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ABSTRACT 

We develop a Hamiltonian formulation of the BRST method for quantizing 

constrained systems. The rigid rotor is studied in detail and the similarity of this 

simple quantum system to a gauge theory is explicitly demonstrated. The system 

is quantized as a gauge-theory and then the similarity between BRST and Gupta- 

Bleuler approach is displayed. We also apply our formalism to true gauge theories. 

Both Abelian and non-Abelian gauge theories are studied in detail. Finally, the 

Hamiltonian treatment of the relativistic and the spinning relativistic particle is 

presented. 

L. 
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1. INTRODUCTION 

. . _ 

Ever since the standard model’became the accepted candidate for a theory 

of the strong, weak and electromagnetic interactions, it has become customary 

to assume that the fundamental theory of everything must be a gauge theory. 

Unfortunately the theories one will have to deal with are considerably more com- 

plicated than QED, our prototypical example of a successful gauge theory, and 

the tools for dealing with the additional complexity have become more difficult to 

understand. For example, any serious attempt to calculate in the standard model 

involves Faddedev-Popov ghosts: objects which appear in covariant gauges in order 

to guarantee the gauge invariance of the original theory . The raison d’etre for these 

ghosts is clear. The rules for manipulating them can be derived straightforwardly 

within the context of Euclidean path integrals. Yet, to date, the explanation of 

the connection between these ghosts and the canonical Hamiltonian formalism has 

remained tortuous at best. Furthermore, ever since the work of Becchi-Rouet and 

Stora3(BRST), it has b een clear that the best way to discuss the renormalization 

of a non-Abelian gauge theory is not by exploiting the original gauge-invariance of 

the theory but rather by exploiting the existence of a considerably more mysterious 

BRST symmetry which involves the fictional ghosts in a fundamental way. The 

power of this approach is so great that nowadays, with the advent of string theories, 

one is tempted to elevate the existence of a BRST symmetry to the level of a fun- 

damental principle[11-141 relegating the existence of the mundane gauge-symmetry 

to the level of a corollary. While proceeding in this way greatly simplifies the tech- 

nical problems of dealing with a gauge theory it introduces yet one more layer of 

formalism between the naive physical ideas and the machinery used to implement 

them. It seems that the complexity of the examples which one has to understand 

_Y_ in order to learn what a BRST symmetry is are so formidable that non-experts 

-hesitate to make the effort. Thus, while the existence of these syinmetries is widely 

discussed, for many people the physical content of the BRST formalism remains 

obscure. 
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It is our purpose in this paper to render the content of the BRST technique 

,c- more easily accessible to the non-expert by explicitly establishing the connection 

between constrained systems, gauge invariance and BRST symmetry. The discus- 

sion will rely on Hamiltonian formalism throughout and, at the risk of insulting 

the cognoscenti, will begin at the most pedestrian level and move slowly on to a 

discussion of the more complicated examples. Our goal is to eliminate the mystery 

from the method and remove the notion of a BRST symmetry from the elevated 

plane of non-Abelian gauge (and string) th eories and put it where it belongs, into 

the framework of elementary quantum mechanics. 

2. THE RIGID ROTOR 
- 

We begin this paper with a discussion of the problem of quantizing a classical 

system, namely the problem of a particle of mass m constrained to move on a circle 

of radius a. We begin with this discussion to establish the equivalence between 

a theory with constraints and a gauge theory. Once we establish this equivalence 

we explain the BRST formalism for dealing with a gauge theory and prove that 

it is simply another way of dealing with the original constrained system. The 

important fact which we will be seeking to bring out is that in each case, i.e. direct 

quantization, the gauge theory or the BRST system, it will be crucial to impose 

an eigenvalue condition on the states of the theory in order to eliminate spurious 

degrees of freedom which are artifacts of the quantization process. 

The plan of this chapter is as follows: 

.l. First we will define the classical problem and show that if one tries to quan- 

tize it following the simplest canonical prescription one does not obtain the 

correct result. By this we mean that the Heisenberg equations of motion for 

the quantum theory will differ sharply from the corresponding equations for 

the classical theory. :. 

- D  2. We then give a prescription for modifying the Hamiltonian obtained from 

the usual canonical formalism so as to obtain a correct quantization of the 
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constrained system. The basic trick will be to divide the Hamiltonian into 

- ,h-’ two pieces, one of which commutes with the constraint and another which 

* does not. We then follow the prescription of Dirac4and simply throw away the 

part which does not commute with the constraint and show that the correct 

physical theory belongs to only a subspace of the full Hilbert space which is 

selected by imposing an eigenvalue condition on the constraint equation. 

3. Once we have quantized the constrained system and derived the condition 

which defines physical states we show how to rewrite the same system as a 

gauge theory. This is accomplished by enlarging the Hilbert space of the the- 

ory beyond that of the original problem. The purpose of this discussion is to 

elucidate the equivalence of the original state condition and the requirement 

that one restricts attention to gauge-invariant states. We prove that even 

though one has enlarged the number of dynamical variables in this problem 

by restricting attention to the set of gauge-invariant states we remove all of 

the spurious degrees of freedom. 

4. Finally, we discuss the question of BRST quantization of the same system. 

We show that this amounts to enlarging the number of degrees of freedom in 

the original problem even further and then restricting attention to what we 

can call the BRST-invariant states. As part of our discussion we establish the 

precise correspondence between the BRST-invariant states and the physical 

states of the gauge theory or the states of the original problem which satisfy 

the constraint condition. 

2.1. THE PROBLEM 

Let us begin by considering the classical problem of a particle of mass 7n 

constrained to move in’the z - y plane on a circle of radius a: The Lagrangian for 

-this system is : L-. 

L = &z(~~ + jl”) - X(7’ - a); r=Jw (24 
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and from it we obtain the usual Euler-Lagrange equations 

XY --= mji+--0. 
r 

6C 
SX=r-a=o 

Gw 

Clearly, the last equation, the one which comes from varying with respect to 

the Lagrange multiplier, is the one which enforces the constraint on the motion 

of the particle. It is this constraint which makes it hard to directly quantize the 

system following familiar canonical formalism. If we form the Hamiltonian in the - 

(2.3) 

usual way, i.e., let 

Px =$, p, = !c 
s?j ’ 

H =&(pz + pi) + A(r - a), 

we immediately notice that something has gone wrong. Although the classical 

equations of motion for this Hamiltonian are consistent with the constraint r = a it 

is obvious that if we quantize the system by following the usual canonical procedure 

and defining 

Ilx,Pzl = [y, pyI = i, (2.4) _ 

the constraint equation Q = (r-a) = 0 no longer commutes with the Hamiltonian. 

Therefore, one obtains the classical equations of motion neither as the Heisenberg 

equations of motion for the quantized system, nor as a condition which can be 

required on the eigenstates of the Hamiltonian. In order to arrive at a quantization 

procedure which yields Heisenberg equations of motion consistent with the classical 
_T_ 

-- - constrained equations of motion one has to proceed differently. 

a - To develop a formalism which works for constrained systems begin by examin- 

ing the commutators of the constraint equation and the canonical variables pz,py, x 
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and y . Obviously, x and y commute with <p = (r - a) and so we need only consider 

3’ the commutators 

. [r,j3,] = i4 and [r,py] = i!. 

It is clear from this result that the linear combination 

PO = (“P, - YPZ) 

commutes with r and thus @, whereas the orthogonal combination 

pr = &Pz + YPY) + (Px.X + p,y)& 

(2.5) 

(2.6) 

(2.7) 

does not. In fact, we see that @ and p, form a system of canonically conjugate 

variables since 

[r,p,] = i. (24 

It is now a simple matter to rewrite the Hamiltonian (2.3) as 

H =&p:+ &Pi + qr - 4 (2.9) 

and observe that the only term in (2.9) which f ai s 1 t o commute with the constraint 

equation Q = 0 is the term proportional to pz. The solution to our problem is 

now clear, the correct Hamiltonian to use for quantizing the constrained system 

is simply obtained from the canonical one by setting to zero the coefficient of the 

term proportional to p,. 2 If we do this, then we arrive at the Hamiltonian 

H= ’ -pi + X(r - 4. - 

-- - L- 

a - Since the constraint @ = 0 now commutes with H they can be simultaneously 

diagonalized. Since Q is a function of the non-trivial operator r, we cannot realize 
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Q = 0 as an operator equation; however, since Q and H can be simultaneously 

diagonalized, we can restrict attention to the subspace of eigenstates of H for 

which the eigenvalue condition Q, 14) = 0 holds. Projecting the full Hilbert space 

onto the subspace for which the constraint condition holds is, in the case of a gauge 

theory, usually referred to as projecting onto physical states. Since in this case this 

projection is onto the states for which all projected operators satisfy the desired 

Hamilton equations of motion, we will also use the same terminology. Clearly, if 

we denote the projection operator onto these states by Pa, then 

P@@P@ =o, ParPa = uPa 

P,HP@ = 
7 (2.11) 

- 

where ps is the angular momentum operator for this system. 

To summarize, we see that in order to quantize a constrained system one 

proceeds as follows: 

1. First, form the Hamiltonian from the Lagrangian following the canonical 

procedure. 

2. Next, make a canonical transformation to a new set of variables (in this case 

p,, r, 8 and pe ) chosen in such a way that one of them forms a canonically 

conjugate pair with the constraint equation, and the others commute with 

the constraint. 

3. Finally, set the coefficient of the terms which contain the variable conjugate to 

the constraint equal to zero; thus arriving at a Hamiltonian which commutes 

with the constraint, allowing both the energy and the constraint conditions 

to be simultaneously diagonalized. 

_P_ 
-- - L. 
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2.2. THE ROTORAS A GAUGETHEORY 

" 
By now we have completely solved our original&oblem. We have quantized the 

motion of a particle constrained to move on a circle in two dimensions and obtained 

the expected result, i.e. that the Hamiltonian of the physical system is proportional 

to the square of the two-dimensional angular momentum operator. There are, 

however, aspects of this quantization scheme which merit further attention. 

One such aspect relates to the fact that we are now working in a large Hilbert 

space in which only a subspace corresponds to states of physical interest. Because 

of this, one has to be careful and restrict attention to operators which do not map us 

out of this subspace. In this case, this means never considering expectation values 

of p, nor any function pT which fails to commute with the constraint. In effect this 

means that a correct quantization of the constrained system not only requires that 

we impose a restriction on our space of states, but also that we declare an entire 

class of non-vanishing operators unphysical. This situation is very reminiscent of 

what goes on in the case of a gauge theory, where one is instructed to consider 

Green’s functions of gauge-variant operators as unphysical. The question which 

arises at this point is “What, for the rotor, takes the place of the time-dependent 

gauge transformations of the gauge-theory?“. 

