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ABSTRACT 

We isolate logarithmic divergences from bosonic string amplitudes on a disc. 

These divergences are compared with ‘tadpole’ divergences in the effective field 

u theory with a cosmological term, which also contains an effective potential for - 
the dilaton. Also, corrections to p-functions are compared with variations of the 

effective action. In both cases we find an inconsistency between the two. This is 

a serious problem which could undermine our ability to remove divergences from 

the bosonic string. 
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This talk is based on the work done in collaboration with W. Fischler and 
. L. Susskind.“’ 

Since the recent resurgence of interest in the theory of strings as the most 

fundamental objects in physics, a new approach to string dynamics has emerged. 

This approach, which did not figure during the earlier golden age of strings in the 

seventies, was pioneered in the papers by Callan, Martinet, Perry and Friedan,12’ 

Sen[‘l and Lovelace. [‘I These authors start by writing down a renormalizable 

two-dimensional field theory describing propagation of strings in classical back- 

grounds which can be viewed as condensates of massless string modes. If confor- 

ma1 invariance is considered to be a fundamental principle of string theory, then 

the vanishing of the P-functions of the 2-d field theory should insure consistent 

string propagation. Therefore we find that strings can propagate not only in flat 

26-dimensional space, but also in curved space with some classical antisymmet- 

ric tensor and dilaton backgrounds. The p-functions can be computed in the 

loop expansion of the 2-d field theory. The resulting expressions are functions of 

background fields in spacetime with increasing number of derivatives, depending 

on how many field theory loops have been taken into account. 

- 

The amazing feature of the equations resulting from setting all the p-functions 

to zero is that they turn out to be variations of a generally covariant space-time 

-action functional depending on the massless background fields. This equivalence 

was discovered and tested to low orders in the derivative expansion by a num- 

ber of authors whose work relied primarily on the sigma-model background field 

method. [2’51G1 Although a general proof of equivalence between conformal invari- 

ance conditions of the world-sheet theory and variational equations of a spacetime C 
_P_ effective action is yet to be constructed, recent work by a number of authors[” 

-- -nc has made important steps towar& such a proof. 

A crucial property of the effective action found via the sigma-model route is 

that it generates string scattering amplitudes for the massless modes. In other 

words, it is the effective action in the standard field theory sense. An immediate 
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i ,---. question that comes to mind is how to incorporate into our effective action the 
. effects of string loop dynamics. Naively this appears to pose serious problems 

for the @-function method because of the following simple argument. The p- 

functions are sensitive only to the short distance effects on the string world sheet. 

Therefore they are independent of the world sheet topology: the standard field 

theory P-functions computed on a sphere (string tree level), a torus (one string 

loop), etc. are all going to be the same. If we believe that conformal invariance 

generates string equations of motion, this would imply that the effective action 

is not renormalized by string loop effects, which is in direct contradiction with 

non-vanishing of scattering amplitudes beyond tree level. 
- 

A natural resolution of this apparent paradox was proposed by Fischler and 

Susskind.[“’ The basic observation is that beyond tree level the Polyakov func- 

tional integral prescription for S-matrix calculations contains more integrations 

than at the tree level. In order to calculate an n-particle amplitude one is in- 

structed to integrate over the modular parameters of the surface with n punc- 

tures. For example, the fact that is crucial for this talk is that a disc with n 

punctures has more modular parameters than a sphere with n puncures. A more 

familiar statement is that on a sphere SL(2,C) invariance allows us to fix loca- 

tions of 3 vertex operators, while on a disc SL(2,R) invariance allows for fixing 

only one closed string vertex, and the angular coordinate of the other. The extra 

-integrations that need to be carried out on a disc give rise to extra logarithmic 

divergences beyond those encountered at string tree level. These divergences 

give rise to the loop corrections to P-functions. Therefore, for applications to 

strings, one is no longer interested in an ordinary two-dimensional field theory, 

but rather in a peculiar combination of 2-d field theories defined on world sheets C 
_z_ with different topology and supplied with a prescription for integration over the 

