
SLAC -PUB - 4414 
September 1987 
(1) 

HIGH PERFORMANCE DATA BUSES-PROGRESS AND EVOLUTION* 

DAVID B . GUSTAVSON 
Sta$ord Linear Accelerator Center, Stanford University, Stanford, CA 94305 

Abstract 
In 1987 four new 32-bit computer backplane buses joined Fastbus 

(ANSI/IEEE Std. 960-1986) as IEEE standards. They are Futurebus 
(IEEE Std. 896.1), VME (IEEE Std. 1014), NuBus (IEEE Std. 1196) 
and Multibus-Il (IEEE Std. 1296). 

This paper compares and contrasts these buses, discusses their 
strengths and weaknesses, and considers possible directions for future 
Ynprovement. 

Some of these buses have reached fundamental limits. How can 
they be improved? Can they be extended in ways which are backward 
compatible with present buses, or will they be abandoned in favor of 
new designs? What direction will new bus designs take? 

Introduction 
Industry standard general-purpose computer buses have been 

around for over a decade. Computer buses, of course, are much older 
than that, but I am referring to the kind of bus which forms a standard 
interconnection point for which multiple manufacturers build compat- 
ible and interchangeable interfaces. 

Some of these buses are manufacturer proprietary, like DEC’s 
Unibus, and others began as proprietary buses but evolved into official 
ANSIJIEEE/IEC standards, like S-100 (ANSI/IEEE Std. 696-1983) 
and Multibus (ANSI/IEEE Std. 796-1983). 696 and 796 began as I-bit 
microprocessor buses, started by a single vendor, but they filled a great 
need and industry adopted them in large numbers of applications. 
During the standardization process they evolved into versatile 16-bit 
bus&. In these cases, significant technical improvement was incorpo- 
rated during standardization. 

Standardization tends to be a slow process because of the time it 
takes to reach a consensus from initially widely disparate viewpoints; 
the problem is aggravated by rapid turnover of the committee member- 
ship and by a general lack of resources compared to the magnitude of 
the job. 

Recognizing the time required for this process, and the desirabil- 
ity of having asmallnumber of standards in any particular category, the 
IEEE Computer Society’s Microprocessor Standards Committeemade 
an early start at defining a 32-bit bus, to be called “Futurebus”. It was 
clear that a standard 32-bit bus would be needed eventually, and the 
hope was to design one which did things right, one standard which 
would be adopted by nearly everyone. 

It didn’t turn out that way, for various reasons. The process of 
defining a new standard from nothing, in a committee, is much slower 
than the process of fixing up a few problems and adding a few features 
to an already existing industry standard. The requirement of backward 
compatibility is a strong stabilizing influence, and greatly speeds 
convergence to consensus. Furthermore, industrial design teams com- 
posed of a small number of individuals in close communication can 
work much faster than a standards committee composed of a varying 
number of individuals communicating occasionally. Given the nature 
of the process, I think it is amazing that Futurebus ever completed at all, 
and the story of its evolution would make an interesting thesis in 
sociology. 

Impatience with this process, along with historical accident and 
incompatible goals and visions, caused several 32-bit buses to appear 
at about the same time. The first to finish was Fastbus, developed in a 
* Work supported by the Department of Energy, contract 
DE-AC03-76SFOO515. 

more coherent atmosphere under the Nuclear and Plasma Physics 
Society by an organization with experience from the earlier develop- 
ment of CAMAC (ANSI/IEEE 583). Fastbus’s goals were larger than 
those of the other buses, due to the data-acquisition/highly-parallel- 
processing environment for which it was developed. Fastbus is also 
very processor independent, ignoring the peculiar needs of any particu- 
lar microprocessor chip and concerning itself only with the general 
architectural problems of managing large systems at low cost. Fastbus 
goes so far as to ignore byte addressing altogether, for example. 
Modules can transfer bytes if they like, but it is discouraged, and the 
significance of bytes within words is left to the particular application to 
define. Though Fastbus is also suitable for small systems, they imposed 
no constraints on the bus protocol design process. 

The later buses were largely based on the assumption that micro- 
processors would be their main users, and that a single backplane would 
be the normal high-end limit to the system sire. 

