
SLAC-PUB-4427 
NSF-ITP-87-123 
September 1987 

c ,w-- T/E/AS 

. 

Signal Modulation in Cdld Dark Matter Detection* 

KATHERINE FREESE’ + , JOSHUA FRIEMAN~ AND ANDREW GOULD~ 

1 Institute for Theoretical Physics 

University of California, Santa Barbara, California, 93106 

2Stanford Linear Accelerator Center 

Stanford University, Stanford, California; 94505 

ABSTRACT 

- 

If weakly interacting massive.particles (WIMPS) are the dark matter in the 
galactic halo, they may be detected in low background ionization detectors now 
operating or with low temperature devices under development. In detecting 
WIMPS of low msss or WIMPS with spin-dependent nuclear interactions (e.g., 
photinos), a principal technical difficulty appears to be achieving very low thresh- 
olds (5 O(keV)] in large (- kg) detectors with low background noise. We present 
an analytic treatment of WIMP detection and show that the seasonal modula- 
tion of the signal can be used to detect WIMPS even at low signal-twbackground 
levels and thus without the necessity of going to very low energy thresholds. As 
a result, the prospects for detecting a variety of cold dark matter candidates may 
be closer at hand than previously thought. We discuss in detail the detector 
characteristics required for a number of WIMP candidates, and carefully work 
out expected event rates for several present and proposed detectors. 
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1. Introduction 

.-- - The. observed flatness of spiral galaxy rotation curves strongly suggests that 

. the Milky Way is embedded in a dark halo, which appears to make up 90% of 

-the mass of the galaxy. Several arguments suggest that the dark matter (DM) 

is not baryonic, but instead may be composed of exotic, stable elementary par- 

ticles. Elementary particle dark matter candidates may be loosely grouped into 

two categories, ‘hot’ and ‘cold’, corresponding to particles which are relativistic 

(hot) or non-relativistic (cold) when galaxy scales enter the horizon. The most 

successful candidate theory of galaxy formation to date assumes that the dark 

matter is ‘cold’, so that galaxy scale perturbations are not erased by relativis- 

tic free streaming.’ Furthermore, particle physics models suggest a host of cold 

dark matter candidates, including massive Dirac or Majorana neutrinos and var- - 

ious particles predicted by supersymmetry, such as scalar neutrinos, photinos, or 

higgsinos. Generally, the constraint that these particles do not overclose the uni- 

verse (fio~ 5 2) reqUireS partide masses mDM 2 O(GeV) (an exception iS the 

invisible axion). Clearly, a crucial test of the cold dark matter theory is to find 

direct evidence for or against the existence of such weakly interacting massive 

particles (WIMPS). 

At present, there are significant astrophysical and experimental constraints 

on cold dark matter candidates. WIMPS in the halo would be captured by the 

sun (if mw Z 3 GeV) and the earth (for mw X 12 GeV), where they would 

-annihilate, and could give rise to an observable high energy neutrino signal in 

proton decay detectors.2 If WIMPS constitute the halo, the absence of such a 

signal implies that either: 

i) the WIMP scattering and annihilation rates in the sun and earth are both 

sufficiently low that the neutrino signal is below the present sensitivity of G 
_-. proton decay detectors, 

- ._ - ;. 
ii) the WIMP annihilation cross-section must be suppressed compared to its 

- - 
nuclear scattering rate (e.g., Majorana fermions with p-wave suppressed 
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annihilation), or 

ii;) the universe carries a net asymmetry of WIMPS, so that only a small num- G .-- 
her of anti-particles. are captured (e.g., Dirac fermions or complex scalars). 

. 
.In addition, WIMPS more massive than O(20 GeV) which have coherent (spin- 

independent) interactions with nuclei (e.g., Dirac neutrinos, scalar neutrinos) 

would have been seen in ultralow background double beta decay detectors (again 

assuming a halo density of WIMPS). 3 Th ese experiments leave open the possi- 

bility that the halo may comprise either less massive particles, mw S 20 GeV, or 

particles which have only spin-dependent interactions with nuclei, e.g., photinos 

and Majorana neutrinos. 

.~._ . 

Recently, there have been several proposals to build low temperature devices 

for the direct detection of cold dark matter candidates in the galactic halof”’ A 

new generation of such cryogenic detectors will be required in order to reach sen- 

sitivity to target nuclei recoiling with energies 2 O(keV) due to elastic scattering 

of O(GeV)-mass halo particles. Proposed experimental ideas include superheated 

superconducting colloids and crystal bolometers. Depending on the design, these 

detectors may simply register all particles depositing energy above some thresh- 

old, or they may directly measure the energy of the incoming particles. In this 

paper, we consider detectors operating in both threshold and energy-sensitive 

modes. 

Our general analysis in this paper is applicable to both conventional ioniza- 

tion and cryogenic detectors. 

Given the ubiquity of background sources, these detectors can be used to set 

upper limits on the halo WIMP density more easily than to positively detect 

WIMPS. Suppose, for example, that a detector is designed so that the expected 

background count rate is of order 2 per day. And suppose that, from theory, 
_T_ one knows that a halo mass density of 3 GeV photinos will produce a signal of 4 

- 
per day. Now in an experiment it-is found that there are 2 events per day. One 

may use this to put an upper bound on the density of 3 GeV photinos of 50% 

- 
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of halo density. Suppose instead, however, that the experiment yields 5 events 

per day. One possible interpretation is that the background is 2 per day and the 
I ,z- 

density-of !3 GeV photinos is about 75% of halo density. But another possible, and 
. 

a priori more likely, interpretation is that the experimenter underestimated the 
. 
background. Thus, finding positive evidence for a halo density of WIMPS appears 

to rest critically on a belief in the experimenter’s claims about background. 

To remedy this situation, one would like a clear .signature which distin- 

guishes the WIMP signal from other sources of background. Drukier, Freese, 

and Spergel’ showed that, due to the earth’s motion around the sun, the WIMP 

signal would have an annual sinusoidal modulation which peaks in late spring. 

Thus, they showed it would be possible, in principle, to demonstrate that the 

data was not pure background6 - 

In this paper, we analyze in detail the conditions under which one can mea- 

sure the modulation of the WIMP signal. We also emphasize a different attitude 

toward the usefulness of modulation. In ref.5, modulation was viewed as a method 

of confirming a suspected WIMP signal; given this point of view, WIMP detec- 

tion requires a large signal to noise ratio, and thus a reliable understanding of 

background levels. We argue that modulation can itself be used as the primary 

means of detecting WIMPS (rather than as a confirmation), even in the presence 

of large backgrounds (i.e., backgrounds comparable to or even larger than the 

WIMP signal). As a result, the prospects for detection of particles such as Majo- 

Yana fermions, which generally have only spin-dependent interactions with nuclei 

and thus relatively small cross-sections, appear more promising than previously 

thought. Thus, a clear understanding of modulation is important not only in the 

analysis of data, but also in the design of experiments. 

Heretofore, modulation has not been seen as a primary means of detecting L 
_T. 

--- WIMPS for two reasons. First,. modulation is a small effect compared to the - -_ 
absolute count rate, and thus one naively expects its detection to require many _ - 
events and long counting times. However, even a small periodic component of 
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data superposed with a much larger random component can be extracted by 

a correlation analysis. Second, previous authors tended toward the belief (er- i .-- 
roneous; as we will show) that modulation can ,be measured only at very high 

. 
detector recoil energies, for which the signal count rate is severely reduced. This 

s belief is b ase d on the fact that the modulation, relative to the average WIMP 

signal, increases as the threshold energy of the detector is raised. We show be- 

low, however, that a more significant statistical measure of the modulation is 

maximized at comparatively low thresholds. 

In Sec.11, we present an analytic treatment of WIMP detection and modu- 

lation, using an approximate halo model. In Sec.111, we discuss the statistics of 

modulation and the prerequisites for its statistically significant detection. The 

reader interested only in our numerical results may skip to Sec.IV, where we 

present useful, general expressions for signal and modulation rates, under dif- 

ferent assumptions about background levels. In Sec.V, we apply the analysis to 

find event rates for a variety of WIMP candidates for several present and pro- 

posed detectors, and present our results graphically. Sec.VI contains our brief 

conclusions, and some of the technical details are relegated to the Appendices. 