-- - moduli of these world sheets. ‘- 

After having identified the source of the loop corrections to the string equa- 

tions of motion it is important to check that the resulting equations follow the 

pattern discovered at the string tree level. Namely, they should be equivalent to 
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L  ,--- .  var ia t ions o f th e  l o o p  cor rec ted  e ffect ive ac t ion  w h o s e  fo r m  is d ic ta ted by  g e n e r a l  
. cova r iance  a n d  s imp le  c o u n tin g  o f th e  p o w e r s  o f th e  st r ing coup l i ng  constant .  In  

th is  ta lk  I wi l l  p r e s e n t a  ca lcu la t ion  o f th e  s implest  cons is tency  check,  th e  o n e  

th a t conce rns  th e  cosmo log ica l  te r m  wh ich  is s imu l taneous ly  th e  e ffect ive p o ten -  

tia l  fo r  th e  d i la ton.  T h e  resul t  o f ou r  ca lcu la t ion  is ra ther  perp lex ing :  th e  l o o p  

cor rect ions to  p- funct ions d o  n o t tu rn  o u t to  b e  consis tent  wi th th e  e x p e c te d  

fo r m  o f th e  e ffect ive act ion!  Th is  m a y  b e  a  se r ious  p r o b l e m  th a t cou ld  p r imar -  

i ly a ffect  ou r  u n d e r s ta n d i n g  o f th e  behav iou r  o f cosmo log ica l  constant  in  st r ing 

theory .  I s h o u l d  m e n tio n  th a t a  conc lus ion  oppos i te  to  ou rs  h a v e  b e e n  r e a c h e d  

in  a  recent  prepr in t  by  Ca l l an  e t. al.“’ S ince  th e  m e th o d s  u s e d  th e r e  a re  qu i te  

di f ferent  f rom ours,  w e  d o  n o t fu l ly  u n d e r s ta n d  th e  n a tu re  o f th is  d isc repancy .  

L e t m e  n o w  p r o c e e d  to  a  m o r e  fo rma l  e x p l a n a tio n  o f th e  p r o b l e m . T h e  

p r o p a g a tio n  o f th e  c losed  boson i c  st r ing in  grav i ta t ional  a n d  d i la ton  b a c k g r o u n d s  

is g o v e r n e d  by  th e  fo l l ow ing  2 -d  act ion:[‘0 ’2 1  

s =  l -  / d 2 a ~ ( r ~ “g i i (X)d ,X iayXj  -  $ ( X ) d 2 ) )  -  - &  f dsqJ(X) rc  
47r rcr’ (1)  

w h e r e  rPV(~r ,  0 .2 )  is th e  wor ld  s h e e t m e tric, g u ( X )  is th e  26 -d imens iona l  m e tric, 

a n d  d (X )  is th e  d i la ton  fie l d  wh ich  coup les  to  th e  wor ld  s h e e t a n d  b o u n d a r y  

curvatures.  T h e  fie lds  g i j  (X )  a n d  d (X )  c a n  b e  th o u g h t o f as  a n  inf ini te co l lec t ion 

o f coup l i ngs  in  th e  2 -d  fie l d  theory .  T h e s e  coup l i ngs  b e c o m e  reno rma l i zed  a n d  

satisfy renorma l i za t ion  g r o u p  e q u a tio n s  

d !Jij 
~  =  P ij(S ij, 4 )  d l o g X  

B y p a s s i n g  cer ta in  technica l i t ies  assoc ia ted  wi th th e  cho ice  o f renorma l i za t ion  - -- - L -  
s c h e m e , th e  c o n fo rma l  i nva r iance  cond i t ions  a re  

_  - 

Pi j  =  P 4  =  0  (4  

Remarkab ly ,  th e s e  e q u a tio n s  c a n  b e  de r i ved  f rom a  genera l l y  covar ian t  ac t ion12’ 
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. 
I = J d2”Xfie4(R + (8~))~ + o(d)) (5) 

The O(cr’) corrections in (5) are higher derivative terms where each additional 

pair of derivatives introduces a factor of CY’.‘~‘~’ 

The processes leading to the effective action of (5) are string tree graphs 

calculated on a spherical world sheet. The factor exp(d) is understood as follows: 

the path integral for the string has a factor 

ex~(g / d20fiRc2)) = exp(+o(l - 9)) (6) 

where r$o is the zero momentum part of 4 and g is the genus of the world sheet. 

For a sphere (g = 0) the effective action must be weighted by exp(&), and 

locality requires that this be replaced by exp($). 