Clearly, if the parallel is to hold, the constraint which does not commute with 

unphysical operators is the operator which is to be identified with the generator of 

gauge transformations. In this case the natural definition of a gauge transformation 

would be a unitary operator of the form 

U, = emifttlca (2.12) 

where f(t) is an arbitrary c-number function of the time t.- Under this transfor- 

-- mation pT is the only canonical variable which transforms non-trivially, and it goes -- 
to 

u/Pru: = PT + f(t). (2.13) 
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The question which arises at this juncture is “Can one write a Lagrangian which 

” has H for-its canonically constructed Hamiltonian, and which is invariant under 

. a class of gauge transformations which include the transformation (2.13) ?” . 

The answer to this question is a resounding yes, but one must use a first order 

formalism, instead of the usual second order formalism. In order to see how this 

works let us spend a few moments reviewing the first order formalism and then 

showing how, using this formalism, we can find a gauge theory which is completely 

equivalent to the rigid rotor. 

First Order Lagrangian Formalism 

By first order Lagrangian formalism we simply refer to the fact that the Hamil- 

ton equations of motion 

dH 

qi = api 
dH 

(2.14) 

@ix-dqi 

defined on the phase space (. . . , q;, . . . , p;, . . .) themselves follow from a variational 

principle. The Lagrangian which gives these equations is what we refer to as the 

first order Lagrangian. In general it is constructed as follows: 

LC((Ii,Pi) = CP;~; - H(q;,p;). 
i 

(2.15) 

-In general a classical trajectory is a curve in phase space (qi(t),p;(t)) and the action 

for this path is defined to be 

- 

s = J a qqi(q,pi(t)). (2.16) 

It then follows from the usual variational procedure that an extremal trajectory _T_ 
- satisfies the Hamilton equations (214). With this in mind we now wish to exhibit 

- e a first order Lagrangian for the problem of the rigid rotor which explicitly reveals 

its gauge structure. The trick for accomplishing this is quite general and amounts 
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to enlarging the number of dynamical degrees of freedom to include the Lagrange 

r multiplier A and its canonically conjugate momentum px . Once one has introduced 

. these extra degrees of freedom one defines the change in these variables under an 

arbitrary time dependent gauge transformation to be: 

SPT = f(t>, sx = -f(t) 

Sr = 6pe = SO = lYpA = 0 

With this choice we write the first order Lagrangian 

(2.17) 

- 

where it is important to note that the term involving px has been intentionally left 

out. It is simple to verify that under a gauge transformation of the form (2.17) the 

change in the Lagrangian is given by 

6,c = $ (.f(W(t> - a)> ; (2.19) 

i.e., the Lagrangian changes by a total derivative and so the action is invariant. 

This exhibits the embedding of the problem of the particle constrained to move on 

a circle into a gauge theory defined on a phase space which is larger than the one 

we started with. 

Recovering The Hamiltonian 

Having formed the Lagrangian (2.18) we see that we can reconstruct H by 

essentially the reverse procedure; i.e., we simply define 

- -- L.. 

- ;/ The reason that no term involving pi, appears in (2.20) is that there is no term 

involving X appearing in the Lagrangian. Note that in this first order formalism 
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this is not to be taken to mean that there is no canonical variable conjugate to X, 

,c- it -simply means that it does not appear in this formal Legendre transformation. . . _ 

. While we have now recovered the desired form of the Hamiltonian it is important to 

point out that a new feature has appeared; namely, although the Lagrangian (2.18) 

is invariant with respect to arbitrary time dependent gauge transformations the 

Hamiltonian is not (although it is invariant with respect to time independent ones). 

This happens because the only term appearing in (2.20) which changes under a 

gauge-transformation is the term in which X multiplies the constraint (r-u); hence, 

under a gauge transformation the change in H is 

SH = -j(t)@(t) - a), (2.21) 
- 

and so if f = 0 so does SH. This lack of invariance with respect to time dependent 

gauge transformations is not a problem since we see that this extra term vanishes 

on the sector of physical states (i.e., those states for which @ = 0). 

At this time we can turn the whole procedure around and arrive at the need 

for imposing the condition Q = 0 without knowing that we started out to quantize 

the problem of a free particle constrained to move on a circle. We may simply 

elevate the requirement of gauge invariance to a basic principle and require that 

the Hamiltonian be restricted to the dynamically stable subspace of states within 

which it defines a gauge invariant operator. Actually, this can be stated in a way 

-which provides a better parallel to what is done in quantizing a gauge theory. We 

already remarked that Q can be identified with the generator of time independent 

gauge transformations, and so the space of physical states is simply the set of states 

which are annihilated by a. 

There is one final detail which must be covered at this time. Since neither 4 
_T_ the operator X nor pi, appears in the restriction of the Hamiltonian to the space 

- of physical (or gauge invariant states) this operator plays no role in the physics 

which is going on. Hence, even after going over to the space of gauge-invariant 

states we have not one copy of the theory of a rigid rotor but many such copies, for 
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example we have one copy for every eigenvalue of the operator X or of the operator 

,c- px: This means that one has to go a bit further in fixing our projection. Since it . . _ 
is px which is the gauge-invariant operator, and since we wish to be able to define 

all gauge invariant Green’s functions, it makes sense that should define physical 

states by requiring that they correspond to definite eigenstates of px, e.g. states 

for which px IQ) = 0. 0 nce one has made this choice one has established a one 

to one correspondence between the states of the rigid rotor and the subspace of 

gauge-invariant states for the theory defined by the dynamical variables r,p,,O,ps,X 

and pi. This was exactly the correspondence we set out to establish. 

To summarize our discussion, we have shown how to explicitly rewrite the 

problem of quantizing a theory with a constraint as a gauge theory, and that 

in this theory the original constraint equation is replaced by the condition that 

we restrict attention to states which are invariant under time independent gauge 

transformations. In addition, we showed that starting from the gauge-invariant 

Lagrangian one trivially recovers a satisfactory gauge non-invariant Hamiltonian 

by blindly performing a simple Legendre transformation. We then showed that 

this Hamiltonian is identical to the one which we started out to construct for the 

original constrained problem. 

A question which should arises at this point is “How come this procedure looks 

so much like the procedure for quantizing a theory like QED in A0 = 0 gauge 

even though we proceded without any regard to the need for gauge fixing?” The 

answer to this question is that in some sense we have fixed the gauge by following 

our naive procedure for making a Legendre transformation. The truth is that we 

started from one of an infinite number of equivalent Lagrangians, and in doing 

so arrived at a specific definition of the operator pT. Obviously, from all that 

has been said, since no function of pT is allowed to appear in physical Greens’ 

_Y. functions, we are free to redefine pT it by adding to it any c-number function of t. 

- .- ---Obviously, this will neither change-the physics of the gauge invariant states, nor 

- A* change commutation relations of p, with any of the other dynamical variables. Of 

- course, such a change is simply equivalent to using one of the gauge-transformed 
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versions of the Lagrangian (2.18) and not performing the integration by parts. If 

,c- one takes such a gauge transformed Lagrangian and blindly constructs H following 

. our rules, we obtain the result 

H’ = & - (A - f(Wr - 4 (2.22) 

which agrees with the one originally obtained on the sector of physical states, but 

differs with it outside of this sector. Thus, while we do no formal gauge-fixing, in 

that we do not set the variable X = 0 (we shall see that this variable is the direct 

analogue of A,,) we nevertheless have fixed the gauge, in the sense that we have 

fixed a specific dynamics for the gauge variant sector of the theory. Although, at 

first glance, this is a somewhat puzzling result, it simply points out that when one 

quantizes QED by assuming A0 = 0 one is engaging in overkill. This is a point to 

which we will return in the next chapter when we discuss four-dimensional Abelian 

gauge theories. 

- 

- 2.3. THE RIGID ROTOR AND BRST INVARIANCE 

We now have two completely tractable methods for dealing with the simple 

problem of a particle constrained to move in a circle. In either case we can ex- 

plicitly solve the system and determine everything we want to know about the 

sectors of physical and unphysical states. Despite this fact we will now introduce 

Tet one more way of dealing with this system; namely, we will rewrite the gauge 

theory as a quantum system which possesses a generalized gauge invariance which 

is referred to in the literature as a BRST, or Becchi-Rouet-Stora, symmetry. At 

the moment, given only what we have already said, it is not possible to provide a 

compelling reason for this generalization. This is because the problem at hand is 

too simple, and having formed the Hamiltonian according to our formal rules we 
; 

_Y. 
-end up with a complete specification of all Green’s functions, even those involving 

- >* gauge non-invariant operators. When, in the next chapter, we discuss the quanti- 

zation of QED we will see that this is not generally the case. We will show that 
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the equation of motion for 9 . A is undetermined up to an arbitrary time inde- 

r pendentfupction. While this lack of specificity does not affect the computation of 

. physically interesting gauge invariant quantities it does make the computation of 

Green’s functions for the 2s ill defined. Thus, it becomes impossible to derive the 

familiar perturbation expansion in terms of the fields 2, a situation which one can 

live with in QED, but which would make dealing with non-Abelian gauge theories 

unfeasible. In the usual treatments of QED one avoids this problem by fixing the 

gauge, i.e. adding a gauge non-invariant term to the Lagrangian. While this allows 

a straightforward development of the perturbation expansion it destroys manifest 

gauge-invariance, thus complicating other aspects of the problem. As will become 

clear in this discussion and in the discussion of QED to follow, the strength of the 

BRST formalism is that it allows one to achieve the effects of gauge fixing without 

ever breaking the BRST invariance of the system. Hence, one is able to completely 

set up perturbation theory and at the same time one does not have to sacrifice any 

of the simplifications that working with an exact symmetry provides. 

The trick of the BRST technique is to enlarge the Hilbert space of the gauge 

theory and to replace the notion of a gauge transformation which shifts operators 

by c-number functions, by a BRST transformation which mixes operators having 

different statistics. To be precise let us consider the gauge theory equivalent to 

the rigid rotor and replace the gauge transformation (2.17) by introducing new 

anti-commuting variables c and c and a commuting variable b such that 

6X = -2 sp, = c 

Spx = 60 = Spe = Sr = 0 . (2.23) 

6c = 0 SC= b Sb= 0 

Unlike the usual gauge transformation the BRST transformation possesses the 

unusual property that S2 = 0. If we now define a BRST invariant function of the 
; 

_Y. 
- .- -dynamical variables to be a function f(pT, Pe,px,pb, r, 8, X;b, c, C) such that Sf = 0, 

_ a...- then this set of functions breaks up naturally into two classes, those which are S of 

something else (which we will refer to as trivially invariant) and those which are 
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not. The fact that the form of the BRST transformation is exactly the same as 

,; a gauge transformation, except that the role c-number function has been replaced . . _ 
by the anti-commuting variable c, tells us that the first order Lagrangian (2.18) , 

which was constructed to be gauge invariant, is guaranteed to be BRST invariant; 

moreover, in general, it will not correspond to a trivially invariant function. 