- 

2. Analytic Theory O f WIMP Detection 

The rate of WIMP detection can be obtained by folding in the flux of WIMPS 

with the probability of their interacting in the detector. For particles with speed - 
w with respect to the earth and a detector with threshold energy 6, the rate of 

W-IMP detection per unit volume V of detector is 

I(rl,= 
V / 

dw f&>%(w) - (2.1) 
G 

_T.  

- _ - Here fv (4 is the speed distribution of WIMPS in the earth’s frame [the number 

density of WIMPS with speed in the range (w, w + dw)], and n,(w) is the rate - e 
per unit time that a WIMP with speed w scatters with energy loss at least E, 
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when it is travelling through the detector medium. The parameter q is defined 

. below. 
.?- ‘. . . -_ 

. The form of the halo distribution function presumably depends upon the de- 

. tails of the.collapse process which formed the galaxy. However, general dynamical 

arguments suggest that the WIMP velocities were ‘thermalized’ by fluctuations 

in the gravitational potential during collapse, a process known as violent re- 

laxation.’ On this basis, we will assume the WIMPS hive an approximately 

Maxwell-Boltzmann speed distribution in the galactic rest frame (the halo is 

assumed to be non-rotating), 

fo(v)dv = &rnw (&)3’2v2exp (-$) dv , (24 
- 

where 8 is the halo velocity dispersion, discussed below, nw is the local number 

density of WIMPS of mass mw, and the halo density is phalo = nwmw = 

o.oo7M@/pc3 = 0.4GeV/cm-3s (there is a factor 2 uncertainty in this estimate). 

Equation (2.2) corresponds to an infinite isothermal sphere, and is consistent 

with a self-gravitating halo with a density profile p - rV2, which yields a flat 

rotation curve at large radii. 

.--- . In actuality, the WIMP distribution will be truncated at the (local) galactic 

escape velocity, veec N 500 - 650 km/set, and in addition may be anisotropic. 

For example, an anisotropy in the halo distribution is likely to arise from the 

partial infall of the dark matter into the gravitational potential of the baryons in 

the galactic bulge and disk.’ However, Drukier, Freese and Spergel’ showed that 

the modulation is not qualitatively affected by a small anisotropy, and we show 

in Appendix I that truncation at the escape velocity likewise has little impact if 

detector thresholds are sufJiciently low. These modifications to the distribution 

function will yield only small quantitative corrections to the results presented in 
_-. 

- ._ bc- this paper. Until ,detailed models, of the halo are more fully developed, we will 

take Equation (2.2) as a provisional choice, which has the advantage that detec- - - 
tion rates can be given in completely analytic form. The results given here can 
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obviously be extended, at least numerically, to more complicated distributions, 

which we plan to do in a subsequent publication. (If WIMPS are detected, it i ,p- 
would clearly be important to design experiments to probe the detailed structure 

. 
of the halo distribution.) . 

To convert Equation (2.2) into the distribution seen by an observer moving 

with the velocity of the earth, ve, we make the galilean transformation, v’ = 

G + &, where w is the WIMP speed with respect to the earth. In the earth’s 

frame, the WIMPS then have a speed distribution” 

f,(w)dw = -%wz’exp[-(z2 + v2)] 2srl 
& 

sinh(2sr)) dz 
, P-3) 

where z is the dimensionless WIMP speed (with respect to the earth) and q is 

the dimensionless earth speed with respect to the halo, 

z2 - 3w2 2 _ 34 
2G ’ rl -yjIp’ 

For an isothermal system, the circular velocity (e.g., of stars in the galactic disk) 

is related to the three-dimensional velocity dispersion by 

u&.,/@~ = 213 . (2.5) 
- 
Since the average local circular velocity about the galactic center (the rotational 

speed of the local standard of rest(LSR)) is l1 vVcirc = 2204120 km/set, we estimate 

the halo velocity dispersion 8 = 270 f 25 km/set. Correcting for the motion of 

the sun with respect to the LSR,” we also find the net speed of the sun with 

respect to the galactic rest frame is va = 232 f 20 km/set. Using Equations 
_T. it f 11 ows that the yearly average value of q is ~0 = 1.05. The --- (2.4) and (2.5), : o ;.. 

orbital speed of the earth around the sun is 30 km/set, and the angle between 
- - 

the axis of its orbit and the velocity vector of the sun is approximately12 6 = 
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30.7” (sin6 = 0.51). Thus v may be expressed as a function of time, 

i ,---. 
q(t) = qo + Aq cos(&) (2.6) . 

. 
where 

Aq = .07 f .Ol , 
27r (Jyz--, 
yr P-7) 

and t is taken to be zero when the earth’s speed is at a maximum, in May. 

The energy lost by a WIMP with speed w in elastic scattering with a nucleus 

of mass A4 is 

AE= m&h4 
(mw + M)2 

w2(1 - cos 6) , (2.8) - 

so that 

AE 

c-1 E 
G g(mw, M) = 4mwM 

(mw +M)2 ’ (2-Q) 
maz 

Thus, g(mw,M) 5 1, and the upper limit is achieved when the WIMP and 

nuclear masses are matched. For low energy, isotropic scattering, it follows from 

Equation (2.8) that the probability distribution for energy loss in a collision, 

P(AE/E), is flat over the interval 0 2 (AE/E) 2 g(mw,M), or P(AE/E) = 

g-l. The scattering function n is obtained by integrating over this probability 

distribution from the threshold, (AE/E) 2 (c/E), and is given bysS1’ 

9 (mw ,W 
.f&(w) = 6nNW 

I 
g(mw,M)-’ exp(-AE/&)d ( m_4uE212) ’ C2-10) 

2e/mw w2 

where r&N is the number density of target nuclei and o is the low-energy interac- c 
_=. tion cross-section. The exponential factor in the integrand takes into account the -- - L- 

loss of coherence ‘in WIMP-nucleus interactions for momentum transfers com- 
- - 

l3 parable to or larger than the inverse nuclear radius. Here, Eo is the nuclear 
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‘coherence energy’, 

E. - 3tL2 
2MR2 ’ 

14 
where R2 is the mean square radius of the nucleus, 

. 

R= [.91(&)1’3+.3] x10-13cm. 

(2.11) 

(2.12) 

Equation (2.10) may be easily evaluated 

ws2,(w) = 
fi?anN& 

*w9 
[exp (-&) -exp (-A:r.r)] - (2.13) 

It is convenient to define the new variables 

A2 - 3E 
gmwB2 ’ 

(2.14) 

in terms of which Equation (2.13) becomes 

um,(w) = ~~e2[exp(-bA2) - exp(-bs’)] . (2.15) . . - 

The parameter b is the maximum energy loss of a ‘typical’ halo WIMP as a 

fraction of the coherence energy; for b < 1, the departure from coherence is 

negligible. This parameter may be estimated to be 

(2.16) - 

which we show for the reader’s convenience in Fig.1. The parameter A2 is roughly 

the ratio of the threshold energy to the maximum energy loss of a typical WIMP, 

and is given by 

This is shown in Fig.2 for a variety of WIMP and nuclear masses. Note that, for 
- A 

targets with large atomic number, A2 is a sensitive function of the WIMP mass. 
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. 

-...- 

From Fig.1, we see that in most cases of interest, b < 1, and equation (2.15) 

takes the simple form 
_:. -. 

n 
w&(W) = unNifi2(z2 - A’). (2.18) 

We will assume that this limit holds in the remainder of the body of this paper. 

However, it must be noted that when b is not small, i.e., for heavy detector nuclei 

and relatively large WIMP masses, the conclusions of the paper must be radically 

revised. The analysis for arbitrary b is discussed in Appendix II, where we show 

that the modulation is suppressed for large b. 

Using Equations (2.3) and (2.18), we may now evaluate the detection rate, 

equation (2.1)) 

Q?(W = $ 
( > 

r 
2 uNt;w8 [(-A-A++&(A-,A+)+~[A+c”“-~-c~~] 1 

(2.19) . 

where 

A&=Afq, (2.20) 

- 

22 

x(wz2) = 
J 

dye --y2 = $[erf(x2) - erf(xr)] , (2.21) - 
21 

and NN is the number of nuclei in the detector. Since Aq < ~0, the detection 

rate is accurately given by the lowest order terms in the Taylor series 

Aqcos(wt) +:.. , (2.22) & 
I)0 

--- ;. 
where the first term represents the time-averaged WIMP signal. In evaluating 

- - 
this term, we note that I(QO = 1.05) d ff i ers significantly from 1(~ = 0), e.g., by 
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0(30%) at zero threshold (A2 = 0), so that it is not a good approximation to es- 

timate the time-averaged WIMP signal by considering the detector as stationary 
i ,=- 

with respect to a Maxwell-Boltzmann distribution. The second term in Equation 
. (2.22) we call the absolute modulation, and it is given explicitly by 

. 