Everybody has 32 bits 
32 bits has become accepted as the magic number needed for 

today’s microprocessors, so most new buses at least provide for a 32- 
bit expansion capability. Even the old 696 and 796 buses are in danger 
of getting 32-bit extensions. The buses I will discuss in this paper, 
however, were mostly designed as 32-bit buses from the start I will 
present them in increasing order of my own preference. I will omit the 
VSB (IEEE 1096, IEC 822) because it is intended as a subsystem bus 
and has limitations (e.g. the maximum number of masters) whichmake 
it unsuitable for general backplane use. I also omit the “IBM” PC bus 
(IEEE P996) which is to incorporate a 32-bit version, which as of this 
writing looks more likely to be the NuBus than the IBM PS/2 Micro- 
Channel! The PC/AT bus maybe used as an 8-16-bit I/G bus in this 32- 
bit implementation. Alternatively, this combination might be remun- 
bered as 1196.2 to emphasize its relationship to NuBus. 

VME (IEEE 1014) 
VME began as the Motorola 68000 microprocessor bus, ex- 

panded slightly foruseon abackplane. It was expanded to 32 bits during 
standardization by using a second connector for 8 additional address 
and 16 additional data lines. Its history is evident upon inspection; the 
arbitration system relies on daisy chains and cannot provide true 
fairness (equal access opportunity) for more than four processors, and 
the interrupt system is basically the old style used in single-processor 
systems, with minor generalizations. 

The signalhng technology is ‘ITL, and the bus is asynchronous; 
this is a touchy point, as asynchronous systems need clean signal edges, 
and TTL buses mot deliver them reliably. There are far too few 
ground pins in the connector, incompatible with any model of driving 
transmission lines in the backplane, and causing “ground shift” which 
acts like noise on the timing lines. These problems must be solved by 
suitable delays or low-pass filters, whether explicit or implicit, which 
provide the time needed for the signals to clean up. 

VME is non-multiplexed, using two 96-pinconnectors to provide 
enough lines for separate address and data. There is no Geographic 
Addressing mechanism, and therefore no CSR (Control and Status 
Register) Space, needed for automatic self-configuration. VME sup- 
ports 20 module positions. The bus is Big-Endian’ (increasing byte 
addresses from left to right or high-order to low-order within a word), 
partially justified (8- and 16-bit transfers use the low-order 16 data 
lines), with a throughput of about 19 Mbyte&c for single transfers and 

Invited paper presented at the Nuclear Science Symposium, San Francisco, CA, October 21-23,1987 



21 Mbytes&c during blocks2. 
VME is very popular, particularly the 16-bit subset, and works 

well if the system limits are not pushed too hard. It would not be a good 
choice for a aate full of 32-bit processors, but it is convenient and 
economical for single processors and for I/G cards. Because of its 
popularity and availability, most other buses offer or plan to offer some 
interface mechanism which allows the use of VME cards or crates for 
initial I/O needs, which helps them avoid the chicken/egg problem 
during initial market development. 

MultiBus-II (IEEE 1296) 
Multibus-II is a 32-bit multiplexed, 10 MHz synchronous bus, 

which uses Fastbus-style arbitration and has a form of Geographical 
Addressing based on T-pins which can be used for automatic initializa- 
tion. It has a complex structure, incorporating memory, I/O, Initializa- 
tion (CSR) and Message Passing spaces and protocols. It uses lTL 
signalling. 

Synchronous buses pay a synchronization penalty averaging half 
a clock period, assuming the on-board processor runs on its own clock 
(very probable, now that processor clocks run far faster than 10 MHz). 
That is, when the processor decides it wants access to the bus, on 
average it will have to wait half a bus clock cycle to become synchro- 
nized to the bus, a &lay which does not occur with asynchronous buses. 
On the other hand, synchronous buses are supposed to be simpler to 
design for and simpler to debug, though the complexity of this one 
largely cancels (or perhaps completely overwhelms) that benefit. 

The great benefit of synchronous buses is that the clock provides 
the time needed for poor signals to settle before they are looked at; this 
is extremely important for ‘ITL-based signalling, which is doomed to 
have very poor tmnsmission line behavior. 