Gauge Fixing in the BRST Formalism 

The general trick which allows us to perform gauge fixing is to add to the 

Lagrangian (2.18) a trivial BRST invariant function, i.e. something which is 6 of 

something else but which would not be invariant with respect to an ordinary gauge 

transformation. For example consider 
- 

L = PTf + pee - $pi - x(r - a) - 6 C(i -p, + ib) 
> 

, (2.24) 

where the specific form of the arbitrary gauge fixing term was chosen in order to 

accentuate the parallel between this case and QED quantized in a covuriunt gauge. 

The parallel we have in mind was.already alluded to, namely; one identifies X with 

the time component of the gauge field A,-, and pT, which is the only other quantity 

which transforms under our gauge transformation, with V . A (loosely speaking). 

In this case, as will become clear in a moment, the extra BRST invariant gauge 

fixing term plays the role of adding a term of the form (&A, - V. i)2 to the QED 

Zagrangian. 

To see how this leads to gauge fixed equations of motion use the definition of 

S to rewrite JC as 

C = p,+ + p& 1 $pi - X(r - a) - b(i - pr) - ib2 f c’i - CC, (2.25) 

.- - L.. 

where we have done an integration by parts to arrive at the specific form of the 

terms involving time derivatives of the independent anti-commuting variables c 
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and C. If we were to proceed classically at this point we would notice that the 

* ,;‘ Euler-Lagrange equation for b is simply 

b = -(A - pT> (2.26) 

and substituting this result into (2.25) would look like the standard two dimensional 

QED gauge fixed Lagrangian, at least if we make the suggested substitutions of 

A0 for X and ‘? . A for p, . If we look at the Heisenberg equations of motion for 

the operators of interest (since they coincide with the Euler-Lagrange equations) 

we see that the additional trivially BRST invariant term accomplishes the sort of 

covariant gauge fixing which we set out to achieve. 

There is one point which should be noticed with regard to equation (2.26) 

having to do with the requirement that Sb = 0; namely, that once one has invoked 

the equations of motion one must in principle check for consistency. In this case, 

using the definition (2.23) we see that Sb = (4 - c) which is zero by virtue of the 

Euler-Lagrange equation for c. Of course this is no accident, it simply reflects the 

fact that the term added to the Lagrangian is S of something. 

While we could first use the equation of motion for b and then s case we see 

that varying with respect to i tells us that we must identify the operator b with 

the operator -PA, which works since we assumed that px was gauge invariant. 

Moreover, varying with respect to c’ and 2: tells us that the variable canonically 

conjugate to C is i: and the variable conjugate to c is & This result is somewhat 

surprising if one is used to dealing with the naive quantization of the Dirac equation 

wherein we find that 9t is the variable conjugate to 8 and it in fact this change 

has important implications which we will consider in a moment. 

Following our, by now, standard procedure for naively forming the Hamiltonian 

from the Lagrangian we obtain 

k =p~l:+pse+-~x~+n,;:+~~E-L: 

1 1 
=~d + X(r - a) +p,p~ + -p2 + 2 + cc 2r 2 x 

(2.27) 
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. 

where we have used b = -PA, III, = 2 and II, = 2. All of the operators except C,C, 

,%-- C and 2 are assumed to have canonical commutation relations while, following the 

usual rules for quantizing operators obeying fermi statistics we give these operators 

anti-commutation relations. The only point which we have to be careful about 

in writing down these anti-commutation relations is that in this case things work 

differently than in the case of the Dirac equation where the field 9t is the conjugate 

variable to Q. In the case of the Dirac equation the fundamental anti-commutators 

are the operators {KP[lry, X&p} = xSap. Since these are a set of manifestly Hermitian 

operators we see that the coefficient x must be real and can be normalized to unity. 

However, in the case of the c’s and C’S we need to specify the anti-commutation 

relations of C with c or i with c, and not c with C. In general since c and c are 

independent canonical variables we must assume that - 

{H,, H,} = {c, c} = 0, (2.28) 

from which it follows that 

;{F,c} = 0; (2.29) 

or in other words that 

{&c} = -{t,E}. (2.30) 

Hence, we see that there is only one non-trivial anti-commutator which we have 

50 fix, the second anti-commutation relation being fixed by the requirement of 

self-consistency. To fix this coefficient uniquely it is sufficient to require that the 

Heisenberg equation of motion 

[H,c] = -ii: 

-1. 
-or equivalently the’Euler-Lagrange’equation 

- =...- 

-c-c=o. 

(2.31) ~ 

(2.32) 
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Using H = i% + Cc and the fact that c2 = c2 = 0 we obtain 

r . . _ 
[H, c] = - (2, c} C’. . (2.33) 

which implies that (2, c} = i and so {?, C} = -i. Note, this reversal of sign is 

non-trivial and implies the existence of negative metric states in the Hilbert space 

of this theory; however, before we discuss this point in detail let us complete 

our discussion of the BRST invariance of the Hamiltonian. (As an aside for the 

knowledgeable we should point out that it is more customary in the literature 

on BRST to treat the operator c as a hermitian operator and c as an independent 

anti-hermitian operator. That makes the notion of generalizing the symmetry more 

intuitive at the expense of making the Hamiltonian formalism just a little more 

obscure. We have chosen to follow a different tack and preserve the parallel to the 

Dirac equation. To translate think of the conventional operator c as our c + C, and 

the usual c as our c - c.) 

- 

The BRST Charge Operator 

At this point we have enlarged our Hilbert space and replaced the notion of 

gauge invariance by that of BRST invariance. This allowed us to add a term to the 

Lagrangian (2.25) h’ h w IC is not invariant with respect to ordinary gauge transfor- 

mations but which is trivially BRST invariant, thus accomplishing the same goal 

achieved by ordinary gauge fixing without losing the symmetry which needed to 

make the renormalization of the theory proceed apace. While the preceding dis- 

cussion has allowed us to imbed the rotor problem into this bigger Hilbert space, 

we have not yet discussed what replaces the condition that one projects onto gauge 

invariant states in order to eliminate all spurious degrees of freedom. Obviously, 

since we have destroyed t,he original gauge invariance by our gmge fix&g prescrip- 
G 

-3. tion, we no longer know that such a projection commutes with the Hamiltonian, 

-therefore we have no way of knowing that the restriction to states which satisfy 

(r - a) = 0 and px = 0 is a time independent procedure. To establish this fact we 

have to turn to the study of an operator which does commute with the Hamiltonian. 
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The obvious candidate for such an operator is the generator of the BRST transfor- 

I ,;‘ mation (2.23), Q. S ince the BRST transformation .Q is nilpotent (i.e. Q2 = 0) and 

. mixes operators which satisfy Bose and Fermi statistics we have to give a defini- 

tion of what we mean by the generator of such a transformation. The conventional 

definition of this generator is that Q is an operator whose commutators with Bose 

operators and anti-commutators with Fermi operators satisfy 

[Q, PA =c 

[Q, A] = - c 

-tQA=-PA 

(2.34) 

where all other commutators and anti-commutators vanish. It is straightforward 

to verify the fact that 

Q = -ic(r - a) - itp, (2.35) 

satisfies this requirement. It is also straightforward to explicitly check that the 

commutator of Q and H vanishes. Equation (2.35) is tantalizing in that it shows 

that the set of states satisfying the conditions (r - u) = 0 and px = 0 belong to 

the dynamically stable subspace of states IXP) satisfying Q l‘zr) = 0, i.e. the set of 

BRST invariant states. This fact, and the parallel between the gauge and BRST 

invariance of the theory, leads one to suspect that the condition for recovering the 

physical states of the theory should be accomplished by projecting onto BRST in- 

variant states. This is almost true. In order to understand what the true condition 

is and why we must now spend a few moments rewriting the operators c and z in 

terms of annihilation and creation operators. 

By taking the second commutator of H with the operator c we find that c 

- satisfies the Heisenberg equation of motion 

(2.36) 

20 



which means that the Heisenberg operator c(t) can be written as 

i ,;‘ 
c(t) x&j + e-itD’ 

. 
c(t) =emitB+ + eitD+ 

so that at time t = 0 we have 

c=B+D 

a?=B++D+ 

t=i(B-D) 

i = - i(Bt - Dt) 

(2.37) 

(2.38) 

- 
If we now impose the conditions c2 = -2 c = {C, c} = {i, ?} = 0 and {k, c} = i we 

obtain the equations 

B2+{B,D}+D2=0 

{B,B+}+(D,D+}+{B,D+}+{B+,D}=~ (2.39) 

{B,B+}+{D,D+} -{B,D+}-{B+,D} =o 

I = -1 {B,B+}-{D,D+} -{B,D+ ‘} + {LAB+ 

which have the solution _ 

B2 = D2 = Bt2 = Dt2 = 0 

{B,D}= {B+,D>= {B,D+} = {B+,D+} =o 

{B+,B}=-k 
(2.40) 

{D+,D} = f 
; 

_T_ 
L- 

- - The important thing to notice about (2.40) is the reversal in sign between the 

anti-commutation relations for the operators B , B+ and D,D+. If we let IO) denote 
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the state for which 

r . . _ B (0) = D (0) = O- (2.41) 
. 

have norm one, then we see that the norm of the state Bt IO) is minus one-half, 

whereas the norm of the state Dt IO) is pl us one-half. Hence, we see that in quan- 

tizing the fermionic sector of the theory we necessarily encounter negative norm 

states. This is nothing more or less than the reflection of the negative norm states 

which appear in the usual quantization of QED when one adds a gauge fixing term 

of the form (apA")" . The fact that these states exist is unimportant since we see 

that the entire system is free, so we can restrict attention to the positive metric 

sector of the Hilbert space. Actually, it is convenient to redefine the norm of IO) to 

be minus one, since then, the states built off Dt (0) will have positive norm. This 

is perhaps more natural since 

- 

H = $J$ + A(r - a) + p,p~ + pi + 2(BtB + DtD) (2.42) 

and so the lowest energy state of .the theory belongs to the sector built of the state 

Dt IO) tensored with arbitrary wavefunctions involving bosonic operators. 

Having made these observations we are now in a position to examine the struc- 

ture of the set of states IQ) which are annihilated by the BRST generator Q. 

Rewriting the expression for Q in terms of the fermionic annihilation and creation 

-operators we obtain 

Q = -i [B(r - a + ipx) + D(r - a - ipx)] 

hence, we see that although the set of states annihilated by Q contains the set of A 
_T_ states for which (r - u) = 0 and px = 0 it contains additional states; namely, all 

-those states for which B I@) = f?lQ) = 0. Th is is of course .a11 states built by 

- A..-- tensoring the state IO) with arbitrary functions of the variables {r,p,, X,px, 8,pe). 