STn cos(wt) = - 

-&I(rlo, e) c-(4 
2qox(A-, A+) + ewA: + ewAz_, 1 -- 

(-A-A+ + !&(A-., A+) + a(A+emA1 - A-emA:) 1 * tlo 
(2.23) 

The time-averaged WIMP signal and the absolute modulation as functions of 

the threshold (normalized to their values at A = 0) are shown as the functions 

$A’) and B(A2) in Fig.5. (The function 7 is given by the bracketed expression 

-...- . 

- 

in Equation (2.19), divided by its value at A = 0; the function /I is the product 

of the bracketed expressions in Equations (2.19) and (2.23), also divided by its 

value at A = 0. Numerical expressions for the average count rate and modulation 

are given in section IV.) As expected, of course, the average signal drops mono- 

tonically with increasing threshold. More surprising, perhaps, is the fact that the 

absolute modulation peaks near A II 1, i.e., where the threshold energy is tuned 

to the maximum energy loss of typical WIMPS. On the other hand, the relative 

modulation, the ratio of the absolute modulation to the average signal (- P/7), 

grows monotonically with increasing threshold, as found in Ref.5. However, as 

we discuss in the next section, neither the absolute nor the relative modulation 

is the most relevant quantity to be considered. 

_T.  

--- 
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3. Statistics Of Modulation 

.-- We-consider a year long experiment in which the daily signal and background 
. are represented by random variables S(t) and B(t) respectively. The background 

* will be assumed to be a Poisson random variable, which implies that its variance 

is equal to its mean, 

02(B) = (B) . (3.1) 

As discussed in the previous Section, the WIMP signal will be assumed to be 

composed of two parts, 

s(t) = So(t) + g ( > cos(wt) . (3.2) - 

The first term, So, is a Poisson random variable, 

a2(So) = (So) , (3.3) 

and the second term in Equation (3.2) is the absolute annual modulation, ex- 

pressed as a daily rate. Strictly speaking, S,/365 should be treated as a random 

variable, but since, in cases of interest, (S,/365) < (So), the modulation S, 

may be treated as a constant, i.e., its variance may be neglected. The daily rate 

of data is then - 

D(t) - s(t) + B(t) = So(t) + B(t) + ( ) 2 cos(wt) . (34 

For convenience, we also define the random variables representing. the annual 

signal, background, and data, G 
_Tz. 

-.._ - ;. 

Stat = c s(t) , Btot - c B(t), Dtot E c D(t) . 
all year all year all year 

(3.5) 
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We note that 

,=-- -. a2(&ot) = (Stat) = 365(So) , a2(&,t)- = @tot) = 365(B) , P-6) 
. 

. and 

a2(Dtot) = @tot) = (Got) + @tot) . (3.7) 
. 

We wish to extract information about the modulation, S,, from measure- 

ments of the data, D(t). To accomplish this, we define the random variable 

X z c 2cos(wt)D(t) , 
all year 

which projects out the modulating portion of the data. Simple statistics 

(X) = &a, a2(X) = 2(&t) = 2((stot) + @tot)) . 

(3.8) 

tells us 

(3-g) 

- 

This evaluation leads us to define a new random variable R, the modulation 

significance, 

R--& .- ~‘- . 
If (Dtot) >> 1, then, to an excellent approximation, 

y&t - 

(3.10) 

(3.11) - 

may be regarded as a measurement of R; here x and dtot are respectively mea- 

surements of X and Dtot. For pure noise (S, = 0), R is a (nearly) Gaussian 

random variable with zero mean and unit variance, 

pn(r)dr = &e -r2/Qr . _ (3.12) L 

The modulation significance R is precisely what we want to measure, be- 

cause it contains both phase and amplitude information about the signal and 
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I 

. 

.- - 

- 

_= 

has simple statistical properties. If a measurement of R yields the value ro, it 

will be generated by a real modulation in the signal (as opposed to noise) with 
,+-- confidence level 

. 
Co 

C.L. = l- p,(r)dr = i + ferf . 

r0 

For reference, we list several values of t-0 with their respective confidence levels: 

ro = ‘1(84%), 1.29(90%), 1.64(95%), 2(97+%), and 3(99$%). That is, a mea- 

surement of t-0 = 1.3 would be a fairly reliable indicator of modulation and a 

measurement of ro = 2 would be a very reliable indicator. 

It is instructive to compare the foregoing analysis with the standard power 

spectrum, or periodogram, r5 analysis. In a power spectrum analysis, the relevant 

discrete data variable is 

- 

fi(tj) = SO(tj) - (SO) + B(tj) - (B) + 
( 1 

2 COS(WOt j) 9 (3.14) 

which we consider as the sum of a Gaussian ‘noise’ term (with zero mean) and 

a periodic signal. If the data are binned into days and the experiment counts 

for No days, the periodogram is defined as the absolute square of the discrete 

Fourier transform, 

pfi(w) = & EZl(tj) eXp(-iWtj) 

2 

. 

3=1 

(3.15) 

At the signal frequency wo, the expected value of the power due to the signal is 

(3.16) 

-- 

and the power due to the noise is just the total variance, 
-- - ;. 

P, =a2(So) +2(B) = *. (3.17) 
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Thus, for one year of data, the signal-to-noise ratio is 

,+- . . - (Q) = !g = T,. . (3.18) 
n 

. For Gaussian noise, the power at a given frequency has an exponential probability 

distribution, 

pn(Q)dQ = exp(--QQ)dQ , (3.19) 

(note that Q is measured in units of the variance of the noise), so the statistical 

significance of an observed power z at a selected frequency is just Pr(Q > z) = 

exp(-2). 

Suppose that a measurement of the modulation significance yields R = 1, or 

Q = 0.5. According to Equation (3.13), the confidence that this measurement 

is due to signal is 84%, while the power spectrum analysis yields a statistical 

significance, according to Equation (3.19), f o only 61010, a far lower confidence 

level than the method given above. The reason for the reduced confidence of 

the power analysis is two-fold. First, the power Q does not discriminate between 

positive or negative values of the amplitude R; clearly, however, a negative mea- 

surement of R should be rejected as noise. Second, the fourier transform (3.15) 

- 

.--- . degrades information about the phase of the signal, which is retained in the co- 

sine transform (3.8). Thus, in looking for a signal of known frequency and phase, 

the variable R is more useful than the conventional signal-to-noise ratio. 

The reader, aware that 2-a and even 3-a bumps on a power spectrum are 

notoriously unreliable, may be tempted to regard the foregoing confidence level 

claims as absurdly optimistic. It should be recalled however, that in the analy- 

sis of power spectra, one typically asks how much power there is at N different 

frequencies. That is, one actually conducts N independent experiments. Con- 

sequently, there is a strong likelihood (or high false alarm probability) that one 
_Yz_ 

- ._ - or several of these:experiments will yield a 2-a or 3-a result, even in the absence -_ 
of an underlying signal. Such results are rightly received with skepticism. By - - 
contrast, the analysis given above attempts to answer only one question, not N. 
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. 

It is also important to emphasize that the significance of these measurements 

does not depend in any way on the relative magnitude of the signal and back- 
,; 

ground:’ The only assumption which has been .made about the background is 

that it is unmodulated (or, more precisely, has no near-annual component to its 

* modulation). This assumption is surely reasonable and, in any event, can be 

partially checked by measuring the annual component of modulation orthogonal 

to x: 
Y 3 c 2sin(wt)D(t) . 

all year 

(3.20) 

If a measurement of X is statistically significant in the sense given above but 

a measurement of Y is not, this may be regarded as evidence that there is no 

annual modulation in the background (except one satanically peaked in May or 

November) f6 
- 

.- -‘- . 

