQ2 ii 

47rcoaw(a) 2(1+ fl 

and referring back to Eq. (2.10) gives 

Un e Uainplc cavity 
2 

l-+Jn L 

Thus we see that as the number of cavities rises the loss per cavity falls. But . - 
this cannot go on for ever. We had to assume [Eq. (2.5)] that Sin remain small 

compared to a. At some value of n this has to be violated. At that point the 

field pattern will settle to an equilibrium in which the field is continually being 

eaten at the irises while it is being replenished on the axis by the deceleration 

of the beam. An estimate of the number of cavities nerit before equilibrium is 

reached, will be when (Fig. 5b) 

and thus: 

Providing 

netit >> 1 , (3.8) 
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an estimate of the magnitude of this equilibrium loss per cell will be obtained 

(Fig. 5b) by substituting a for ain in Eq. (3.3). Introducing a new constant F3 

to allow for the approximations; 

Un m 2F3Q2 1 244g 
4m,aw(a) 5 a 

The W’S cancel, and the average energy loss per meter is then 

(3-g) 

!E> 
Yiz 

2F3Q2 1 
-c,z 

(3.10) 

In the point charge case, Eq. (3.10) will apply if [from Eq. (3.8)]: 

. - 29 
r=y (3.11) 

beyond that value of 7 the loss [Eq. 3.10) is independent of 7, and we have 

obtained the 7O dependance discussed in the introduction. 

In the 7 = 00 case Eq. (3.10) is valid so long as [from Eq. (3.8)]: 

a2 

dc<% 
and in this case we can define the loss parameter: 

2F3 1 
k(o) = - - 

47r~~ a2 

(3.12) 

(3.13) 

The form of the result is interesting. The energy loss per meter is independent 

of the gap length and the pulse length. The result should not however be too 

much of a surprise: the situation is analagous to that of the energy loss of a bunch 

in a resistive wall tube (of radius a). In both cases the fields are absorbed at 

radius a, and supplied by the bunch at the axis. And in both cases, for sufficiently 
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short bunches, the energy loss is independent of the bunch length. In the resistive 

wall case, for an infinitesimal bunch length, (Ref. 9), the wake function per meter 

is 

W(o)=4 +& -$ 
0 

(3.14) 

Since, for small z, this is a constant, it follows that the loss parameter, for short 

bunches, must be a constant. It then follows from Eq. (2.16) that 

k(o) = w 
2 

(3.15) 

and thus 

k(o) = 2 +&- -$ (3.16) 
0 

which when compared with Eq. (3.13) gives (with some sleight of hand) 

F3 = 1 (3.17) 

An Examnle 

For the SLAC structure (X = 10.5 cm, a = 1.1, g = 3.5 cm) Eq. (3.13) with 

Eq. (3.17), gives 

&(o) = 149 Volts per picocoulomb meter . (3.18) 

This may be compared with a calculation* using a numerical method with the 

optical resonator analytical extension. Reference 8 gives for the SLAC structure 

(A = 10.5 cm, a = 1.1, g = 3.5 cm) a value of the wake field W(o), for an 

infinitesimal bunch, of 8 Volts per picocoulomb per cell, or approximately 228 

Volts per picocoulomb meter. From Eq. (3.15) the value of the loss parameter 

for a constant W(z) is k(o) = 0.5 W(o). So, for the SLAC case 

k(o) = 114 Volts per picocoulomb meter . (3.19) 

which, though a little low, is in reasonable agreement with our expectation. 
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