Hence, restricting attention to the space of gauge invariant states does not recover 
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only the states of the rigid rotor. The reason this occurs is that we are dealing 

* ,c- with an Abelian gauge theory and in fact the Hamiltonian is not only invariant . . _ 

. with respect to BRST transformations, but also with respect to what are referred 

to as anti-BRST transformations; i.e., a transformation in which the role of c and 

--C are interchanged. To be explicit, the operator which generates the anti-BRST 

transformation is 

& = iC(r - a) + &ppx (2.44) 

which generates the transformation 

JpT = - c 

Sk+; 

SC = - px 

(2.45) 
- 

with all other commutators and anti-commutators vanishing. It is a straightforward 

exercise to verify by explicit computation that [Q, H] = 0, and so we are free to 

impose the dual constraints that Q and Q annihilate physical states. Since, & is 

nothing but the adjoint of Q we see that the second condition amounts to stating 

that 

& = i {@(r - a - ipx) + Dt(r - a + ipA)} (2.46) 

As before the states for which (r - a) = px = 0 satisfy this condition, however 

there are no longer any other states which satisfy the condition because there are 

no free eigenstates of the fermionic part of the Hamiltonian which are annihilated 

by B, Bt, D and Dt simultaneously. Hence, for the Abelian theory (because the 

fermions satisfy free equations of motion) we need an extra anti-BRST symmetry 

in order to be able to impose enough constraints to recover only the physical states 

of the particle constrained to move on a circle. Fortunately the existence of an 
; 

_Y_ anti-BRST symmetry is guaranteed for this class of theory. This happens because 

- .- -the BRST transformation is a symmetry which relates a set of real variables to 

- <* 

- 

a pair of complex variables c and C, and thus we expect the complex conjugate 

transformation to be a symmetry too. 
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One final remark that we should make has to do with the significance of the 

* ,c- statement that physical states satisfy the requirement px = 0. If we had proceeded . . _ 

. by first eliminating the b field using its equation of motion we would have identified 

x - pT as the conjugate momentum to the variable X and therefore, pursuing the 

analogy with QED, we would interpret the state condition as the parallel statement 

to the QED statement that we fix the gauge @A, = 0. Once again we see that 

although this condition is not gauge-invariant it is BRST invariant by virtue of the 

equations of motion for the operator c. 

2.4. SUMMARY 

This completes our discussion of the rigid rotor or free particle constrained to 

move on a circle. We have seen three ways in which this theory can be quantized 

by imbedding it inside a larger Hilbert space and then imposing state conditions. 

In the first case we accomplished a minimal quantization and the state condition 

amounted to what is called by Dirac imposing a first class constraint. In the 

second method we imbedded the entire theory in a gauge theory and showed that 

restriction to the space of gauge invariant states recovered the theory of the rotor 

and only the theory of the rotor; however, in this method we saw that we could 

not add a gauge fixing term without destroying the symmetry which guaranteed 

that we could in a time independent way restrict attention to these, and only 

these, states. The fi na method was one where we imbedded the theory into a 1 

BRST invariant system. In this case we saw that the Hamiltonian, even with a 

gauge fixing term added, commuted with both a BRST and anti-BRST charge and 

that projecting onto the sector of BRST and anti-BRST invariant states recovered 

a theory which was isomorphic to the first theory. We made this discussion so 

detailed because it was the simplest example which exhibited all of the features 
Z 

-2. necessary to a discussion of the more complicated cases of QED and Yang-Mills 

r9^--- theories. In the setions to followwe will be able to quickly discuss each of these 

- a.--- theories and show that the quantization of each of these systems is nothing but a 

- notationally more complex line by line transcription of the discussion given for the 
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rigid rotor. The point we wish to make throughout is that using BRST-invariance 

* ,c- to-quantize-a theory is not something special to a non-Abelian gauge theory, rather 

. it is simply a standard trick which can always be used to simplify the quantization 

of a constrained system. 

3. QED: THE PROTOTYPICAL GAUGE THEORY 

The purpose of this chapter is to show how the theory of quantum electrody- 

namics (QED) p rovides a more complicated parallel to the case of the rigid rotor. 

We will show that the correct treatment of this problem is essentially a line by line 

transcription of the rotor problem, except for the complexity introduced by virtue 

of the fact that now there are an infinite number of degrees of freedom. The only 

really new point to be made in this section has to do with the question of why we 

have to perform gauge fixing in order to set up perturbation theory. 

3.1. BASICS 

In the case of QED we start out with a theory which is already gauge invariant, 

hence we do not have to figure out how to impose a constraint on the quantized 

theory but only have to discover what constraint follows from requiring that the 

physical states be invariant with respect to time independent gauge transforma- 

tions. Having done this we will then show how the same theory can be quantized 

as a-theory possessing an invariance under both BRST and anti-BRST transfor- 

mations and show that by restricting attention to states which are simultaneously 

BRST and anti-BRST invariant we recover exactly the content of the original gauge 
_T_ 

- theory, even if one:works with a gauge fixed form of the Hamiltonian. L.. 

- - In what follows we will restrict attention to the case of pure QED since the 

problem of gauge invariant quantization of the theory already occurs at this level. 
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The Lagrangian of pure QED is conventionally written as 

. W) 

where we have explicitly separated the mixed time-space and space-space terms 

in order to simplify the construction of the Hamiltonian by our formal Legendre 

transformation. Following the naive procedure which worked for the rotor we 

identify the field A0 as the analogue of the Lagrange multiplier X since its time 

derivative does not appear in the Lagrangian. Also, in the usual way we identify 

the quantities S,Cf,,,/&i = I? as the canonical variables conjugate to the fields Ai 

and assume for them the canonical equal time commutation relations 

[A;(Z), Q(f)] = iS;j63(i! - ij’) (3.2) 

where 

and where we will adopt the usual definition 

r3=iL&i 

in order to simplify writing the expressions which follow. 

Applying the formula 

we obtain 

Ilfree=/d3x [;( &z+l%?) +$A,-,d 1 
which can be rewritten by integrating by parts as 

_=. 
- -- 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Note, that as in the case of the rotor, although the Lagrangian is invariant 
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with respect to arbitrary time and space-dependent gauge transformations of the 

* ,c- form . . _ 

. SA,(Z, t) =&f(Z, t) 

SX(S, t) =t/f(Z, t) 
(3.8) 

the Hamiltonian (3.7) is invariant under only time-independent gauge transforma- 

tions. Under a time dependent gauge transformation 

where f( 5, t) is an arbitrary function of Z and t. Thus, in order to obtain a fully 

gauge invariant Hamiltonian we must project onto the set of states IS) for which 

G * E(Z) p> = 0 (3.10) 

- 

: .‘- _ 

From the canonical commutation relations assumed for z(Z) and x(y3 , it follows 

that the operator $ . E(Z) can .be identified as the generator of time indepen- 

dent gauge transformations; hence, the condition that one project onto a subspace 

in which the Hamiltonian is invariant with respect to all gauge transformations, 

amounts to the condition that we project onto states which are annihilated by the 

generators of time-independent gauge transformations. Since these transformations 

commute with H this projection is time independent. 

We have now completed the quantization of the free Lagrangian. In order 

to achieve a better understanding of the meaning of the projection onto gauge 

invariant states it is necessary to consider the introduction of matter fields. To do 

this we add a to Lf,,, the free matter field Lagrangian and an interaction term of 

the form C, JpA,,‘where Jfi is the conserved matter current . The Lagrangian of 
- 

- .- -interacting QED then takes the form 

- - 

L = J&e + JoA - f. ii (3.11) 
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and the Hamiltonian becomes 

“=-,.,,,.+/d3x [;(6~+h?) -A;(?+- Jo,) +n-j] (3.12) 

As in the pure gauge theory the coefficient of the term A0 is simply the generator 

of the time-independent gauge transformations, where now we include in the def- 

inition of the gauge generator a piece involving the matter fields. This is because 

under a gauge-transformation the matter fields transform by a phase factor of the 

form eiqf@‘), where q is the charge of the field and f(Z,t) the arbitrary gauge 

function. From this we see that projecting onto gauge invariant states amounts to 

saying that one is projecting states for which Coulomb’s law holds. 
- 

From this discussion and our earlier discussion of the rotor we see that if we 

had not started with a gauge theory we could have reinventedone by starting with 

a theory involving only the canonical variables E’ and A and imposing Coulomb’s 

Law as a constraint . In that case the field A,, appears as the Lagrange multiplier 

of the constraint equations and the first order Lagrangian constructed following 

the procedure we outlined for the rotor would just be Lagrangian we began with. 

Fortunately, the gauge theory was given to us at the outset so we were able to skip 

this step. 

3.2. THE NEED FOR GAUGE FIXING 
- 

In the discussion of the rotor we pointed out that the virtue of BRST quan- 

tization is that it allows for gauge fixing while keeping a symmetry of the theory 

manifest which is equivalent to gauge invariance. We also noted that we could not 

really explain the need for such gauge fixing within this simplest model. In this 
WL 

section we will take a few minutes to rectify this situation and remind the reader _T. 
- - icy- of the way in which Gupta-Bleuler formalism gets around the problem. Having 

_ - done this we will then discuss the BRST quantization and the reader will then be 

- in position to compare the two approaches. 
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As we already pointed out at this point we have completely quantized QED 

r and eliminated all spurious degrees of freedom. In principle we can now compute . . _ 
all processes involving only gauge invariant physical variables. However, there is 

often a big difference between in principle and in practice . In order to use the 

Hamiltonian projected onto gauge invariant states one has to deal with Green’s 

functions which are not manifestly Lorentz covariant and the difficulties which 

this introduces are well known . One usually attempts to recast the problem 

in such a way that the perturbation expansion can be set up in terms of the 

unphysical (i.e. gauge dependent ) variables A,,, A. Given these Green’s functions 

one then extracts amplitudes for gauge-invariant Green’s functions by manipulating 

them. Unfortunately, if we do this at this juncture we find that although we have 

completely specified all propagators for the fields g(S) and g(Z) (one need only 

check the free field case to see this) the gauge invariance of the procedure guarantees 

that it will not fix the propagators for the fields Ao, x. To see this all one has to 

do is compute the Heisenberg equations of motion for the free Hamiltonian plus a 

c-number external conserved current coupled to the A’s by a term JoAo - y. A’. 

This yields 

&,A’ = (E + aAo> 

&,A, =0 

from which it follows directly that 

(3.13) 

Clearly, (3.14) means that for a given set of classical external sources the divergence 

of A is undetermined up to a function f(Z, t) for which 8,“f = 0. By the usual 

_Y_ arguments this translates into the fact that the Ax propagator is undetermined and 
- .-~-so we cannot set up the usual perturbation expansion without .adding something 

- =* to the Lagrangian in order to fix the gauge. Of course, if we do so then we lose 

- the fact that the generators of time independent gauge transformations commute 
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with the Hamiltonian and therefore lose the ability to project onto gauge invariant 

r states. In that case we lose the manifest equivalence of the formalism to the unitary 

. form of the theory and proofs of renormalizability become more complicated. 