The bus is Litt le-Em&m, partially justified (8- and 16-bit transfers 
use the low-order 16 bits), with speeds of about 20 Mbytes/set for either 
single or block transfers, and a limiting speed of 40 Mbytes/secz. It is 
a single-segment design, and uses IEEE 1101 mechanics, a common 
mechanical standard (Eurocard-related) shared by 896.1, 1196, and 
1296. Multibus-II supports 20 module positions. 

Multibus-II is backed by enormous corporate resources, and 
seems certain to achieve some level of success as a result. The VLSI 
support chips which such resources make possible are certainly essen- 
tial for any economical implementation. 

NuBus (IEEE 11%) 
NuBus is a 32-bit 10 MHz multiplexed synchronous bus, with 

F&bus-style arbitration which is strictly fair, i.e. all modules get an 
equal chance at the bus. It has Geographical Addresses encoded in the 
backplane at each connector position, allows only 16 boards on a 
backplane, has CSRs as a defined subset of the single memory-style 
address space, and uses TI’L signalling. 

NuBus has a long evolutionary history dating back to MIT and 
passing through Western Digital and Texas Instruments. It is remark- 
able (especially for a standard evolved through a committee) in its 
sparcity of mechanism. Virtually every feature which has survived 
serves more than one purpose. Some of the benefits are not obvious- 
for example, the block transfer mechanism seems limited at first 
because it restricts the lengths and starting addresses of transfers. 
However, that restriction eliminates a whole class of problems (what 
happens when a block transfer tries to cross module boundaries?) 
without sacrificing significant performance. Its simplicity results in 
simple and inexpensive interfaces, practical even without VLSI, and 
gives the user a chance of understanding what is going on. 

NuBus was adopted by Apple for the Macintosh-II open architec- 
ture machine. A PC-style board format was defined for this purpose in 
addition to the original IEEE 1101 mechanics. There are a few other 

manufacturers using it as well, and soon there will be many as momen- 
tum toward the Mac-II increases. As mentioned above, it is the probable 
choice for the IEEE P996 ‘FC” 32-bit bus! 

It is Little-End&m, non-justified, with transfer rates of 20 Mbytes/ 
set for single or block transfers, and a limiting rate of 37.5 Mbyte&c*. 
It has a single-segment design. 

Futurebus (IEEE 896.1) 
Futurebus is a 32-bit multiplexed asynchronous bus, using Fast- 

bus-style arbitration with a distributed control mechanism. There is no 
central logic such as the clock driver used by Multibus-II or NuBus, or 
the arbitration timing used by Fastbus. Some complexity was added in 
the process of avoiding central logic elements and technology depend- 
encies, and some performance penalty was also accepted. Nevertheless, 
Futurebus is an elegant high-performance bus. It has Geographical 
Address pins encoded in the backplane at each socket, supports 21 
modules per backplane, and has CSRs allocated at defined locations in 
memory-style address space. 

Futurebus is non-Endian (it provides byte addressing without 
specifying the order of byte addresses within a word), non-justified, 
with a throughput of about 25 Mbytes/set for single, 44 for block, and 
an ultimate limit of about 95 Mbytes/secz. It was designed as a single- 
segment system, but efforts are underway to allow multiple segments 
to communicate. It uses IEEE 1101 mechanics. 

Futurebus canclaim two majorbreakthroughs. First, its signalling 
technology is based on &vices which did not exist until Futurebus 
specified them, namely BTL (Backplane Transceiver Logic) chips 
which provide small signal swings of about one volt, with controlled 
rise and fall times, and (most importantly) very low capacitance. BTL 
is far superior to ‘lTL for signalling on buses. The small signal swing 
makes proper termination feasible at reasonable power levels, and the 
bus impedance is improved by the low BTL capacitance. Though 10K 
ECL (as used by Fastbus) is about as good, BTL avoids the need for 
ECL’s negative supply voltages by signalling between +l and +2 volts. 