Let us now consider corrections to the action (5) due to processes with a 

small hole in the world sheet. Such processes occur in the theory of coupled open 

and closed strings. Since the disc has genus l/2, the action term with the least 

possible number of derivatives is 

6I= d26Xdexp(4/2)J 
J 

where J is a constant. 

(7) 

To understand the leading corrections to closed string p-functions we must 

consider closed-string scattering amplitudes on a disc. We-will represent the disc 
_T_ by a sphere with a hole and for simplicity look at three-particle scattering since L- 

it illustrates the ‘basic point. As usual, the sphere is stereographically projected 
a - 

onto the complex plane. We may integrate over positions of two of the vertex 

operators. Alternatively we can hold the vertices fixed and integrate over the 

radius a and location z of the hole. Then the tadpole divergences occur in the 
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Figure 1. The tadpole configurations: a) in string theory, b) in field theory. 

small hole limit which is conformally equivalent to a sphere with a long tube 

attached (fig. la)). After this change of integration variables, the amplitude is 
- 

where the expectation value is computed on a sphere with a hole of radius a 

centered at z, and V,U,W are vertex operators for emission of arbitrary closed 

string physical states. The Green’s function needed to compute (8) is given by 

< X(u$)X( W,?B) >=-log~U-w~2-log~1- 
a2 

(z - u)(a - a) I2 Cg) 

u Expanding (9) for small a gives 
- 

< X(u,ti)X( w,a) >=-logIu-U+ 
a2 a2 

(z-u)(,z-ta) - (z-w)(z-a) (lo) 

The O(u2) contribution to the propagator is identical to the effect of the 

operator : aXiaXi : inserted at the point z (normal ordering means that we drop t 
the self-contraction). Thus, to obtain the coefficient of the logarithmic divergence _ -1. 

-- - in the amplitude’(8), we expand khe integrand to order a2 and integrate over a: 1111 

_ - 

c?Oi2 
J J 

$ d2z ( v--w I21 v-u I21 u-w I2 (V(v,o)U(u,a)W(w,zi+3XiidX’:(z,z)) 

x 
(11) 
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c ,---. where-the expectation is now evaluated on a sphere. This logarithmic divergence 
. in the disc amplitudes provides the leading correction to the tree level ,&functions 

for the closed string modes. To find these corrections, we need to decompose the 

operator insertion that replaces a small hole on a sphere in terms of the operators 

that enter the two-dimensional action (1). Using dimensional regularization, de 

Alwis has found that[12’ 

: aXi8Xi := aX;8Xi + ;fiRc2’ (12) 

where we have set ~4 = 2. Recalling the logarithmically divergent counterterms 

that are necessary on a sphere, we find that the p-functions corrected by small 

holes are: 

Pij = &j - vi vj 4 + Jgij exp(+/2) + . . . 

& = -l/2 V2 4. - 1/2(ad)2 - G Jexp(+/2) + . . . (13) 

J is the normalization factor of the insertion that we did not bother to fix. A 

subtle point in the formulae (13) is that the P-function terms - vi Ojd and 

-1/2(~%$)~ are absent unless we implement a divergent shift of the sigma model 

target space variables: Xi + Xi + log Xdi4.[“’ This particular choice of renor- 

- malization scheme is necessary even at tree level to insure that the p-functions 

are equivalent to variations of the effective action. However, it is easy to check 

that the leading corrections arising from small holes cannot be shifted by dif- 

ferent choices of renormalization scheme on a sphere (they do not contain any 

spacetime derivatives). 

-1. 
-- - We observe now that, even though the first two terms in (13) are equiva- ;-. 

lent to variations of a spacetime action, the small hole corrections violate this 
_ - 

equivalence. They cannot be obtained by adding to the action the ‘cosmological 

term’, which is fixed up to normalization by general covariance and counting of 

string coupling constants. This is the basic result of our work. To make our 
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discussion of this important point as clear as possible, let us enumerate all the 

zero-momentum vertex operators relevant for our problem. To find the correct 

soft graviton and soft dilaton operators, it is convenient to carry out a resealing 

on the couplings of the two-dimensional theory, gij + gij exp(-24/d - 2) which, 

as will be shown later, is necessary to identify the physical dilaton.“” Then we 

can read off the vertex operators as the coefficients of terms linear in dilaton C$ 

and graviton hij in the 2-d action (1) ( we will state all operators up to over- 

all normalization constants). Soft graviton emission is given by an insertion of 

aXi8Xj while the soft dilaton emission is produced by 

ax,axi + t&C@2) =: aXiaXi : +R”’ 