Despite the fact that fixing the gauge complicates ones life that is precisely 

what one used to doing in the case of QED. It is customary to discuss the theory 

by adding a term like (&A,, - e . i)2/2a to the Lagrangian. In this way the 

conjugate variable to A0 now appears and the canonical formalism goes through 

in the usual fashion, except that one discovers that due to the form of the Lorentz 

metric at least one the component of A, must correspond to a negative metric 

particle. In order to eliminate these states from physical processes one begins by 

observing that the negative metric field belongs to &A, - ? . A’ and using the 

equations of motion shows that this operator is a free field. This means one can 

separate this operator into annihilation and creation operators and impose the 

condition that physical states contain no negative norm particles. Unfortunately, 

while this eliminates states with negative norm there are states with zero norm 

which cannot be eliminated so simply. The heart of the Gupta-Bleuler formalism 

is the observation that two states which differ by a state of zero norm can be 

mapped into one another by a gauge transformation; hence, one can define the 

physical theory by factoring the Hilbert space of states into equivalence classes, 

defining all states that differ by a gauge transformation as the same state. One 

shows that the factor space has a positive definite metric and then one has to 

=verify unitarity by proving that all on shell Green’s functions for gauge invariant 

operators are independent of the coefficient of the gauge fixing term. While this 

somewhat cumbersome approach works for QED the analagous approach for a non- 

Abelian gauge theory quickly runs into frightful complications. For this reason 

one is very interested in developing a quantization scheme which allows effective 

gauge fixing, but will preserve a symmetry that vastly simplifies the discussion of -2. 
- .- - renormalizability. : L- 
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3.3. BRST QUANTIZATION AND QED 

r 
As in the case of the rigid rotor we BRST quantize the system by enlarging the 

number of degrees of freedom and inventing a nil-potent symmetry which mimics 

the structure of the gauge symmetry. The general trick for doing this is to begin 

by replacing the gauge function f(Z) by the anti-commuting field c(Z), a process 

which partially defines the operation S to be 

SAo = &,c Si= 62 (3.15) 

from which it follows that Sz = SJ = 0. The transformations of all of the variables 

other than c and c are fixed to vanish by the condition that they are gauge invariant, 

thus we need only define SC and SC in order to fix everything. The fact that S2 = 0 

immediately tells us that SC = 0 and so the most straightforward completion of 

our definitions is achieved by defining SC = b and Sb = 0. Except for the fact that 

all variables are now functions of space-time points this is an exact transcription 

of the process we followed for the case of the rigid rotor. 

Following our earlier procedure we write the full Lagrangian of the expanded 

system as the original gauge invariant Lagrangian plus a term which is S of an 

arbitrary function of the other variables. In order to accomplish the purpose of 

producing an effective gauge fixing term of the form (&A, - $. i)’ we choose this 

term so that 

.CmST=L+b $&A~-&ii+; 
( > 

(3.16) 

which is an obviously BRST invariant quantity. Substituting the.definition of S 

and using the fact that by assumption c2 = c2 = 0 we obtain 

,CBRST = L + ;b2 + b (&A0 - e . x) + i;: - +c. 6. (3.17) c_ 
._ ~- L- 

It follows from (3.17) , as in the case of the rotor, that if we use the equation 

of motion for b we wind up with exactly the gauge fixed Lagrangian used in the 
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Gupta-Bleuler formalism. Moreover, we see that the fields c and E are free fields 

whose canonical quantization can be carried out straightforwardly. Once again . . _ 
there are two routes open-to us. We could eliminate b using its equation of motion 

and then canonically quantize the system in the usual way. In this event we would 

identify b with PA, and we would have to check that Sb = 0 For the case at hand 

Sb = (8:~ - V2c) = 0 which, as for the case of the rotor, follows from the Euler- 

L-agrange equations for the field c. The second approach we could adopt is to not 

use the equation of motion for b and proceed to canonically quantize the system 

directly. In that case we have to identify the canonical momentum of the AC, field 

with b and then the discussion goes through as for the case of the rotor. Once 

again, in either approach, the fact that b is the conjugate variable to c etc. implies 

that the operators c and 2 generate an indefinite metric space; however, since the 

field is free, this causes no problems. Simple state conditions suffice to eliminate 

all negative metric states from consideration. This is of course the BRST reflection 

of exactly the negative metric states of the Gupta-Bleuler formalism, except that 

here things are much simpler. 

The general outline of the remainder of the discussion of the Abelian theory 

parallels the rotor case almost exactly. We begin by forming the Hamiltonian of 

the system using the definition 

-where now, since ,CBRST includes a term involving &A, we must identify -6 with 

the canonical conjugate to A0 in exactly the same way as we identified it with px 

in the case of the rigid rotor. The Hamiltonian obtained in this way is simply 

- ._ -- and it is straightforward to show that it commutes with the BRST charge 

Q=/d3x [- i&7 - E - icrI~, 
I 

(3.20) 
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by using the canonical commutation relations supplemented by 

r . . _ 

. {qq,c(f)} = iS3(d- f) (3.21) 

We also can show that this Hamiltonian commutes with the anti-BRST charge 

(3.22) 

In exactly the same fashion as for the rigid rotor we expand the fields c and c in 

terms of annihilation and creation operators and can then show that the conditions 

&IQ) = &IQ) = 0 can only be satisfied on states which satisfy the eigenvalue 

conditions < . E’ IQ) = HIA,, IQ) = 0. Note, that had we followed the first route, 

the state condition HA0 = 0 would be the familiar statement that PA, = 0 when 

restricted to the space of physical states. 

4. THE CHARGED SCALAR FIELD 
AND GHOSTS WHICH AREN’T FREE 

In the previous discussions we chose gauge-fixing conditions which lead to free 

equations of motion for the ghost fields c and C. In the case of more complicated 

Yang-Mills theories this is not possible. The question then arises as to how we 

are to go about choosing the sector of physical states, since we saw that for the 

case of the rotor and QED there was more to be done than simply stating that 

the states were Q and & invariant. It has long been known that for the case of 

scalar QED one encounters ghosts which do not satisfy free equations of motion 

if one chooses to work in the so called Rt gauges. Hence, before going on to the 

discussion of YangLMills theories it is worth spending a few moments discussing 
_T_ 

this phenomenon in that simpler setting. 
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4.1. THE LAGRANGIAN 

. 

,c- 
The’Lagrangian of this model is conventionally written as 

(4.1) 

where q5 is a complex scalar field and 

44 = (4 - GA@ 

Fpy = &A, - &A, 
(4.2) 

This Lagrangian is invariant under gauge transformations 

#(Z, t) + #‘(ii?, t) = e-igrcat)#(i?, t) 

A&?, t) + A@‘, t) = A,(Z, t) - &f(z, t) 

i(S, t) + x(2, t) = A@, t) - ‘?f(Z, t) 

(4.3) 

If we now proceed to construct the Hamiltonian for this system in what is by now 

our standard way we define 

H, = (80 + igAo) $+ 

n,t = (ao - +o) 4 

II,- = 
( 

cY,A’- tiA, 
> 

(44 

7-i = n,ao~ + II,,aoc$+ + xX$&A - L 

30 

where p = js is the time component of the conserved electromagnetic current 

G 
_T_ jo = &A - J&54+ (4.6) - 

- L.. 

As before, we see that this Hamiltonian is invariant with respect to all time in- 

dependent gauge transformations and the only term in ‘FI which changes under a 
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time dependent gauge transformation is the term 

* ,;‘ . . - A0 (-+. i? + g$ 

and the term inside the brackets is identifiable as the generator of the time inde- 

pendent gauge transformations. Thus, as we already pointed out, projecting the 

Hamiltonian onto the subspace in which it is fully gauge-invariant is equivalent to 

projecting onto the space of states for which Gauss’ law holds as an eigenvalue 

condition. 

At this point our original discussion of QED tells us that we have completely 

specified the quantization of the theory and obtained the correct Heisenberg equa- 

tions of motion for physical variables. However, as before, we have not written 

things in such a way that we can completely derive a perturbation expansion for 

gauge non-invariant Green’s functions. What we want to now look at is what hap- 

pens if we study a particular form of gauge fixing which was useful for discussing 

the Abelian-Higgs model; i.e., the so-called Rt gauges. 

In order to set up the perturbation expansion so as to facilitate our discussion 

of the RE gauges it is customary ‘to rewrite 4 as 

and rewrite 7-L as 

+; (942 - g&l)2 + ;p2 (4; + 4;) + Ao (-?. E’+ gp) 
(4-9) 

where II1 and II2 are the canonical momenta of the fields & and d2 respectively. 

In addition we have that 

_T_ P = jo = i (W2 - n2h) (4.10) 
- L- 

- 

The original motivation of the Rt gauges was to eliminate the cross term 2.$4S2 

which appears in the discussion of the Higgs model. Obviously, for the case at hand 
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we do not face this problem and the motivation for choosing this class of gauge 

r fixmg terms does not exist. Nevertheless, since what we wish to discuss is the 

. structure of the theory for gauge fixing terms which lead to non-trivial equations 

of motion for the ghost field, we will consider this class of gauges anyhow. The Rc 

gauges as introduced by Fujikawa, Lee and Sanda’ are obtained by adding a term 

of the general form 

(4.11) 

to the original gauge-invariant Lagrangian. We will now show why this sort of term 

leads to non-trivial equations of motion for the anti-commuting fields of the BRST 

formalism and how that affects our discussion of the choice of physical subspace. 

4.2. BRST FORMALISM 
- 

Following our earlier line of argument to obtain the BRST form of the theory 

we replace the usual gauge transformation by a nilpotent transformation on a larger 

Hilbert space. To arrive at the form of this new transformation we simply take the 

form of the c-number gauge transformation, which in these variables is 

64 = -%f 641 = f 42 64, = -fq& (4.12) 

and replace the c-number gauge function f by an anti-commuting variable c. Hence, 

we assume that in addition to the operators 2, 41 42 and their conjugate momenta 

7?, II, and II2 we add new operators c, c and an as yet undetermined field b. The 

form of the BRST transformation is then fixed by requiring that 

SAo = dot; sii = a,; Wl = 942; 642 = -gc& (4.13) 

in order to reproduce the form of the c-number gauge transformation, and 
_T_ 

- 
SC = 6; SC= b; Sb= 0 

which is a solution of the condition that b2 = 0. 
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With this notation behind us we then construct the BRST analogue of the I+ 

gauges by defining the BRST Lagrangian to be . . _ 

. 