The second breakthrough is Futurebus’ support of distributed 
shared-memory cache systems. Cache memories are becoming increas- 
ingly important as processor speeds increase, and can greatly reduce 
bus bandwidth requirements for a given level of performance. For 
example, with a proper design a processor can be testing a system 
semaphore in a loop without disturbing the other users of the bus, if a 
copy of the semaphore is in the processor’s own cache memory. 
However, for this to be valid it is necessary that any other processor’s 
write to that semaphore be detected by the cache, so that the new value 
will be seen. Futurebus supports several schemes for doing this. One 
costofdoingthisisthatalladdresscyclesarebroadcast, andallmodules 
participate in the handshake. This slows the system a little, but the 
benefit seems worth that price. This would be too costly on long buses, 
such as Fastbus’s cable segments, but on a backplane it is acceptable. 

Futurebus has a very general broadcast protocol which is self- 
timing, as every module participates in the handshake for each cycle. 
The arbitration control mechanism also uses a generalized handshake 
of this sort which results in technology independence at some cost in 
complexiv. Futurebus generalized from the Fastbus protocols, opti- 
miring for the single backplane environment, and escalating the prin- 
ciple of technology independence. 

Fastbus (IEEE 960, IEC 935) 
Fastbus is a 32-bit multiplexed asynchronous bus, using fast 

parallel arbitration (centrally timed) including optional fairness and 
priority and priority-deferring strategies. The protocol also includes 
synchronous (pipelined) block transfers, which can reach the ultimate 
speed limits of the bus medium by eliminating the delay of waiting for 
the handshake to arrive at the sender. 

2 



Fastbus supports 26 modules per backplane, with Geographical 
Addresses encoded at each backplane position. CSRs are in a separate 
address space, designed so that it is easy to access any CSR in a 
particular module given any address to which that module responds. A 
fundamentally important feature of Fastbus is its support of multiple 
segments, including long flexible cable segments. The protocol was 
designed with segment interconnection in mind, and with the constraint 
that the same protocol should be used on cables and on backplanes. 
Thus it is possible to have “modules” such as large computers (which 
would not fit in anormal module in a crate) attached to a cable segment. 

This flexibility has major architectural implications. Fastbus 
allows arbitrarily complex interconnection topologies, potentially even 
allowing alternate routes between two points in a connected system. 
Tree, star, ring or jumbled co~ections are allowed. A versatile broad- 
cast addressing mechanism allows broadcasts along paths or to sub- 
trees. The CSR mechanism and address allocation mechanism are 
designed for ultimate expandability by using a special “Secondary 
Address” data cycle which effectively removes all limits which the 32- 
bit address field might have imposed. 

Fastbus specifies a complete mechanical system, with air or liquid 
cooling. It provides excellent power and ground distribution, and a 
convenient method for attaching I/O cables to the back of an auxiliary 
area on the backplane so that cabling need not be disturbed when 
exchanging modules. 

Fastbus is non-End& supporting only word addressing and 
word transfers, and thus is non-justified as well. Byte addressing which 
may be desired by particular processors or applications can be handled 
in their interface to Fastbus. Throughput is about 25 Mbyte&c for 
single’word transfers, 55 for typical blocks*; ultimate limits are in 
excess of 200 Mbytes/set (an existing implementation routinely 
operates at 1604). 

-. What are the Limits, What’s Next? 

The ultimate speed limits are set by bus width and by the band- 
width of the signalling system, which is limited by dispersion, reflec- 
tions and noise. In addition, the handshake (or clock, if synchronous) 
causes limits due to propagation delay (time for the data to go one way 
and the acknowledging handshake to come back); protocols may be 
inefficient, wasting bus time; and bus skew can be important. Skew is 
the difference in transmission time on one of the parallel lines compared 
to another. Part of the skew is caused by actual differences in the lines 
due to tolerances or imperfections, and part is due to variations in the 
transceiver threshholds, drive capability. and delay. The Fastbus 
throughput limit for pipelined transfers is almost entirely due to skew, 
for example. 

How can we beat these limits? First, we always gain with short, 
fat buses. The next generation may use 128 bits, matching common 
miaoprocessorchips’cachelinesizes. For dedicated applications short 
buses may be acceptable. For high performance systems they may be 
essential. 