For illustration, in Figures 3 and 4 we show two typical data sets D(t), 

binned into daily counts, generated at random by computer. In both cases the 

‘noise’ term, S-J(~) + B(t), was generated from a parent Poisson distribution with 

(So) + (B) = 10 counts per day and variance equal to the mean. Figure 3 

corresponds to pure noise, that is, (R) = S, = 0. In this run, the measured 

values were dtot = 3680 total counts, x = -0.95, modulation significance r = 

-0.11, and orthogonal modulation significance y/d% = -0.56. Such data 

would rightly be considered a null result for modulation. On the other hand, 

-Figure 4 was generated by the same noise plus a cosine modulation with S, = 160 

and (R) = 1.87. For this run, the measured values were dtot = 3628 total 

cuunts, x = 190.6, modulation significance r = 2.24, and orthogonal modulation 

y/d= = -0.05. In this case, although the modulation cannot be picked out 

from the data by eye (even if one filters out high frequencies by using longer 

bins), the modulation analysis strongly suggests the presence of the true signal. 
_-. 

- ._ - L. 

16 



4. Signal and Modulation Rates 

,; We now apply the foregoing statistical analysis to the measurement of WIMP 
. signal modulation. The expected value of the modulation significance is 

. 

(R) = &) * (4.1) 

In designing an experiment, one should aim to insure that a.halo mass density 

of a given type of WIMP will generate a significant modulation measurement, 

say, (R) > 1.3 (90% confidence level), in the proposed apparatus in a year. The 

WIMPS in question will be assumed to have an isotropic velocity independent 

cross section, which we parametrize by 

d = 5.2 x ~o-40cm2mwMg(mw 7 M) 2 
(GeV)2 ’ ’ (4.2) 

where g(mw,M) is given by Eqn.(2.9). H ere, Q is a parameter which depends 

on the detector nucleus and the WIMP identity, examples of which we discuss in 

the next section. 

To evaluate the modulation significance R, we must first calculate the ex- 

pected average daily signal (SO) f rom a halo density of WIMPS, per kilogram- 

day of detection, at a given energy threshold A2 [see Equation (2.17)]. From 

equations (2.19) and (4.2), the time-averaged count rate is 

- 
(So) = e?O~ 4 counts 

kg - day 
- 0.32g(mw, M)Q27(A2)%oPo.4 

kg - kg - day ’ (4.3) 

where the halo velocity dispersion D = 2708270 km/set [see Equation (2.5) and 

discussion following], the local halo density Ph& = 0.4~0.4 GeV/cm3,. and 7(A2) 

gives the signal at energy threshold A2 as a fraction of its value at zero threshold 
_Yr. 

- .- - (see Fig. 5).17 Note that, for values of A2 2 7, the effects of the galactic escape ;. 
velocity on the WIMP distribution can be safely ignored (see Appendix I). For 

- - 
A2 ;S 7, the function 7(A2) should be replaced by =y(A2), shown in Figure 6. 

- 
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We now consider the modulation under two different assumptions about the 

. background. First assume that the expected background rate is much greater 
,; 

than the time-average signal, (B) > (SO), and is given in units of tens per 
. kilogram per day, (@/kg = lOBrokg-‘. In this case, the modulation significance 

* is proportional to the absolute modulation, and from equations (2.23) and (4.1) 

is given by 

(4.4) 

where Mdet is the detector mass, and r is the duration of the experiment. The 

function p, shown in Figure 5, gives the absolute modulation of the signal at en- 

ergy threshold A2 as a fraction of its value at zero threshold [see equation (2.23)]. 

We note the important fact that, although the signal-to-noise ratio (So)/(B) is 

approximately independent of detector size and counting time, the modulation 

significance scales as the square root of the number of kg-years of detection. For 

reference, we also give here the absolute modulation expressed as a daily rate, 

- 

&J g qoAq= ( > 
&a 

365(kg - day) 
= 9.4 x 10-3gQ2p(A2)p0.4’V270 k;r;;y . 

P-5) 

Now consider the opposite limit: suppose that the background from other 

sources is small compared to the time averaged WIMP signal, (B) << (SO). In 

this case, from equations (2.19), (2.23), and (4.1), one finds that 
- 

(R)s = 0.23giQa(A2) ~~~10.4~70)~ , (4.6) 

where 

P a(A2) E r . (4.7) ; 
_T. 72 

-.- - ;. 
The function Q is shown in Figure 5. Note that it retains a value of (Y N 1.5 over a 

fairly broad range. The effects of finite galactic escape velocity on the modulation 
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parameters cy and p are shown in Figure 7. As we discuss in Appendix I, the 

escape velocity has negligible impact on the modulation for A2 S 7. 
,; 

We nod here that the theoretical uncertainty in R is dominated by the un- 

certainty in the local halo density. Also, for cases in which the background and 

‘signal are comparable (l/10 2 (So/B),5 lo), one should use the exact expression 

for the modulation significance (used in generating the figures below), 

(Rb(R>B 
lR) = ((R); + (R)i)1/2 ’ (4.8) 

Clearly, in designing optimal detectors, one would vary the mass of the de- 

tector nucleus M and the threshold energy E (or equivalently A2) to maximize 

the functions in Equations (4.3) - (4.6) over a wide range of WIMP masses. In 

practice, such a project will be limited by availability of materials and the tech- 

nological difficulty of achieving low thresholds in large detectors. We discuss 

examples of detectors and event rates in the next section. 

- 

Although the discussion above is completely general, it has not exploited 

the fact that conventional ionization detectors, and possibly cryogenic detectors, 

have substantial energy resolution. For an energy-sensitive detector, the average 

daily count rate at nuclear recoil energy AE can be found from the derivative of 

Equation (4.3), 

u - I(rlo, c, AE) 
kg = l-19Q2 ($) -’ (-2) Ao 5 kg -‘;I;” keV , (4.9) 

where 
AE A; = A2 - = 

( ) 

3AE 
I5 grnwe2 ’ 

(4.10) 

_T. and A2 is given by Eqn.(2.17). Th e f unction -d-y/dA2 is shown in Figure 5; 
-- - 

again, for velocities near the galactic escape velocity, i.e., for Ai Z 7, the function 

-dq/dA2, shown in Figure 6, should be used. Note that Eqn.(4.9) is the detection 
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rate per keV of nuclear recoil energy, which is about a factor 3-5 times the 

equivalent electron energy, depending on material and energy rangef’ Here and 
,a-. below, all energies and count rates will be expressed in terms of nuclear rather 

. than electron depositions. 
. 

If the background has a different dependence on energy than the signal, reso- 

lution is useful in distinguishing the two. For example, the noise seen in ultralow 

background Ge double beta decay detectors appears to be only weakly energy 

dependent: current background rates in these experiments are of order .l-.3 per 

kg per keV per day above O(40) keV ( nuclear recoil energy). By contrast, Figure 

5 shows the expected WIMP signal is strongly peaked at low energy. Thus, if 

low thresholds can be achieved, and if the background does not increase sharply 

at low energy, one might hope to see the dark matter peak. - 

What role does energy resolution play in the detection of modulation? As 

Figure 8 shows, modulation of the WIMP signal gives rise to a sinusoidal de- 

pendence not only of the total count rate but of the recoil energy spectrum as 

well. (Fig.8 also shows why the modulation is maximal for A2 E 1, for this 

yields the maximum difference in the energy-integrated signal between May and 

December.) In practice, the modulation in the energy spectrum will be difficult 

to detect, because the seasonal variation in the number of counts per energy bin 

is small unless the WIMP signal is very large. For our purposes, energy resolu- 

tion is primarily useful in rejecting background in the following way. Once the 

threshold of an experiment is fixed, one can determine from Fig.5 the energy 

range, E < AE < k, over which one must look to see the bulk (say, 90%) of 

the modulation for a range of WIMP masses. We then reject all counts in the 

energy range AE > i as due primarily to noise, and evaluate the modulation 

significance R using only the remaining low energy data. Note that this method 

of background rejection is independent of assumptions about background levels, 9L 
_T. 

__ -and depends only pn the expected-signal level. 
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5. Particles and Detection Rates 

- In this--section, we evaluate the modulation significance and expected event 

rates for a variety of WI&IP halo candidates and detectors. We first discuss the 

-scattering parameter Q of Equation (4.2). For the well-known cases, we simply 

compile the results for reference. For cases which are less familiar or in which the 

literature provides no consensus, we provide more discussion. As mentioned in 

the Introduction, WIMPS can be classified according to whether their interactions 

with nuclei are: a) coherent, i.e., nuclear spin-independent, or b) spin-dependent. 

We will discuss examples of each type. 