LBRST = L + 6 (c(aoAo - 9 * A’+ [42 + [b/2)) (4.15) 

Using the definition of S specified in (4.13) and (4.14), (4.15) becomes 

from which we see that for this class of gauges the ghost fields have non-vanishing 

trilinear couplings to the field 41, and so no longer satisfy free equations of motion. 

Nevertheless, although the Hamiltonian for the fields C and c is no longer trivial, 

the BRST charges take the same form as in the covariant gauges, i.e. following the 

prescriptions of the preceding section we find 

- 

Q = /d3x [ic (- 9 * E + g&$2 - n24 - a&] (4.17) 

and the anti-BRST is not necessary because one no longer has to worry about 

eigenstates IQ > of H which satisfy cl!J >= CIq >= 0 . 

Clearly, if we start out by quantizing the theory in terms of the free field part 

of ‘I-t and then considering the effects of interactions on the classification of the Q 

invariant states proceeds in the same way as in the covariant gauges. The only 

difference is that now we see that since 3-1 mixes states with different numbers of 

ghosts we cannot simply choose one particular eigenstate of the free Hamiltonian 

upon which to build our space of physical states. Despite this apparently new 

complication the state of affairs can be shown to exactly parallel this state of 

affairs in the covariant theory, except that now we must copy the Gupta-Bleuler 
G 

_Y. formalism and show that physical states are equivalence classes of states which are 

r9c--- annihilated by Q.’ The analogue Lto Gupta-Bleuler lies in the.fact that any two 

states within one equivalence class differ by a state of zero norm and if we consider 

the theory defined on the factor space it is clearly unitary. 
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For terms with an uneven number of ghosts in them, the operation 6 is gen- 

* ,c- erated by anti-commuting with the charge Q. It therefore follows that the extra . . _ 

. term in the BRST Lagrangian ,and thus Hamiltonian, is of the form 

Q, +%Ao - e. ii - 5~~3~ + gb) 
> 2 - 

(4.18) 

Let us now assume that we begin from any one of the eigenstates of the free part of 

the ghost Hamiltonian (e.g. the ground state with a filled Dirac sea ) and consider 

the states built of this state by multiplying it by an arbitrary gauge-invariant 

function of the variables ,??, 2, $r and $2. As we already noted this is the generic 

form of a state which is annihilated by Q. It then follows that this state is mapped 

into another state in the same sector by all of the terms in ?~BRST except the terms 

of the form (4.18). S ince we began by assuming that we started from a state which 

is annihilated by Q we see that the result of applying (4.18) to such a state is a 

state of the form 

IQ, 01 I@) = QO IQ> (4.19) 
- 

where 0 stands for the gauge-fixing expression. Furthermore, since all of tij3R.s~ 

commutes with Q it follows trivially that all states obtained by applying any power 

of RBRST to a state annihilated by Q are of the form Q IQ’), for some state IQ’) . 

The only thing which remains to be shown is that a state of this type has zero 

norm; however, this follows directly from the fact that the norm of a state of this 

type is equal to 

(*I o+QQo IV = PI Q+ [Q, {Q, WI IQ) = 0 (4.20) 

The extreme simplicity of this analysis as opposed to what one has to go through - _Y_ 
- --~- to analyze what happens in the Gupta-Bleuler formalism points up more than 

- A.--- anything else the enormous simplifications which occur because of the fact that 

- the BRST transformation is nilpotent. 
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From this line of argument it follows that if we start from any one of the 

* ,s- subspaces of the theory defined by the usual covariant gauge fixing condition and . . _ 

. form equivalence classes of states under the relation that two states are the same 

if they differ by Q of some state, then any one of this infinite number of factor 

spaces serves as a satisfactory subspace of physical states and generates a theory 

isomorphic to the physical theory obtained from directly quantizing the theory 

without ghosts in a Hilbert space defined by constraints. It should be apparent 

that the general flavor of this argument will carry over to any theory wherein 

the addition of a gauge-fixing term forces the BRST ghost particles to satisfy 

non-trivial equations of motion. This completes our discussion of Abelian gauge 

theories. 
- 

5. NON-ABELIAN GAUGE THEORIES 

Finally, for the sake of completeness, let us turn to the case of the non-Abelian 

gauge theories . As we will see, the quantization of these theories differs only in 

minor technical details from the cases which came before. 

5.1. NOTATION 

-- In the sections which follow we will adopt the notation used in the book Gauge 

theory of elementary particle physics by T.P. Cheng and Ling-Fong Li. In addition, 

in order to simplify the details of the discussion, we will restrict attention to the 

case-of the pure gauge theory. 

In defining the pure SU(2) gauge theory one introduces a set of gauge fields Ai G 
-2. which belong to the adjoint representation of the group. The free field Lagrangian 

- .- -- is L.. 
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I 

where we have adopted the notation 

,a-- . . -. La E; = Foa; ,. 
(5.2) 

and where 

The latin indices run over the range 1 to 3 and the Greek indices from 0 to 3 with 

the convention that repeated indices are summed over. As in all of our previous 

cases we have broken out the F,“; terms and the F$ terms separately since we 

are interested in constructing the Hamiltonian. This Lagrangian is invariant with 

respect to the general gauge transformation 

&A; = -aof” + gcabcfaA; 

&@ = -3fa +g&Jcfbz (5.4 

5.2. THE HAMILTONIAN 

Following what is by now our standard procedure we form the Hamiltonian 

and obtain 

- 
(5.5) 

where we can identify the coefficient of the term linear in A; as the covariant 

divergence of the electric field 2”. Since this is the only term in the Hamiltonian 

(5.5) which is not invariant with respect to the gauge-transformation (5.4) we see 

that the condition which defines the physicalstates of the theory is that they must 

_T. be eigenstates of the covariant divergence of the ia field with eigenvalue zero. 
-_ -This is of course the direct generalization of the condition that the states satisfy 

- - Gauss’ Law since in the case of the non-Abelian gauge theory the gauge field is 

itself charged. 

- 

C 
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The non-Abelian theory is the first place in which we see the necessity for a for- 

,&-- ma1 structure which provides an alternative to directly solving the state condition . . -. 

. and eliminating the unphysical degrees of freedom, since the state condition is a 

non-linear -equation and no closed form solution of the problem can be given. Our 

only alternative is to perturbatively construct the desired states. This of course 

means that we must work in a perturbation expansion based upon the gauge non- 

invariant Greens’ functions since, in the absence of an exact solution, we have do 

not have an a-priori knowledge of the Green’s functions required to define gauge 

invariant states. As in the case of QED this requires that we do some kind of gauge 

fixing in order to be able to completely specify the perturbation series. 

Unlike the case of QED the Gupta-Bleuler solution, wherein one adds a gauge- 

fixing term to the Lagrangian and then tries to sort out the behavior of the negative 

norm and zero norm states, is no longer a viable alternative. This is because the 

ghost states no longer satisfy free equations of motion even if we use covariant 

gauge-fixing terms. This means that we can no longer use the statement that the 

negative metric states are created by free-field operators in order to eliminate them. 

This is where the BRST formalism really shines. The logic underlying the BRST 

treatment of the non-Abelian theory is a complete parallel to that of the Abelian 

theory of a charged scalar field in an Rt gauge. As in all other cases one enlarges 

the Hilbert space to include fermionic ghosts and shows that the resulting theory 

has an invariance with respect to a nil-potent BRST transformation. One then 

adds to the Lagrangian a gauge-fixing term of the form {Q, 8}, which by virtue of 

the nil-potency of the BRST transformation automatically commutes with Q. As 

in.all previous cases by choosing a term of this sort we are able to get a well defined 

set of Feynman rules and still preserve the symmetries needed to classify states. 

One then shows that polynomials in the Hamiltonian only add zero norm states 

- 

to states which are annihilated by the BRST charge. The procedure for carrying 

- this argument out: differs only in;details from the arguments given for the rotor 

and Abelian electrodynamics. There is however an important new feature in this 

problem which we will focus on in the remainder of this section. 
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5.3. BRST FORMALISM 
,--- . . 

In order to parallel tb discussions which appear in the literature we will now 
. 

make what we already pointed out is a simple change of basis for the fermionic 

ghosts and enlarge the degrees of freedom to include a set of hermitian ghost fields 

I?, their anti-hermitian anti-commuting partners ca and auxiliary bosonic fields b” 

w-hose specific form is to be determined after adding the gauge-fixing term to the 

Lagrangian. As we already pointed out this amounts to taking fermionic fields 

$J” and identifying ca with $” + +t” and ca with $” - $t”. In terms of these 

additional degrees of freedom we seek a BRST transformation which is the direct 

generalization of the gauge-transformation (5.4) with the field ca replacing the 

gauge functions f”. Hence, we seek a transformation of the form 

6A; = -&,ca + gcabccbA; 

62 = -$p + g,@ccbz 

&a = &abccbcc 

SC” = b”; tjb” = 0 

(5.6) 

u 

where the first two equations are a direct transcription of (5.4) replacing f” by ca 

and the remaining equations are fixed by the requirement that S2 = 0 

The conventional form of the covariant gauge fixed Lagrangian is 

- 
LmST = C + S (c”(dl”A; + Eb”/2) (5.7) 

Using (5.6) and the fact that S(cA) = (&)A - &A we can rewrite this as 

- 

-- - L- 

_ - As in all previous cases we see that if we use the equation of motion for the fields 

b” we find that b” = -k3fiA~ and so the first two gauge fixing terms combine to 
5 
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the sort of covariant term one would introduce in the Abelian gauge theory, and 

the last term has the structure of a Faddkdev-Popov ghost action. Of course, as in ,%-- _. 
the previous cases, the fact that S2 = 0 now follows from the equations of motion 

for the fields ca. We can, however, proceed just as we did in the other cases, 

and not use the equations of motion to eliminate the ba’s. Except for indices, 

everything in the non-Abelian theory appears to parallel the case of QED in a 

covariant gauge; a new feature, however, is that now the Faddedev-Popov terms 

for the ghost fi Id e s no longer describe free particles even in the covariant case. 

This is, of course, no problem since we already discussed what to do when the 

ghosts do not trivially decouple when we discussed the case of scalar QED in the 

RE gauges. Except for the E symbols and extra indices everything works the same 

way in this case. One simply focuses on the bilinear terms in all fields and imposes - 

canonical commutation and anti-commutation relations for the fields I?“, ia, ca 

and ca chosen so as to yield the correct Heisenberg equations of motion. One then 

constructs the BRST charge which commutes with the Hamiltonian and defines 

the physical states by the conditions that Q annihilates them. One then shows that 

starting from such a state polynomials in the gauge-fixed Hamiltonian map us into 

a state of the same form plus at most a state of the form Q IQ’); moreover, one 

shows that all such additional states have zero norm. This allows us to reformulate 

everything in a positive metric space by forming equivalence classes of such states. 