Skew can be reduced by careful &sign, tight specs on bus 
transceivers, or trickery. For example, most transceivers are available 
in octal packages. If the bus is divided into 8-bit pieces each with their 
own timing lines and using only transceivers from a single chip (inher- 
ently well-matched), skew may be effectively reduced. Another ap- 
proach would be to use self-clocking data, which is what modern multi- 
track tape drives do. Each bit’s data stream would be received sepa- 
rately, and at the end of the block the pieces would be put together 
coherently in the controller. This implies VLSI circuitry which is much 
faster than normal bus signalling rates in order to be practical. 

Protocol delays can be reduced in two general ways. Split trans- 
action buses effectively send write-only packets, so there is no waiting 
on the bus for the response. For example, a packet is sent to a memory 

requesting certain data and telling the memory to whom to send it. Then 
the bus is used by others, until the memory has retrieved the data and 
uses the bus to send it to the requester. The packets can be implemented 
on present bus structures, with handshake and status as on a normal 
write, butforultimateperformancetheyshouldbecomemorelikelocal- 
network packets with no handshake delays; i.e., the handshake is 
replaced by a higher-level acknowledge protocol. 

The other way to reduce protocol delays is pipelining. If the 
sender pumps the data out without waiting for acknowledging hand- 
shakes, the propagation delay does not limit throughput. There are 
several partial implementations which might be useful. For example, 
the parity bits normally show up after some logic delay, and present 
protocols wait to signal data presence until parity is stable. In principle, 
however, parity could be pipelined so that it always arrives later, 
perhaps with its own strobe (unless a fixed delay can be depended on). 

In addition to the 2-line (DS/DK) pipelining used by Fastbus, sn 
N-line polyphase scheme has been developed by Keith B&ton. The 
theoretical speeds are probably identical, as both are limited by data 
bandwidth and skew, but control logic may be simpler for one or the 
other. Interesting problems are related to the changeover from address- 
ing (establishment of connection) to data flow and from one bus owner 
to another. 

Another i&a which shows promise is the active backplane. The 
bus could be standardized at the module connector, and internally 
contain all the transceivers and iransmission lines. One might purchase 
a more or less expensive bus logic assembly depending on the system 
requirements, without having to know in detail what is inside. This 
approach could result in carefully tuned buses with very low skew and 
good signalling properties; real buses of the present sorts suffer greatly 
from the compromises needed to accormnodate variable loading as 
modules are inserted and removed in various places. An active 
backplane could more easily accommodate power-on insertion and re- 
moval of modules as well. Possibly the bus logic could take on some of 
the burden of the board designer, incorporating some functions com- 
mon to most boards-ome decoding, standard control registers and 
mechanisms, a message transfer system, packet buffers, error correc- 
tion, maybe even a cache interface. 

So what’s the next step? There is now a study group sponsored by 
the IEEE Computer Society’s Microprocessor Standards Committee, 
called the Superbus Study Group, convened by Paul Sweazey of 
National Semiconductor, tel. (408) 721-5860. This group will consider 
goals and the feasibility of a new higher-performance standard (about 
1 Gigabyte/sec)tobecompletedinthe199OsDesignersshouldnotwait 
for the Superbus, as it will require technology not soon available (and 
the committee may never agree on its specs!), but should move to 
Fastbus, Futurebus, or NuBus now. They are the practical standards for 
the next decade. 

References 

1. D. Cohen, “On Holy Wars and a Plea for Peace,“lEEE Computer, 
Vol. 14, No. 10, October 1981, pp. 48-54. 

2. Paul L. Borrill, “MicroStandards Special Feature: A Comparison 
of 32-Bit Buses,” IEEE Micro, December 1985, pp. 71-79. 
I chose the times corresponding to 50 11s access time. 

3. D. M. Taub, “Arbitration and Control Acquisition in the Proposed 
IEEE 896 Futurebus,” ZEEE Micro, August 1984, pp. 28-41. 
D. M. Taub, “ImprovedControl Acquisition Scheme for the IEEE 
896 Futurebus,” IEEE Micro, June 1987, pp. 52-62. 

4. E. Siskind, “Experience with a Fastbus Based Data Acquisition 
System for Imaging Coronary Arteries,” IEEE Transactions on 
Nuclear Science, Vol. NS-31,No. 1, February 1984,pp.230-235. 

3 


