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ABSTRACT 

Motivated by recent attempts to solve the cosmological constant problem, 
we examine the observational consequences of a vacuum energy density which 
decays in time. For all times later than t - 1 set, the ratio of the vacuum to the 
total energy density of the universe must be small. Although the vacuum cannot 
provide the “missing mass” required to close the universe today, its presence 
earlier in the history of the universe could have important consequences. We 
discuss restrictions on the vacuum energy arising from primordial nucleosynthesis, 
the microwave and gamma ray background spectra, and galaxy formation. A 
small vacuum component at the era of nucleosynthesis, 0.01 < pvac/prad < 0.1, 
increases the number of allowed neutrino species to NV > 5, but in some cases 
would severely distort the microwave spectrum. 
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The cosmological constant has alternately been the most maligned and the 

most neglected of the constants of Nature. The seeds of this mistreatment lay 

in its early history: it is well known that Einstein introduced it purely to obtain 

steady state cosmological solutions to general relativity. When Hubble subse- 

quently discovered the universe was expanding, the original motivation for the 

cosmological term was removed, and Einstein recommended with embarrassment 

that it be dropped as an ugly blemish on his theory. Except for occasional aber- 

rations, as a rule, cosmologists have been happy to follow Einstein in forgetting 

about it. With the advent of unified gauge theories, this is no longer possible. 

In the standard cosmological model, the early universe is thought to have 

passed through a series of symmetry breaking phase transitions at various en- 

ergy scales M,. As the temperature drops below M,, the vacuum energy density 

associated with the order parameter (e.g., a Higgs field) changes by O(Mi). It 

is therefore puzzling that the upper bound on the present value of the vacuum 

energy density, poac < (0.004 eV)4, is much smaller than any of the energy scales 

associated with particle physics. Even if such a cancellation can be arranged 

classically, there is at present no known low energy symmetry which prevents 

quantum corrections from inducing a large value for pvac. Since the stress en- 

ergy of the vacuum is Tpv = pvacgl.Lv, i.e., p,,, = -pvac, it enters Einstein’s 

equations precisely as a cosmological constant A = 87rGp,,,. The upper bound 

above, which is equivalent to R,,, = pvac/pc,.it 5 3, comes from the limit on the 

cosmological constant from measurements of the Hubble constant and the age 

of the universe[l], A 2 9H,f N 1O-56 cm2, or A/m%, 2 10-11’ in gravitational 

units. Thus, the problem: the cosmological constant is known to be tiny in any 

natural scale of units, but in the context of particle physics it does not appear 

to be a naturally small parameter. 

The hope is sometimes voiced that a fundamental quantum theory of gravity 

will require Pvac = 0, but such a theory must in fact give rise to a cosmological 

term (say, at the Planck scale) which is precisely cancelled by all lower energy 

contributions (e.g., at the electroweak scale and below) to one part in loll’! 

2 



Thus, the cosmological constant problem is essentially a difficulty of physics at 

very ‘low’ energies, suggesting that its solution will come instead from new physics 

which is manifest at low energies, or large distance- and timescales. 

Along this line, several authors have recently discussed mechanisms for dy- 

namically reducing pvac to a very small value over cosmological timescales[2,3]. 

The simplest example[2] is a classical scalar field with a potential which depends 

on the spacetime curvature, V(d) = VO - eR$2, where pvac = VO = Ao/87rG 

is the initial vacuum energy density and E > 0. Neglecting the scalar field ki- 

netic energy, Einstein’s equations give R - 87rGV(4). If the field starts near 

the origin, then initially R - Ao and the field begins to roll down the potential 

exponentially fast. This reduces both V (4) and, by Einstein’s equation, the Ricci 

scalar R over time. But this implies that the slope of the scalar field potential 

is also decreased, so the field slows down. Asymptotically, C$ - t and the effec- 

tive vacuum energy redshifts away, pvac - te2. This simple ‘feedback’ model is 

indicative of the classical relaxation mechanisms which have been proposed[2]. 

It is also possible that the dynamical effects of quantum fields may render de 

Sitter space (the spacetime dominated by a cosmological constant) unstable to 

conformal perturbations [3]. At present, the significance for cosmology of such 

an instability is unclear, since it is not known how the system would evolve away 

from the initial de Sitter solution. 