The details of this discussion are, except for indices, the same in this formulation 

of the theory as for all other cases. - 

5.4. BRST CHARGETHE STATE CONDITION 

There is a novel aspect to the non-Abelian problem in that it is much easier 

to proceed by eliminating the b” fields first rewriting them as PAZ and then 

quantizing rather that proceeding in the reverse order. This is because in this - 

-_ -case we really need to use the equations of motion for the fields ca in order to 

- - see that Sb” vanishes. Hence, for the sake of variety and in order to simplify our 

discussion we will assume that first we set b” = PA: and then rewrite L . One 
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then quantizes canonically and finds the BRST charge charge Q which generates 

,=-- the BRST transformation according to the rule . . -. 

. 
SA; = [&,A;] ; sea = {Q,P) 

SC” = {Q, c”} ; Sb” = [Q, b”] 
(5.9) 

to have the form 

Q = / d3x [i (&ca + gcabccbA;) (PA;) + i (-i? . ,!?” + gcabczb . 2) ca 

+ ;f”bCaoFacbcC 
I 

(5.10) 

Obviously, as in all previous cases, the fact that the covariant gauge gives us 

an action involving a term &~dac forces a negative metric formulation on the 

theory by requiring that &c” and ca are the canonically conjugate quantities 

satisfying non-vanishing anti-commutation relations. Insofar as the state condi- 

tions are concerned, one sees that if a state is constructed so that PA; = 0, 

-$ . ,??” + gtabcEb . ic = 0 and so that cabc &,c~c~c~ annihilates the state then that 

- 

state is annihilated by the operator Q. In other words, a state of this sort is simply 
_ . ..- . a state which satisfies the original requirement of being a gauge-invariant state 

multiplied by any color singlet combination of the fields ca and ca. Obviously such 

a state can be constructed iteratively in perturbation theory by starting from a 

&ate with no c’s and C’s and requiring to lowest order in g that ‘? . 2” = 0. The 

remainder of the argument that applying the Hamiltonian to such a state only 

produces a state of the same sort plus at most a zero norm state which is the Q of 

something goes through as before. 

This concludes our discussion of BRST symmetry for Abelian and non-Abelian 

_Y. gauge theories. The remainder of this paper will be devoted to the problem of the 

-.- -relativistic particle and spinning relativistic particle because of the interest these 

- IC problems have for people working on string theories. 

- 
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6. THE RELATIVISTIC PARTICLE 

In reality there are two reasons for concluding this paper with a discussion of 

the relativistic and spinning relativistic particle.5’13’14 The first reason is that 

these examples demonstrate the way in which one can treat a system involving 

what Dirac called second class constraints. A second class constraint, as we shall 

see, arises when the classical equations of motion imply relations among the opera- 

tors which are not consistent with their supposed canonical commutation relations. 

The second reason is that these examples exhibit manifest reparametrization in- 

variance, and that is why string theorists consider them paradigms for the way 

BRST invariance works in more complicated cases. The relativistic particle and 

the spinning relativistic particle are simple quantum mechanical examples which 

share this property with the more difficult example of a relativistic string the- 

ory. While one can treat these examples using the BRST formalism which we 

have already developed without making reference to this geometrical invariance, 

proceeding in this way leads to a formalism in which the relationship between the 

BRST invariance and the underlying reparametrization symmetry is somewhat ob- 

scure. We will show in this section how one can carry out the entire BRST program 

starting from the reparametrization invariance. The final result will of course be 

equivalent to the one we obtained before. 

- 6.1. BASICS 

The classical relativistic particle is defined by an action of the .form 

.- if--- 

(6.1) 

where x0 and 2 are the coordinates of the particle in some reference frame and 

t specifies a parametrization of the curve. If we now make the usual Legendre 
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transformations 

(6.2) 

we see that even though we have assumed that x0 and Ic’ form four independent 

degress of freedom their canonically conjugate momenta must satisfy the constraint 

po2 -p’.p’= m2 (6.3) 

This constraint means that beginning from this form of the action it is clearly 

impossible to quantize the theory in the usual fashion giving all the operators 

canonical commutation relations. 

Dirac, in his famous paper on the subject, gave a prescription for dealing with 

the problem which consisted of modifying the canonical commutation relations 

to be consistent with the constraint. Since the spirit of this paper is to enlarge 

our Hilbert space in order to make the formalism as simple as possible, we will 

take another tack. Basically we note that the reason for the constraint among the 

degrees of freedom is the existence of the square root in the action. This form of 

action was required in order that the action be reparametrization invariant, There 

is, however, another way to achieve the same goal, that is to introduce a metric, e, 

into the problem. To be specific one can adopt an action having the form 

In this case, the usual manipulations yield 

PO = i0le 
L.. 

p'= -2/e 
(6.5) 

Since the time derivative of e does not appear in the Lagrangian the Hamiltonian 
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becomes 

,; . . _ H =poio+ji& L 

= ;(p; - p’. p’- &) (6.6) 

At this point we can follow our familiar procedure and quantize this system by 

rewriting the Lagrangian in first order formalism. Following the steps outlined in 

section 2 we can construct the first order Lagrangian using equations (2.15) and 

(6.6) 

L = poio + p’. 2 - fe(pi - p’. p’- m2) (6.7) 

From this equation we see that, in the first order formalism, the metric e plays the 

role of the Lagrange multiplier; variation of the action with respect to e producing 

the constraint equation (6.3). 

Having written the first order Lagrangian we are ready to quantize the system. 

As we will see the quantization of point particle is identical to the rigid rotor. 

Therefore in this section we will outline the procedure and the reader can fill in 

the necessary steps or read off the corresponding formulae from section 2. As 

before, the Lagrangian has a local symmetry that is generated by the constraint 

(6.3). This local symmetry will enable us to explicitly reveal the gauge structure 

of our Lagrangian. Under an arbitrary gauge transformation we have 

6x0 = [PO; 62 = -[p’ 

Spa = 0; S@= 0; Se = 6 
(6.8) 

where t is the gauge parameter. It is a simple exercise to check that the Lagrangian 

is indeed invariant under this time dependent gauge transformation. Once again 

the Bamiltonian is not gauge invariant. The variation of the Hamiltonian under a 

gauge transformation is given by 

Since the variation of the Hamiltonian is proportional to the constraint, the lack 

of invariance is not a problem. Here, as in all our previous cases, in order to obtain 

47 



a gauge invariant Hamiltonian we must restrict attention to the sector of states 

r for which $ - ~7. ~7’= m2 Thus, for this theory, the gauge invariant Hamiltonian 

. is identically zero and al1 the dynamics is in the constraint condition. Thus, we 

see that once again, we are dealing with a trivial theory and we could stop at this 

point: however, since this obviously has the form of a gauge theory it is amusing 

to carry out a BRST treatment of the problem 

6.2. BRST FORMALISM 

The BRST formalism for this sort of problem begins the same way as in all 

other cases. We replace the gauge function [ by two anticommuting c-number 

variables c and c and a commuting variable b such that 
- 

dxo = cpo; c&i? = --$ 

dpo=O; d@‘=O; de=i 

dc = 0 (6-W 

dc = b; db = 0 

where the two first conditions just rewrite the gauge transformation. The next 

conditions come from requiring that d2 = 0. As in the case of QED and the rotor 

it is possible to find a second nilpotent invariance d such that dd+ dd = 0; namely, 

- 
dxo = cpo; & = -qy 

dpo=O; JF=O; de=; 

& = 0; dc = b; db = 0 

(6.10) 

Once again the two first conditions are obvious rewritings of the gauge transfor- 

mation condition. The remaining conditions follow from the nilpotency of d and 
_Y. 

-the requirement that it anticommutes with d 
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6.3. GAUGE FIXING 

. 

r 
The”genera1 trick which we have use to allow us to fix the gauge is to add to the 

Lagrangian a function that is trivially BRST invariant; in general, this is achieved 

by adding to the Lagrangian a function which is S of something else. For the point 

particle we can choose to add &(e + b/2). Th e reader should compare this gauge 

fixing term to the one we used for the rotor equation (2.24). If we adopt this tack 

then the full Lagrangian has the form 

L =p~io+ji.i!- ke(po2 - p’. $+ m2) + bG + b2/2 - CC (6.11) 

To carry out the BRST formalism we would follow the same steps as in chap- 

ter 2. Once again the independent canonical variables c and c must satisfy the 

commutation relations 

{i,c} = i 

{i,F} = -i 
(6.12) 

As before, the reversal of the sign in equation (6.12) implies the existence of neg- 

ative metric states in the full Hilbert space including the ghosts. 

In the BRST formalism the notion of gauge invariance is replaced by BRST 

invariance. To conclude the quantization of the point particle we write down the 

nilpotent BRST charge. The charge we are looking for must satisfy the following 

e nontrivial commutation and anti-commutation relations, 

[&GO] = cpo; [Q, d = -cp’; {Q, E} = b (6.13) 

It is straightforward to verify that the operator Q = ic(po2 - j’. p3 + iib satisfies 

this requirement. 

_Y. The rest of the quantization proceeds exactly as for the rotor. Since this was 

- .- -analysedm very carefully in section’2 we will not repeat it here-. Instead we will 

conclude by studying the reparametrization invariance of the system, which is a 

new a feature of our Lagrangian. 

49 



6.4. REPARAMETRIZATION INVARIANCE 

. 

,c- 
In addition to the invariance (6.13) the Lagragian (6.7) exhibits another sym- 

metry, namely under local reparametrizations. It is easy to verify that, in fact, 

each term in (6.7) is invariant with respect to the transformation 

s,xo = &; S,? = d 

s Tpo = qio; s,p’= tP; (6.14) 

S,e = & + ie 

where E. is the gauge parameter. We see that xP and pP transform under l- 

dimensional diffeomorphisms as scalars, while e transforms as a density. It is also 

obvious that (6.14) is equivalent to (6.8) with [ = ce by the equations of motion 

I;P = 0 and (6.5). H owever, both of these symmetries leave (6.7) invariant even 

without invoking the equations of motion, and so one might suspect that they are 

not equivalent off shell. It turns out’that there is a linear combination of the two 

symmetries which is trivial: define St = S, - S and < = ce . Then 

&x0 = 

&PO = 

s,p+ = 

&e = 

The action does not vary: 

(6.15) 

-2. 

- 

(6.16) ~ 

- 0 The symmetry generated by St has no physical significance, and exists for any 

- action written in first order form. Its triviality will be the key to relating the 
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BRST formalism derived from the reparametrizations (6.14) to the one discussed 

i ,c- in-t hen previous sections. . . _ However, there is one proviso: in general, disentangling 

. two different BRST symmetries is easy only if they anticommute. This in turn 

requires the underlying gauge symmetries to commute. Let us check that for 6 and 

S,. We obtain 

p, &lx = 4P - h&J (6.17) 

The commutator will be zero if and only if S, = C{ . This requirement is not 

entirely unexpected: the gauge symmetry (6.8) is valid even for a finite parameter 

[. This function must be a l-dimensional scalar, so that under reparametrizations 

S,[ = ct. It is now easy to verify that indeed [S, S,] = 0 . We now have all the 

ingredients we need to show the equivalence of the two symmetries of (6.7) . In 

the next section we will study the associated BRST invariances and how they are 

related. 