5.1. COHERENT PARTICLES AND COSMIONS 
- 

For particles with spin-independent interactions, Q is roughly proportional 

to the atomic number of the nucleus, i.e., to the nuclear mass. For example, for 

Dirac neutrinos, neutral current interactions give 

Qy, = N - (1 - 4 sin2 O,)Z N N - .122 , (54 

.--- . slightly less than the number of neutrons. (We are ignoring the small contribution 

due to the axial vector coupling, which is negligible for 2 Z 2.) For scalar 

neutrinos, candidates for the lightest supersymmetric particle, Qc = 2QYD. From 

-Eqn.(4.2), it follows that heavy target nuclei are preferred for detecting these 

particles. 

Another class of ‘coherent’ cold dark matter candidates are cosmions, rel- 

atively light particles (3 GeV 5 m, 2 7 GeV) with larger nuclear interaction 

cross-sections than the particles above, which are candidates to solve the solar G 
‘* _P. neutrino problem. As an example, we will consider one of the cosmions pro- 

-- - 
posed by Gelmini, Hall, and Lin:’ a Dirac fermion with a cosmic asymmetry, 

- e which interacts with light quarks via a heavy colored scalar, 4. The low energy 
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cross-section for cosmion-nucleus scattering is 

c7c = 
(N+22)2 h4 

4x ~mcW(mc,M) 9 
dJ 

(5.2) 

m where h is a Yukawa coupling constant, m, is the cosmion mass, and rn$ is 

the mass of the exchanged heavy scalar. To solve the solar neutrino prob- 

lem requires that the cosmion have an average’scattering cross-section of cv 

2 - 10 x 1O-36 cm2 per baryon in the sun18. If we fix the ratio (h/m#)4 N 

4.6(m,/GeV)-’ (100GeV)-4, th en for cosmion masses of 3 GeV and 10 GeV, 

the cosmion-proton cross-sections are 4 x 1O-36 cm2 and 2 x 1O-36 cm2 respec- 

tively. Consequently, from Equation (4.2), the cosmion scattering parameter is 

approximately 

Qc = 53(N + 22) ($-) -’ . (5.3) 

In this example, the cosmion has coherent interactions with nuclei; we note than 
19 in other models, the cosmion may have only spin-dependent interactions. . 

5.2. SPIN-DEPENDENT INTERACTIONS 

Popular candidates for halo particles with spin-dependent nuclear interac- 

tions include three Majorana fermions: Majorana neutrinos, higgsinos and photi- 
20 nos. For Majorana neutrinos, 

- Q;, = 20.5X2J(J + 1) , (5.4 

where X2J(J + 1) is a parameter which depends on the nucleus. Here and below, 

we have normalized our definitions of Q2 so that the values of X2J(J+l) given by 

Goodman and Witten (ref.4) and Drukier, Freese and Spergel (ref.5) should be 

used, even in caseswhere our estimates for cross sections differ. The nuclear shell 
_z. is only appreciable for nuclei with an odd number -- -nc model parameter:X2J(J + 1) L-- 

of protons or neutrons. For several favorable nuclei, X2i(J + 1) = .5 (7Li, llB), 
- - 

0.91 (lgF), .42 (27Al), and 0.40 (“‘V). 

C 
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In supersymmetric theories, the lightest supersymmetric.particle (LSP) may 

be a Majorana fermion, a partner to ordinary bosons. In general, the lowest 

mass eigenstate will be a mixture of the photino, higgsinos, and the zino. We 

will consider two limiting cases, in which the LSP is an almost pure higgsino or 

- an almost pure photino. For higgsinos, 

Q; = Q& cos2 2a , (5.5) 

where tan CY = uz/ul is the ratio of the vacuum expectation values of the two 

Higgs doublets. The result in Eqn.(4.5) assumes higgsinos scatter predominantly 

through Zo (rather than squark) exchange, which holds provided a is not too 

close to z/4, i.e., for tan cy # 1. Theoretical prejudice appears to favor tan Q < 1. 

For photinos, the nuclear scattering cross-sections are somewhat uncertain. 

The calculation proceeds in two steps: we first evaluate the cross-sections for 

scattering of photinos by protons and neutrons and then use the nuclear shell 

model to obtain photino-nucleus cross sections. Assuming all scalar quark masses 

rni are degenerate and negligible left-right squark mixing, the photino-nucleon 

cross section can be written 21 (N=p,n) 

(5.6) 

where ep is the quark electric charge. Here, Gf are the axial charges associated 

with the constituent quarks, defined by the matrix elements of the axial quark 

current for nucleon eigenstates, 

where p(p’), s(d) ‘d 
L- 

enote the initial (final) four momentum and spin of the nu- 
- w 

clean. By decomposing the axial current into isosinglet and isovector parts, the 
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axial charges can be related to the vector and singlet coupling constants gAs and 

*gAO, 
,=-- . . . . -. 

G;=GP,d( 2 gAO+ii43) , 
. 

. 

G::=G:=;(SAo-PAS). (5.8) 

The isovector coupling constant is measured to be 9.43 = 1.25; unfortunately, the 

is&singlet coupling gAe is not determined experimentally, so we will retain it as 

a parameter. 

Putting these results together gives the cross-section for photinos on nucleons; 

multiplying by the shell model factor 1.1x2J(J + 1) (since X2J(J + l)r+ = 0.91) 

and using Eqn.(3.22) finally yields 
- 

4 

x2J(J+l) f $A& 3 
[( 

1.25 2 )I , (5-g) 
where the +(-) sign is for shells with an extra proton (neutron) or proton (neu- 

tron) hole. The five elements described above all have an extra proton or proton 

hole. In this expression, we have scaled the cross-section to that for a scalar 

quark mass of 50 GeV, the lower limit set by UAl data.22 

It is often assumed that the photino halo arises from a critical cosmological 

density of photinos, n;i. = 1. However, this assumption depends upon unknown 

details of galaxy formation (e.g., biasing) and uncertainties in the amount of dark 

matter in galaxy halos. At this point, it is equally plausible that $ N 0.2 - 0.6, 

the range of values of recent measurements of the density parameter. If we 

further assume degeneracy between the lightest squark and slepton masses, a 

‘Lee-Weinberg’ calculation implies an approximate relation between squark and 

photino masses 21 (for m;i 2 10 GeV) 

_T.  

-- - 
? (5.10) - 

where rn? is the photino mass in GeV, h = He/100 km/sec/Mpc is a measure 
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of the Hubble constant, and we have approximately scaled the results from the 

case Rqh2 = l/4 treated in ref.21. Given these assumptions, we can express the 
,; 

photino’scattering parameter as 

. 43.2X2+ + 1) !2z,h2 -' 5 
Q5 = (l+ 0.04mG) (0.25) (g9*Of0-417)2 . (5.11) 

Different values for the axial isosinglet coupling gAO have been used in the 

literature. Goodman and Witten use the quark model prediction gAo = 1, while 

Srednicki, Olive and Silk2 use the quark model relation gAo = (3/5)gAs = 0.75; 

Kane and Kani2’ use SU(3) flavor relations to obtain gAO = 0.45. Although these 

values give differing cross sections, they all imply that nuclei with an extra proton 

are favored over those with an extra neutron for photino detection. Recently, 

however, the spin-dependent structure function of the proton was measured by 

the EMC collaboration at q2 = 3 GeV2, giving a value approximately half of that 

predicted by the quark model. If we assume the structure function does not have 

strong dependence on q 2, this may be interpreted23 as implying a much smaller 

value for the isosinglet coupling;gAe N 0.01. In this case, aside from shell model 

factors, nuclei with an extra proton or an extra neutron would be roughly equally 

favorable for photino detection. For several nuclei with neutron or neutron holes, 

X2J(J + 1) = 0.91 (3He, 2gSi), 0.5 (gBe), and 0.37 (73Ge). 

- 

_ 5.3. DETECTION RATES 

In this subsection, we apply the foregoing results to calculate detection and 

modulation rates for a variety of WIMPS in several detectors: germanium, silicon, 

boron and fluorine. 

Germanium _Y. 
-.- - 

Experiments to detect neutrinoless double beta decay using ultralow back- 
- - ground Ge detectors have been operating for some time. Two groups3 have used 
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these detectors to place an upper bound on the mass of coherently interacting 

halo WIMPS, mw rS 20 GeV. These detectors were operated at a threshold of 
,; 4 keV equivalent electron energy, corresponding to c c= 17 keV nuclear recoil 

threshold. Near the threshold, both detectors measured count rates N 2.5 kg-l 

* keV- ’ day-l (nuclear recoil energy), dropping to O.l- 0.3 kg-l keV-’ day-’ at 

recoil energies above O(4O) keV ( see Fig. 9). Recently, both the UCSB-LBL and 

USC-PNL collaborations have decreased their thresholds to 1.5 keV equivalent 

electron energy, or c N 7.5 keV nuclear recoil, with detector masses of 1.8 and 

2.3 kg respectively, and will be running in the near future. 