We found that the operator insertion that must replace a small hole to satisfy 

the desired equivalence with the effective action is 

: i3Xi8Xi : ++R’2’ 

Please note that, although an accidental conspiracy of factors makes the operator 

(15) appear as a soft dilaton operator with a flipped sign, their origin is very 

different. Actually, the operator (15) must be a linear combination of a physical 

operator (dilaton) and an unphysical operator (the trace of graviton). This is - 
so because the cosmological constant term creates a tadpole for the trace of 

graviton. If one thinks of tadpoles as injecting the operators onto the sphere 

and substitutes correct tadpole and propagator factors, one recovers the precise 

mixture of the dilaton and graviton operators that must replace the hole for 

consistency with the- effective action. This procedure is an alternative to finding C 
_z_ precisely which combinations of the variations of the effective action should be -- - 2 

equal to the ,&functions and it gives identical results. Now it should be clear to 
_ - 

you why the old statement of Ademollo et al.“” that the logarithmic divergences 

should be proportional to soft dilaton emission amplitudes cannot be compatible 

with the idea of effective action. 
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As elucidated in the previous discussion, the precise insertion we are finding 

by a direct string-theoretic argument is : aXiaXi :. It disagrees with what is 

necessary for consistency of the effective action as well as with the Ademollo et 

al. theorem. [13’ Thus, in order to find agreement with the effective action, we 

need to find an additional renormalization of the curvature coupling, which is 

topological when integrated over the sphere. Since identification of such terms is 

notoriously subtle, we have carried out a test of our results. 

We calculated the logarithmically divergent part of a three-graviton ampli- 

tude on a disc and compared it with tadpole diagrams of the effective field theory, 

specified by the action I + 61. The string calculation amounts to carrying out the 

integration over the position z and radius a of the hole in (8). For each radius 

a, the z integration covers the whole plane excluding only those regions which 

would cause one of the vertex operators to be inside the hole. This exercise turns 

out to have a simple answer: the logarithmically divergent part of the amplitude 

is proportional to &?c3/dflAtree(pi, ki) where &?a/&& effectively counts 

the power of momenta in a given term of the corresponding tree amplitude for 

three gravitons. 

- 

This answer is to be compared with the effective field theory divergences of 

the form l/k21 = k2 o which arise from the tadpole graphs of fig. lb). We identify 

this divergence with the logarithmic divergence in the world sheet cut-off: - 

1 
1 

p= s 
daak2-l 

x 

A very important feature of the field theory calculation is the presence of a c 

_P. tadpole for an unphysical state, the trace of graviton. Contrary to what is some- 
-- - times said in the literature, propagation of this state into vacuum provides an 

a - additional source of divergence. 

In order to calculate the dilaton contribution to the graphs of fig. lb), we 

recall the soft dilaton theorem. The emission amplitude for a zero-momentum 
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dilaton is--given by[“’ 

(16) 

where A is the amplitude without the soft dilaton. Multiplying this by the 

propagator and tadpole factors from the conveniently resealed action (gij + 

gij exP(-W/d - 2)) 

I = 
J 

(W2 d26X&(R - d-2 + . ..) + 
J 

dZBXfiexp(d(-& - i))J (17) 

- 
we obtain the dilaton contribution to the divergence. Note that in (17), as 

opposed to (5), the dilaton has a standard kinetic term (up to a factor). The 

mixing between dilaton and graviton has been eliminated. This identifies the 

dilaton field in (17) as proportional to the physical dilaton.[2”0’ 

Since the gravitational couplings are determined by general covariance, we 

can derive a similar theorem for the graviton contribution to the divergence (we 

found it convenient to work in the standard harmonic gauge). Adding the two, 

we find that the net divergence in the amplitude is proportional to (&?a/a&?+ 

2)&w The string and field theory answers disagree! As expected, the missing 

p-function insertion - fiR (2) translates into a missing logarithmic divergence 

-proportional to the tree amplitude. The reason is that an integrated curvature 

insertion on a sphere produces an answer proportional to the tree amplitude. 

Therefore, our results, although inconsistent with what we expected to find, 

possess some internal consistency. 