These ideas suggest the intriguing possibility that the universe evolves to a 

state in which the effective cosmological term (pvac) is small and continues to 

decrease with time. In this talk, I summarize the consequences for observational 

cosmology of such a continuously decaying vacuum energy density[4,5]. Such sce- 

narios are interesting because a redshifting vacuum energy can have effects over 

many expansion times, while a constant vacuum density (the usual case) could 

only have become dynamically important at very recent epochs. Our major con- 

clusion is that dynamical models of decaying vacuum energy of a rather general 

variety are consistent with observational cosmology; however, the deviation from 

the standard model must be small. 
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Suppose that in addition to ordinary matter and radiation, there is an energy 

density associated with the vacuum which is time dependent, pu(t). This addi- 

tional component enters the Einstein equation for the Robertson-Walker scale 

factor a(t), 

(e)2 c (;)’ = y(Pm + Pr + pu), 

where we have assumed flat spatial sections (k = 0). The pressure of the vacuum 

is assumed to have the usual form p, = -pV, while p, = 0, p, = p,./3. 

The conservation equation for energy-momentum takes the form 

&J + j&$h2a3) + --$-$pra4) = 0 (2) 

We notice immediately that if b,, # 0, at least one of the ordinary adiabatic 

relations P,. - ae4, pm - aV3 ceases to be valid. If b,, < 0 then entropy or 

matter must be generated in the expansion. In this talk, I focus on the radiation- 

dominated epoch (p m < p,), in which case the second term in Eqn.(2) is small 

and can be neglected. That is, we are only concerned with the coupling of the 

vacuum to massless radiation, and shall further assume the coupling to massive 

particles is suppressed, e.g. due to threshold effects. (In the dynamical decay 

scenario of refs.2,3, the only lengthscale in the problem appears to be the Hubble 

radius or possibly the Compton wavelength associated with a very small mass, 

so we expect the radiation emitted to be peaked at very long wavelengths or 

ultralow energies. For a discussion of vacuum decay to massive particles, see 

ref.[4] .) 

It is useful to define a new parameter which characterizes these models, 

x = Pu/((Pr + pu) (3) 

From Eqn. (2)) we obtain[5] the evolution equation 

Li -- 
X 

- k + 431- z) (4) 
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There are three possibilities for the behavior of x(t) at large t: (i) for x -+ 1, the 

vacuum term dominates, and the universe becomes de-Sitter-like as the radiation 

is redshifted away. This case is ruled out at the level of the bounds of Ref. 1; 

(ii) the vacuum density falls more rapidly than the radiation density, i.e., x -+ 0, 

and we recover the standard cosmological model; (iii) the only genuinely new 

cosmology is obtained if x approaches a non-zero constant betwen 0 and 1, which 

corresponds to the vacuum and radiation densities redshifting at the same rate. If 

the vacuum and the radiation are coupled by particle creation or if the relaxation 

mechanism is of the ‘feedback’ form discussed above (i.e., the scalar field responds 

to the total curvature, which gets a contribution from the radiation), one may 

expect behavior of the form (iii) to be generic. We consider only this case in the 

following. 

From Eqn.(4), we find 

pu(t) = & pr N a-4(1--2)e ( ) 
As expected, the radiation density drops more slowly as a function of the scale 

factor than in the standard cosmology, whereas the matter density approximately 

redshifts in the usual way, pm - a- 3, if matter creation is negligble. With this 

scaling of the two components, the constraint that an early radiation epoch be 

followed by a matter dominated era requires that x < a in both the matter and 

radiation epochs. Eqns.(l) and (5) are easily solved to yield 

1 
a - t2(1-z) , pu = 3x/327rG(l- x)2t2 (6) 

Increasing x towards unity speeds up the expansion rate of the universe in the 

radiation era. 

As long as the created radiation reaches thermal equlibrium, it can be char- 

acterized by its temperature, with P,. = &geRT4; here geE is the number of 
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relativistic degrees of freedom. In this case, from Eqns.(5,6), we find 

T(t) = 
167r3G g,ff(l - x) -a t-f 

45 1 , 
for the radiation temperature as a function of time in the radiation-dominated 

epoch. The electromagnetic radiation created by vacuum decay thermalizes com- 

pletely up to at least a time tT x lo5 set (and, in particular, throughout primor- 

dial nucleosynthesis); thus it makes sense to describe the radiation by a Planck 

spectrum with a temperature given by (7). The assumption of thermal equi- 

librium determines how the radiation number density and energy per particle 

change with time. From Eqn.(li), as long as the photons remain in thermal equi- 

librium, we have T - ax-l. To maintain a Planck distribution, the energy per 

particle must redshift like the temperature, so E, - ax-’ as well. From Eqn.(S), 

this implies the photon number density scales as n7 - ae3(lmx). 