In Figures 9 - 13, we show the expected recoil energy spectra, absolute count 

rates and modulation significance in the upgraded Ge detectors for the coherently 

interacting particles discussed in section 5.1 above. Figs. 9, 11 and 12 show 

that the minimum mass WIMP detectable via direct measurement of the recoil 

spectrum depends sensitively on the background level near the threshold. For 

example, Fig. 9 shows that Dirac neutrinos of mass as low as 10 GeV can be 

detected with the recoil spectrum if the background near threshold is well below 

1 per kg per keV per day. (In this figure, the vertical dotted line corresponds 

to the threshold in the upgraded version of the Ge detectors. The horizontal 

dotted line corresponds to a background rate of order 0.1 per kg per keV per 

day, which has been achieved in this detector at recoil energies above 40 keV.) 

On the other hand, if the background rate at the new threshold of 7.5 keV is of 

order 2-3 per kg per keV per day, i.e., comparable to the background rate at the 

old threshold (boxed points in Fig. 9), then the minimum mass Dirac neutrino 

detectable through the recoil spectrum is increased to 12 GeV. 

-Fig. 10 shows the modulation significance for Dirac neutrinos for the up- 

graded UCSB-LBL detector (the numbers for the USC-PNL detector are slightly 

higher). We see that a 95% confidence level measurement of the modulation ; 
_Y_ can be achieved in 1 year down to a neutrino mass of 8 GeV. Here, the total 

- 
background has been estimated by integrating an assumed constant background 

rate of 0.2 per kg per keV per day from the threshold up to a cut-off energy 
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i chosen such that 90% of the modulation signal is retained. Thus, if a signal 

is seen in the recoil spectrum, it can easily be confirmed via modulation in a 
,; 

year. Furthermore, even with the relatively low background level assumed here, 

modulation can be used to probe to a lower neutrino mass than can be seen with 
. 

the recoil spectrum (8 GeV vs. 10 GeV). In addition, if the background level at 

low recoil energies is higher (as discussed above), the minimum neutrino mass 

detectable via modulation is only slightly increased, while the minimum mass 

detectable through the recoil spectrum rises more sharply with increasing back- 

ground. Thus, for high background levels, modulation can be used as a method 

of direct detection of WIMPS. 

.- ~‘- . 

For cosmion detection, Figs. 11 and 12 show that the detection rate and 

minimum detectable mass depend sensitively on the galactic escape velocity. In 

Fig. 11, where 2r,,, = 00 is assumed, the rates are much higher than in Fig. 12, 

where a cut-off with ueec = 575 km/set is assumed. Thus, in detecting low mass 

WIMPS, it is important to include the effects of the galactic cut-off. If a cut-off 

of 575 km/set is assumed (see Appendix I), the Ge detector can directly probe 

down to a cosmion mass of order 7 GeV, which is the approximate upper limit 

‘* on the mass for effective heat transport in the sun. A statistically significant 

modulation could be measured down to 6.6 GeV in a year for GHL cosmions with 

this detector. 

Silicon 

Recently, a proposal to build a 500 gm conventional Silicon detector 24 with 

a threshold of E = 1.8 keV nuclear recoil has been made, in order to test the solar 

cosmion hypothesis. Compared to germanium, this detector has the advantage 

that its lower nuclear mass allows low mass WIMPS to be more easily detected 

(for a given threshold). In addition, silicon appears to be more efiicient as a 

_Y_ detector of nuclear recoil. 
- ._ e L. 

Figures 14-17 show expected event rates in this detector for Dirac neutrinos 
- - 

and GHL cosmions. Again, for Dirac neutrinos, the minimum detectable mass 
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(via the recoil spectrum) depends crucially on the background rate at low energy. 

As the noise level is increased from 0.5 to 5 counts per keV per kg per day, the 
,; 

minimum mass rises from 3.5 to approximately 9 GeV. As Figure 15 shows, for 

a 95% confidence level modulation measurement in 1 year, the minimum mass 

* rises much more slowly as background levels increase over the same range, from 

3.5 GeV to 5 GeV. Thus, for large background levels, modulation can be used 

to detect or rule out Dirac neutrinos down to lower masses than can be achieved 

with the direct signal, in fact, down to masses for which the signal-to-noise ratio 

is well below 1. Figures 16 and 17 show that GHL cosmions in the mass range of 

interest, 3-7 GeV, can be easily detected, and their modulation easily measured, 

with a Si detector operating for a year. In this case, signal levels are so high that 

modulation of the recoil spectrum (Fig.8) should be measurable; this would be a 

valuable probe of the halo distribution function. 

Unfortunately, the isotope of silicon useful for detecting particles with spin- 

dependent interactions, 2gSi, has a natural abundance of only 4.7%. Thus, unless 

a large mass of pure 2gSi can be made, this detector will not be useful for finding 

Majorana fermions. 

Boron and Fluorine 
.--- . 

As mentioned in Section 5.2, two odd nuclei well-suited to detection of spin- 

dependent particles are gB and lgF. In Figures 18-22, we show expected daily 

event rates and yearly modulation significance for Majorana neutrinos and photi- 

llos, assuming 2 kg detectors of boron and fluorine. In all cases, a background 

level of 0.5 per kg per day was assumed. 

First consider Majorana neutrinos. Figs. 18 and 21 show that a 90% confi- 

dence level measurement of the modulation can be achieved in a year over a wide 

range of WIMP masses, e.g., 5 - 70 GeV for fluorine, at a moderate threshold 
_T. of order 3 keV. Note that, for fluorine, at the lower end of this mass range, the -._ iep_ ;- 

the signal-to-noise ratio is only of order 1 and at the upper end it is of order 
- w 

6.6. This demonstrates once again the possibility of measuring the modulation 
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at low signal-to-background levels. More to the point, this.can be achieved at 

thresholds above 1 keV, which appears to be accessible to conventional detec- 
,; tom. Although the signal can be increased by going to sub-keV thresholds, recall 

. that the modulation significance is optimized at A2 N 2, which corresponds to 

- a fluorine -threshold of 3 keV for a WIMP mass of 7 GeV. Except at the very 

lowest masses, and modulo considerations of the detector efficiency of different 

materials, fluorine appears to be a better choice for Majorana neutrino detection 

than boron. We also note that the signal rate for higgsinos can be obtained from 

Figs.18 and 21 by multiplying by the factor cos2 2cr [Eqn.(5.5)]. The modulation 

significance (R) for higgsinos is obtained from the Majorana neutrino significance 

by multiplying by a factor between cos2 2cu (for background larger than signal) 

and cos 2a: (for signal larger than background). 

For photinos, the scattering rate was calculated using Eqn.(5.11), with isos- 

inglet coupling gA() = 0.45, for two different cosmological photino densities (as- 

suming fixed halo density): zt+ = 1, h = 0.5 (dotted curves) and n;i. = 0.2, 

h = 0.5 (d as e h d curves). If the value for gAO inferred from the recent EMC data 

proves correct, the photino signal rate will be approximately a factor 2.5 smaller 

than that assumed here; the modulation significance will fall by a factor between 

1.6 (for signal larger than background) and 2.5 (for background larger than sig- 

nal). [On the other hand, if the quark model prediction gAo = 0.75 is used, the 

photino signal will be a factor 1.56 larger than that shown here, and (R) will 

increase by a factor between 1.2 (for So >> B) and 1.56 (for SO < B)]. Figure 22 

shows that 90% C.L. photino detection in a year is feasible with a 2 kg fluorine 

detector and 2 keV threshold for a photino mass below 15 GeV, assuming a low 

cosmological photino density. Figures 19 and 20 give the corresponding rates 

for photinos on boron for two different values of the threshold. This comparison 

shows again that the signal rate can be significantly improved by lowering the 

_T. threshold, but that the modulation is optimized at moderate threshold, above 1 

-.- M keV. In these figures, we have oniy shown photino masses larger than 7 GeV, for 
- - which Eqn.(5.10) is a reasonable approximation. In addition, for smaller photino 

- 
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masses, the ‘Lee Weinberg’ value of the squark mass [Eqn. (5.10)1 approaches 

the experimental lower bound22 of 50 GeV. Thus, for low mass photinos, 3 GeV 
,a‘ ’ S -WL+ g 7-.GeV, one can estimate the photino scattering rate using Eqn. (5.9) 

instead of (5.11). In this mass range, for a fixed squark mass of 50 GeV, the 

* photino detection rate can be inferred from the Majorana neutrino rate using the 

relation Qt (mg = 50GeV) = 1.4762,. 