6.5. MORE BRST SYMMETRIES 

First, recall the BRST transformations constructed from (6.8) , namely 

dxo = cpo; dii? = -cp’ 

dpo=O; dp’=O; de=; 

dc = 0 
(6.18) 

dc = b; db = 0 . 

The technique to derive the BRST transformation associated with (6.14) is by now 

completely standard, and we obtain 

drxO = aio; d,5 = c& 

d TPO = apo; d,ji=c$ _ 
_Y_ d,e = a+ -+ Cue - 1.. d,c = cut 

d,a = ad! - AC 
d,a = g. , d,g = 0 . - 

- 

G 

(6.19) - 
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Now we demand {d, d,} = 0. This condition is solved by 

i ,c- . . _ da = 0 
. 

dg = 0; da = 0 (6.20) 

d,b = ab; d,c = a& . 

We may now combine the two BRST symmetries into one by defining A = d, - d. 

Obviously , we have A2 = 0. We now change variables: 

and note that A can be decomposed into two new BRST transformations: 
- 

with 
SS daxO = a-; SS 

SPO 
d,Z = a, 

SP 

corresponding to the gauge invariance St, and 

dpxo = PPO; dpd = --pjT 

d ppo = 0; d@‘= 0 

doe=b, 

(6.21) 

(6.22) 

which is an exact replica of the BRST transformation d. Since {d,, dp} = 0, and 

because we convinced ourselves that d, is free of any physical content, we have the 

-1. option of reducing the space of states we are working in by imposing the condition 

- .-~-that none of our states depend on%he coordinate CL. The problem we are left with 

- 2* is now manifestly equivalent to the BRST formalism discussed in sections (6.2) 

- and (6.3). 

52 



7. RELATIVISTIC SPINNING PARTICLE 

. 

,+-- 
Having discussed the case of the simple relativistic particle we really have ex- 

hibited all of the interesting new features which one encounters in carrying out a 

BRST quantization of any constrained quantum mechanical system. However, for 

the sake of completeness we conclude with the treatment of the spinning relativistic 

particle: since this is a supersymmetric quantum mechanical example which par- 

allels the introduction of fermions into a supersymmetric string theory. The only 

slightly new feature encountered in dealing with the relativistic spinning particle 

is the fact that because the problem is supersymmetric we encounter an additional 

constraint when we quantize the theory. This new feature will force us to introduce 

commuting ghosts in addition to the anti-commuting ghosts we encountered in the 

previous sections. 

- 

7.1. BRST QUANTIZATION 

To simplify things we restrict attention to the case of the massless spinning 

particle. The action for this can be obtained from equation (6.4) by introducing 

a superpartner x to the variable e and a superpartner $ for the variable x. The 

supersymmetric Lagrangian for the spinning point particle is given by 

As in the case of the point particle we want to rewrite this in the first order 

formalism. 

L = poio + fi* 2+-~+0& - i&e J- i(p0’ - p’. $) + ixpo$o - ixp’. 4 (7.2) G 
_Tz. 

-- - ;. 

- - Examining (7.2) we see that x, the superpartner of e, also plays the role of 

- a Lagrange multiplier. Variation of the Lagrangian with respect to x yields the 
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constraint equation 

,a.- . . -_ 
. po$$+?J=o P-3) 

Once again, this constraint corresponds to a local symmetry, with respect to which 

the Lagrangian is invariant. 

where 77 is a fermionic gauge parameter. In addition to this constraint, variation of 

the Lagrangian with respect to the Lagrange multiplier e gives another constraint. 

The local symmetry corresponding to that constraint has the form 

Sex0 = (PO; S,5= -(fi S,po = 0; Se.= 0; See = 6 (7.5) 

As in all previous cases we see that although the Lagrangian is invariant with 

respect to these symmetries the Hamiltonian is not. One easily verifies that in 

order to obtain a gauge invariant Hamiltonian one must restrict attention to gauge 

in~,ariant states, i.e. states which are annihilated by the constraint. 

As usual we create a BRST charge corresponding to the symmetries (7.4) and 

(7.5) , and write it d = d,+d,. The quantization parallels the discussion-given in all 

_T. previous examples. Corresponding to the invariance (7.4) we introduce commuting -- 
- ._ -bosonic c-number variables y and’? and a c-number anticommuting variable p . 

- I* Similarly, corresponding to the symmetry (7.5) we introduce c-number anticom- 

muting variables c and c and a commuting variable b. With these conventions the 
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BRST transformations take the form 

. . -_ 
dxo = cpo + ~$0 : dlc’= -+Gy& 

dpo=O; d$=O 

dt+& = iypo; d$ = CyjT 

de = C + 27x; dx = i+ 

dc = -iy2; dy = 0 

dc = b; db = 0 

d? = ,B; dp = 0 

P-6) 

It is easy to check that this set of equations guarantees that d2 = 0 but not that 

dz = dz = 0 separately. The corresponding identity for the gauge symmetries reads 
- 

where the parameter 6 of S, is expressed in terms of the fermionic gauge parameters 

as [ = 2iqiq2. Since the two gauge symmetries cannot be written in terms of 

two algebras that close separately, it is no surprise that we cannot decompose 

the corresponding BRST symmetries into two nilpotent ones which anticommute. 

However, we would like to carry out the program of BRST quantization as in all 

the previous examples, and therefore it would be quite convenient if we could find 

-a trick that decouples the two symmetries d, and dx. This trick consists of making 

the bosonic ghost nilpotent, i.e. declaring y2 = 0. One may think of y then as 

a pair of fermionic fields. An inspection of (7.6) now shows that if we impose 

this condition we may separate d into two BRST symmetries d, and d, which 

satisfy dz = dc = {d,, dx} = 0. 0 ne can now fix the gauge by introducing into 

the Lagrangian a term of the form S&f, where f is some function of the basic 
; 

_T. 
-.- -fields. Choosing one such functionone then carries out the canonical quantization 

- - procedure in the usual way and checks that the BRST charges commute with 

- the Hamiltonian, and that the condition Qe and QX annihilate a state enforce 
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the original constraint equations. We leave the details of this procedure to the 

,%-- reader and-. conclude with an outline of what has to be done to show that the 

. reparametrizations are incorporated properly in this problem. 

7.2. REPARAMETRIZATION INVARIANCE 

Just as we did in the case of the bosonic particle, we now ask for a more geo- 

metrical way of understanding the gauge symmetries we encountered. Of course, 

the invariances we wish to discuss now are the well known superreparametriza- 

tions. Let us concentrate first on the bosonic part of these transformations, the 

reparametrizations: 
- 

(7.7) 

S,e = 66 + ie; STX = >;ce + Gx . 

The technique we apply here to show the equivalence of (7.7) and (7.5) is the same 

we used for the bosonic particle. Define Sr = S, for [ = ee and 62 = 6, for 77 = cx. 

Then it is not hard to see that 6, = 6, - Sr + 62 is a trivial symmetry: 

- 
&x0 

SS (pEss =e-; tx 
JPO G 

s 
6S tpo = -E---; 
6x0 

6 -+= -,6s tP 
sz 

&e = 0; Stx = 0 . _T. 

w-9 

-- - ;. 

- w Quite obviously a symmetry of the form (7.8) will leave any action with bosonic 

and fermionic degrees of freedom invariant. The BRST transformation associated 
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with (7.7) and (7.4) can be written as 

,=-- . . -. 

. A = d, + d, 

and after the change of variables 

c = p - ae; y=K$iCYX 

(7.9) 

(7.10) 

we may decompose this symmetry as follows: 

A = da + dp,n , (7.11) 

where do,& is an exact copy of the transformation d of (7.6) with c,y replaced by 

p, K and d, represents the BRST transformation associated with the trivial gauge 

symmetry (7.8) , namely 

d 6S SS 
axo = a!---; 

&PO 
d,i? = cry, 

SP 

d SS 
CYPO = --a-; 

6x0 
d ---a6s aP - sz (7.12) 

Both d, and dp+ are nilpotent and they anticommute: 

d; = d;,+ = {do, do,+} = 0 . (7.13) 

It is now clear how to proceed in order to establish the equivalence of two symme- 

tries that are related by the equations motion: an appropriate change of variables _Yz. 
-.- ““in the ghost sector’ will yield a trivial BRST transformation, which we called d,, 

- - and the remainder is then equivalent to the BRST invariance we started with, even 

though its form may be quite different. 
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The careful reader may have felt a little uneasy when we combined (7.4) and 

i ,; (7.7) . t 14.0 one BRST symmetry, since the associated fermionic gauge symmetry -. 
. does not represent a closed algebra. Only up to the equations and together with 

the reparametrizations does it close. At the heart of this problem lies the fact that 

we did not bother to write the spinning particle in 1-dimesional superspace. 

7.3. SPINNING PARTICLE IN SUPERSPACE 

We will conclude in this section with a presentation of the spinning particle in 

superspace, focusing mainly on the gauge symmetry, i.e. the superreparametriza- 

tions. We will see that they are related by the equations of motion to the symme- 

tries we studied thus far, and it will be left to the reader to spell out in detail the 

BRST decomposition into trivial pieces and the symmetry d described by (7.6). 

The supercovariant derivative we will use is d = 80 - ;&!I, , and it acts on the 

superfields: 

- 

x=x-&f& 

P=$+~fip; 

G=++it’x . 
e e 

(7.14) 

These superfields 

superfield action9 

are judiciously chosen so that the component expansion of the 

S = iGdXdP - ;PdP 1 (7.15) . 
- 
has a simple form: 

S = / dt[$p - Aep2 + iqh+% - $+!J& + ix$p] . (7.16) 
J 

The superreparametrizations 

sx = 

L L 

may be written in superspace as 

[V& + ;(dV)d]X; . 

SP = [l&t- ;(dV)d]P; 

SG= [V& + ;(dV)d - ;&V]G , 

(7.17) 
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and they read in component language, with V = E + 203, 

,=-- . . -. 

. sx = ej: + ?& sp = c?; + Z(?j - xp) 

S$ = ql3 + iqp; sq5 = 64 + Z(i + ixqq 
(7.18) 

. 

If we now use the equation of motion 4 = +, we can integrate out 4 and arrive 

at the action (7.2) . The symmetries (7.18) are easily recognized to be equivalent 

to (7.4) and (7.5) up to terms that vanish by the equations of motion. Therefore, 

the method of quantization we described in section (7.1) really emodies all the 

symmetries present for the spinning string. 
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