_zc_ 
I have no time to dwell on quite a few attempts we made to find the missing 

term. None of them have led to clear-cut results. I would like to add a note -- - 2 
of caution, however. The amplitudes that we considered are divergent. At this 

- - 

c 

time there is no universally applicable prescription for regularizing divergences 

in string theory. Although the ‘small fixture’ regularization that we introduced 

is physically plausible and is easy to carry out, it is not inconceivable that some 
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i r other scheme will identify the extra term needed for consistency. Such a scheme 

may be available only in the framework of closed string field theory. Alterna- 

tively one could look at string amplitudes directly in non-flat backgrounds. By 

adjusting the background to eliminate all divergences we would then find the 

loop-corrected equations of motion. At this point both of these approaches ap- 

pear to be difficult. 

I would like to conclude my talk by mentioning a possibly interesting exten- 

sion of our results. The problem we have found occurs on a disc when all the 

closed string vertex operators approach each other. Let us consider an equiva- 

lent calculation on a surface of arbitrary topology. The situation when all the - 
vertices approach each other can be conformally mapped into a sphere with a 

small fixture of any genus. Using multipole expansion for the Green’s function 

on an arbitrary surface we can show that the term quadratic in the size of the 

fixture is proportional to an insertion of the same operator : 8X. 8X : replacing 

the fixture on a sphere. As we argued previously, the effective action requires 

that the operator replacing the fixture depend on its genus. This argument would 

generalize the inconsistency we are finding to a surface of arbitrary genus. Unfor- 

tunately it is hard to make this argument precise due to existence of overlapping 

divergences in all higher-order calculations. For example, if we calculate closed 

string amplitudes on an annulus, there are going to be (log X)2 divergences due - 

- to the fact that each hole gives rise to a tadpole. Thus, a new apparatus of 

stringy renormalization is needed for subtracting higher order divergences and 

exposing the ,&functions. We know of at least one case of a higher genus calcula- 

tion, however, where this is not necessary. This is the recently investigated case 

of D-term supersymmetry breaking in string theory.[“’ The first’ place where C 
_P_ the dilaton tadpole shows up is a double torus. Due to the arguments stated 

-- - above, we expect a careful identification of the insertion on a sphere to reveal a 
a - mismatch with the effective action. 

The only topology where the insertion turns out to be consistent with the 

effective action considerations is a torus. This may have to do with the fact 
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that only-in this case the integrated curvature vanishes (the tadpole for a state 

that couples to Rc2) is zero). We should remark here that, in a theory of closed 

bosonic strings only, the torus provides the leading contribution to tadpoles. We 

have carried out an explicit calculation on a torus and convinced ourselves that 

the insertion that must replace a small handle is : dX .8X :, the same as for a 

small hole. For the case of genus 1 this insertion turns out to be consistent with 

the effective action considerations which proceed in complete analogy with our 

calculations for genus l/2. However, as explained above, we expect trouble once 

we move on to genus 2. 

Let me point out that the small hole limit in the sense of the above paragraph 

is quite different from the small hole limit of the annulus diagram of the open 

string theory. If one inserts open string vertex operators on the outer boundary 

of an annulus, there is a logarithmic divergence that occurs in the limit when 

the radius of the inner boundary vanishes. In this case, however, this variable 

is a modular parameter of an empty annulus.[151 Therefore the ratio of the de- 

terminants needed to calculate the zero-point function depends on the radius of 

the hole. This brings in an extra term into the operator that must replace the 

hole. It is not easy, however, to identify this extra term as a curvature insertion. 

_ 

A reasonable thing to do is to carry out a comparison of the logarithmically 

divergent part of the amplitude for three gauge bosons with the effective field 

theory. This work is in progress now (the issue is complicated by the presence 

of open string tachyons in the bosonic model).t1s’ However, a similar compari- 

son of the four gauge boson amplitude in open superstring theory (for a gauge 

group not equal to SO(32)) app ears to yield agreement with the effective action 

including the tadpole terms. Therefore, we conjecture that. the problem we found 

does not afflict open string amplitudes but is only present for pure closed string ;-- 

; 

- 

amplitudes. It is suggestive to compare the situation with A. Strominger’s as- 

sociativity anomaly which occurs only in the tadpole limit in pure closed string 

amplitudes. [“I Perhaps, clarifying the relation between our calculation and the 

associativity anomaly could shed some further light on the problem. 
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