6. Conclusion 

- 

_-- . 

u 

We have presented a general analytic discussion of WIMP detection, appli- 

cable to a wide variety of cold dark matter candidates and particle detectors. 

Our principal analytic results are shown in Section IV. The reader can use these 

results to instantly calculate event rates for his or her favorite WIMP by using 

the following simple procedure. First, select the detector (nuclear mass M) and 

threshold energy E. Use Fig. 1 to insure that the coherence loss parameter b < 1 

for the WIMP mass range of interest; if not, choose a detector with lighter nuclei. 

Second, use Eqn. (2.17) or Fig. 2 to find the threshold parameter A2 for a given 

WIMP mass, and use this to read out the signal and modulation parameters o, 

p, 7 and -d7/dA2 from Figs. 5, 6, or 7. Third, use Eqn. (4.2) to find the 

value of the scattering parameter Q2, and use Eqn. (2.9) to calculate g(mw, M). 

Finally, use Eqns. (4.3)-(4.9) t o calculate the signal rate, the recoil spectrum, 

and the modulation significance for different assumptions about the background 

rate. 

We have made a careful study of expected event rates in several detectors, 

including threshold effects and the galactic escape velocity. We have investi- 

gated the conditions for the modulation of the WIMP signal to be statistically 

_v. significant, and have demonstrated the use of modulation as a primary means 
-- - 

of WIMP detection at low signal-to-noise levels. In particular; this implies that 
- w modulation can be used to probe to smaller WIMP masses than the recoil energy 
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spectrum. For most particles and detectors, the modulation significance is opti- 

mized at moderate thresholds, possibly accessible to conventional detectors. For 
,;‘ 

example, a-2 kg detector of lgF with a threshold of 3 keV operating for a year can 
. 

detect the otherwise elusive Majorana fermions (Majorana neutrinos, photinos, 

-higgsinos) at the 90 - 95% confidence level over a wide range of masses. Thus, 

we believe that many of the proposed halo WIMP candidates can be detected 

with devices which could be implemented in the near future. 
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APPENDIX I. Modulation and the Galactic Escape Velocity 

u 

In the body of the paper we assume that the WIMP speed distribution is 

Maxwellian, but in reality the distribution will be cut off at the local galactic 

escape velocity. Here we wish to show that our approximation introduces no 

significant errors in the evaluation of the signal modulation, unless the threshold 

is very high. One way to do this is to consider Figure 7, where we show the mod- 

ulation function a(A2), calculated with uesc = 00, compared with the function 

6, for which a cut-off at 575 km/set was assumed (see discussion below). For 

_z. A2 =5 11, there is a negligible difference in the results. However, this can also be 
-- - understood analytically. ;. 

- 

Let the WIMP distribution in the (non-rotating) galactic rest frame, fOut, 
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be cut off at the escape velocity25 Vcec, 

. where /O(V) is the Gaussian distribution given by Equation (2.2). By the same 

galilean transformation as before, one finds the truncated distribution in the 

earth’s frame 

2 

exp[-(s-q)2]-exp 
[( 
- 

0 I) 
, P-V < x < p+rl 

(14 
where fV(x) is the untruncated distribution given by (2.3), x and q are defined 

in (2.4), and the parameter p is the dimensionless escape speed, 

At x = p, i.e., for particles moving at the escape velocity relative to the earth, 

the ratio of the cut-off to the non-truncated distribution is 

f,““YP) = e-(P-r))2 _ e-(P-V2/2P)2) 

ft, (PI e-b-VI2 - e-(P+r112 cv 1 - exp(-2pq + 2~~ - $1 (I-5) 

The local galactic escape velocity is not well determined, but studies of high 

proper motion stars indicate v,,, > 500 km/sec.26 Assuming the galaxy has a 

flat rotation curve extending from zc, the solar galactocentric distance, to a cut- 

off radius tlirn, the local escape velocity can be inferred from the local circular 

speed26 ( see lscussion following Eqn.(2.5)), d’ 

_=. 
(E)2=21n(%)+2. - (1.6) 

-- - 2.-. 
Using to cv 9 kpc’ and assuming rl;,,, = 100 kpc yields u,,, = 575 f 50 km/set. 

- - 
(The probable error quoted here is due solely to the uncertainty in the circular 
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speed.) The central value of this estimate corresponds to p = 2.6. Evaluating 

(1.5) at this value and using qc = 1.05 yields (fG”““t/f,r)Z=p = 0.96. Thus, the 
,=-- 

flux at thd cut-off velocity, in the earth’s frame, is very close to its value in 

the non-cut-off case. The reason for this is that most of the particles moving at 

‘575 km/set in the earth’s frame come from the densely populated region of phase 

space near 340 km/set (x = p-q) in the galaxy frame, not from the high velocity 

tail. In the non-cut-off case, the contribution to the flux at x = p from particles 

above the escape velocity is exponentially suppressed. This is not surprising, 

since less than 1% of the particles in a Gaussian distribution are above the virial 

escape velocity. Thus, as Equation (2.3) suggests, modulation arises principally 

from the sensitive velocity dependence of the WIMP distribution function, not 

from the cut-off. (Alternatively, for a flatter distribution function, modulation - 
would be more sensitive to the escape velocity.) 

To demonstrate this concretely, we evaluate the logarithmic derivative of 

Equation (1.5); using the values of the parameters given above yields 

1 fKy(P) 1 G(P) Eoo4 --- 
Ly(P) drl fdP)h -- 

(I-7) 

This shows that the cut-off has little effect on the sensitivity of the distribu- 

tion function to a small change in q. But it is precisely this sensitivity which 

gives rise to the modulation. (Recall that the relative modulation is given by 

(dl/dq)(Av/l) and I - fV.) On the other hand, if the detector threshold is set 

_very high, so that the dimensionless threshold energy A2 E xkin 2 p2, the de- 

tector will sample all corresponding incoming WIMP velocities above this value. 

Since, according to equation (1.3), th e cut-off distribution goes smoothly to zero 

as x + p + rl, while the non-cut-off distribution remains finite, the logarithmic 

derivative (1.7) will clearly be larger at these higher velocities (i.e., .at x > p). 

Thus, one might expect the cut-off to have a large impact on the modulation at 
_e. 

-- - this high threshold. However, for. x + p + 7, the non-cut-off distribution is also -_ 
highly Boltzmann-suppressed, so that inclusion of this region does not qualita- - - 
tively change our conclusions. That is, the detector will mainly be sensitive to 
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WIMPS with energies very near the threshold, x N xrnin = p, where the effect of 

the cut-off is small. 
i 

In Figures 6 and 7, we show the count rate and modulation modified to include . 
-the effects of the cut-off at the escape velocity. In Fig.6, the function 7(A2) 

defined above, which is relevant for ucec = 00, is compared with the corresponding 

function $A2), th e relative count rate for v,,, = 575 km/set. Similarly, in Fig.7, 

the corresponding modulation functions are compared in the cut-off and non-cut- 

off cases. [The functions 7, &, and 0 are obtained by using equations (1.2) and 

(1.3) in equation (2.1), in place of (2.3).] For A2 c-’ 8, the count rates (7 and 7) 

differ by 0(30%), while for A2 N 12 the rate is reduced by an order of magnitude 

in the cut-off case. Note that, with the cut-off, the count rate is strictly zero for 

A2 > (p + q)2 = 13.3. - 

APPENDIX II. Modulation and Loss O f Coherence 

For Dirac neutrinos, scalar neutrinos, or other WIMPS with coherent nuclear 

interactions, the signal is greatly enhanced by using detectors composed of heavy 

nuclei [see Equations (5.1), (5.3)]. H owever, if the WIMP mass is also large, 

one finds from equation (2.16) that the coherence loss parameter b is no longer 

negligibly small (see Figure 1). In this case the detection integral, (2.1), must be 

done using the general expression for the scattering parameter, Equation (2.15), 

rather than (2.18). Th en, for the detection rate, equation (2.19) is replaced by 

.~(q,c) = (f-)““~~~’ [embA2x(A-,A+) - ex~~~$~2)~~~-,~+)] (11.1) 

where 

A&=AAfq, A*=A(l+b)&t 
(1 :b)t 

(11.2) c 

-- Rc  

Figure 23 shows the modulation function a(A2) for-a range of values of b = 
- - 

O.O,O.l, . . . . 1.0. We see that, for large values of b - 1, i.e., if the loss of coherence 
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is significant, the modulation may be severely reduced or eliminated at both large 

and small thresholds, and may even reverse its sign. The explanation for this 

reduction is straightforward: when the earth is moving faster through the halo 

in May, the average momentum transfer between WIMPS and detector nuclei is 

S increased. From Equation (2.10), this leads to a greater reduction in the signal 

due to loss of coherence than at other times of the year, so the net modulation 

. 

is decreased. 

For most cases of interest, this potential loss of coherence and modulation is 

not important for detector design. For example, consider a Dirac neutrino with 

a mass of 20 GeV, the upper limit set by Ge double beta decay experiments. 

For the germanium detectors now in operation, the coherence loss parameter is 

b = 0.07. For the recently upgraded detectors, the threshold is c z 7.5 keV, 

corresponding to A2 cv 1.9. From Figure 23, we see that the expected modu- 

lation significance (R) is reduced by N 14% (assuming signal much larger than 

background). However, as Figure 9 shows, the expected value of (R) for 1.8 kg of 

Ge and a 20 GeV Dirac neutrino is 17.2 for 1 year, not corrected for the effects 

- 

of coherence loss. In this case, coherence loss leads to a small reduction in the 

magnitude of the modulation and thus to a small adjustment in the analysis of an 

experiment, but it would not be great enough to affect the design of the detector. 

If the WIMP mass is above 20 GeV, the Ge detector bounds on the scattering 

cross-section suggest that such a particle has only spin-dependent interactions 

with nuclei. In this case, if the WIMP mass is not very large (which seems 

likely from cosmological abundance arguments), lighter detector nuclei will be 

preferred, and coherence loss is not a problem. Of course, one is free to imagine 

a very massive WIMP candidate with small but coherent nuclear interactions 

(say, with Q2 N 10w2N2), f or which coherence loss would be a serious difficulty. 

However, such particles do not seem theoretically well motivated at the present. ; 
. _e. 

-- - 2 
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FIGURE CAPTIONS 

,; -1) Coherence loss parameter b (Eqns.(2.14), (2.16) ) as a function of target 
. nucleus mass M, shown for a variety of WIMP masses mw. For b < 1, the 

. loss of coherence has a negligible effect on event rates. 

2) Dimensionless threshold energy A2 (Eqns.(2.14), (2.17)) as a function of 

target nucleus mass M, shown for a variety of WIMP masses mw. 

3) Sample data set for 1 year, showing the daily count rate D(t). The data 

were generated from Poisson noise with a mean of 10 counts per day. The 

expected modulation significance (R) = 0 and the measured value for this 

run is r = -0.11. 

4) Same as Figure 3, but with an added cosine modulation S, = 160, peaked 

at days 0 and 365. The expected modulation significance (R) = 1.87 and 

the measured value for this run is r = 2.24. 

.--- . 

5) Dimensionless measures of the WIMP signal (7), the signal per unit en- 

ergy (--d7/dA2), and the modulation significance when the signal is much 

greater than (cY), or much less than (p) the background. These functions 

are plotted against the dimensionless threshold energy A2. For definitions, 

see discussion following Eqn.(2.23) and also Eqns.(3.23-3.28). 

6) Dimensionless measure of the WIMP signal shown for two halo models: an 

isothermal Maxwell-Boltzmann distribution with infinite escape velocity (7, 

dotted curve), and a Maxwell distribution truncated at an escape velocity 

of 575 km/set (7, solid curve). Also shown is the signal per unit energy in 

the truncated model (-dT/dA2, dashed curve). 

7) Same as Fig.6, for the modulation parameters cr and /3. 

_T. 8) Modulation of the recoil energy spectrum. 
---i”p- ;. 

9) Counts per energy bin as a function of nuclear recoil energy AE for ger- 
- - 

manium detector, shown for Dirac neutrinos of mass mw = 10, 15 and 
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20 GeV. The horizontal dotted line corresponds to a -background rate of 

order 0.1 per kg per keV per day, which has been achieved in this detec- 
,; tor at recoil energies above 40 keV. The t,wo boxed points correspond to 

. data points (presumably noise) measured in the UCSB-LBL double beta 
. decay detector before its recent upgrading. Similar count rates have been 

recorded in the USC-PNL detector. The vertical dotted line corresponds 

to the approximate threshold in the upgraded versions of these detectors. 

10) Modulation significance for Dirac neutrinos for 1.8 kg-years of germanium, 

assuming a threshold energy E = 7.5 keV. Shown are the expected signal 

count rate in units of 10 per day, the modulation significance (i) and the 

95% confidence level R = 1.64, the dimensionless threshold energy A2, and 

the expected number of background counts per day, assuming a background 

rate of 0.2/(kg-keV-day) ( nuclear recoil energy). This corresponds to 1 year 

of running the upgraded UCSB-LBL detector. For the upgraded USC-PNL 

detector, M&t = 2.3 kg, the signal and background per day should be scaled 

up by a factor 1.28 and the modulation significance by approximately 1.13. 

For scalar neutrinos, the signal should be scaled up by a factor 4 and 

the modulation significance by roughly 2. Note that this figure assumes 

.- -‘- . Veec = 00. For the reduction in the modulation at large A2 due to finite 

v,,,, see Fig.7. 

u 
11) Counts per energy bin for Ge detector, for GHL cosmions of mass mw = 

6, 8, 10 GeV, assuming no cut-off for the halo distribution (vest = 00). 

Also shown is the dimensionless energy parameter A$ (Eqn.(4.10) ) for 

each cosmion mass, as a function of the nuclear recoil energy. For A; Z 8, 

the rates shown here are significantly higher than the corresponding rates 

with a cut-off of v,,, = 575 km/set imposed (Fig. 12). Vertical-dotted line 

_Tz. 
-- - 

shows threshold for upgraded detectors. 

12) Same as Figure 11, for co&ion masses 7,8 and 16 GeV, assuming a local 
_ - galactic escape velocity of 575 km/set. Note the reduction in count rate 
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and the steepening of the recoil spectrum due to the cut-off. 

. ,;‘ 13). Modulation significance for GHL cosmions for 1.8 kg-years of germanium. 

The signal count rate is shown in units of 1000 per day and the modulation . 
significance in units of 10. In this Figure, the halo distribution was not . 
cut-off. 

14) Recoil energy spectrum for Si detector, for Dirac neutrinos of mass 3.5, 5 

and 10 GeV. Vertical dotted line corresponds to the proposed threshold of 

1.8 keV (nuclear recoif). A.lso shown are two constant background rates: 

0.5 counts/(kg-keV-day) (dotted) and 5 cts./(kg-keV-day) (dotdash). 

15) Modulation significance for Dirac neutrinos with 500 gm-years Si detector 

with threshold of 1.8 keV. Shown are the signal in units of 10 per day and 

(R) for the two background rates shown in Figure 14. 
- 

16) Recoil energy spectrum in Si detector for GHL cosmions of mass 3.5, 5 and 

7 GeV, with same background rates as in Fig. 14. 

17) Modulation significance and signal for GHL cosmions in the proposed 500 

gm Si detector, for 1 year of data. 

.- -‘- . 18) Majorana neutrino detection rate and modulation significance for 2 kg llB 

detector with 2.5 keV threshold. 

19) Photino detection rate for 2 kg boron detector with 2.5 keV threshold, 
u 

- assuming Eqn(5.11) for th e scattering parameter and axial coupling gAo = 

0.45. Dashed curves correspond to R;i = 0.2, h = 0.5, dotted curves to 

R? = 1, h = 0.5. Here h = &/lo0 km/sec/Mpc. 

20) Same as Fig.19, but with threshold 200 eV. Although the signal is sig- 

nificantly enhanced at the lower threshold, the modulation significance is G 
_=. reduced. 

- .- - ;. 
21) Majorana neutrino rate and modulation significance for rQF detector with 

- - 
3 keV threshold. 
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22) Same as Fig.19 for the fluorine detector. 

23) Modulation parameter a(A2) f or various choices of the coherence loss pa- 
i ,=-- _. 

rameier b. 
. 

. 

- 

C 
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