The assumption that photons are created in vacuum decay also implies that 

the baryon to photon ratio, ng/n7, decreases as the universe expands. 

Since baryons are not created, ng - a-‘, and the baryon to photon ratio thus 

scales as 

nB -3x 32 
7=--.--a -T~=Y 

9 

at least up to tT. (We have not considered the case where the vacuum decays, in 

whole or in part, into noninteracting, nonthermal particles such as gravitons, or 

shadow photons but our treatment does include massless neutrino production.) 

i) Nucleosynthesis 

Since a non-zero vacuum component changes both the expansion rate through 

Eqn.(6), the temperature-time relation, Eqn.(7), and the baryon to photon ratio 

(8), it can alter the delicate balance with nuclear reaction rates at the time of 

helium and deuterium synthesis that holds in the standard cosmology. (For a 

review of standard big bang nucleosynthesis, see the talk by Steigman in this 
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volume and references therein.) At the high temperatures in the early universe, 

the ratio of neutrons to protons is determined by its thermal equilibrium value, 

n/p = ePQikT, T 2 TF (9) 

where the neutron-proton mass difference & = 1.293 MeV and k is Boltzmann’s 

constant. Neutrons drop out of equilibrium below a freeze-out temperature TF, 

where the weak interaction rates can no longer keep up with the expansion of the 

universe. Below TF the n/p ratio continues to fall due to P-decay on the time 

scale of the neutron half-life rn. In the standard model, nucleosynthesis begins 

at a temperature approximately given by 

TD = 
2.2 MeV 

-1nq’ (10) 

Once TD is reached, deuterium becomes stable against photodissociation and 

nucleosynthesis takes place very rapidly, efficiently converting essentially all of 

the available neutrons into 4He. In this approximation, the primordial helium 

abundance YP is given by 

where the final approximation is valid since I’-l = rn/ ln 2 >> tF - 1 sec. 

In the presence of a small vacuum component x < 1 (we will see from the 

numerical results that x must be less than 0.1)) we can illust,rate heuristically 
the deviation from the standard model. Recall that freeze-out occurs when a 

typical n * p weak interaction rate I’ - GgTi is equal to the expansion rate 

H - [G(p, + p,)]*. Since p,, + pr = p,/(l - x) and pr - T4, we have H - 

T2/(1 - x)-lj2. Equating l? N H, we obtain 

TF = TF(~-x)-$ (12) 

where an overbar indicates the standard model value (x = 0). By itself this would 

tend to increase YP by increasing the n/p ratio at freeze out. However, Eqns.(7) 
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and (10) indicate that 

tD = &,(I - x)-i, (13) 

which increases the available time for neutrons to P-decay. This turns out to be 

the larger effect in the domain of interest, so that YP is a decreasing function of 

The numerical analysis, using Wagoner’s[6] nucleosynthesis code modified to 

include a nonzero vacuum term, does indeed follow this general trend, although 

the results differ quantitatively. One of the most dramatic changes from the stan- 

dard model (not included in the discussion above) is the behavior of the entropy, 

which in the standard model is constant throughout and after nucleosynthesis 

(except for the infusion of e+e- pairs). In the decaying vacuum model the en- 

tropy per baryon can change drastically through nucleosynthesis and continues 

to change afterward according to Eqn. (8). 

We present our results graphically for 4He and D abundances in Figs.l-3 for 

N; = 3,4, and 5 neutrino species. For comparison with observation we have 

chosen a temperature TN = lo* K to signal the end of nucleosynthesis; after 

this time, element abundances from the code no longer change significantly even 

for nonzero x, although the entropy continues to drop according to Eqn.(8). 

Requiring that 0.22 5 Y, 5 0.26 and 10V5 5 D/H < 10m4[7], we find the 

(n, x) plane at TN is restricted as shown. For fixed number of light neutrino 

species N,,, the constraints on the vacuum component are: x < O.OS(N, = 3), 

x < O.O9(N, = 4), and x < O.lO(N, = 5). Although at most four neutrino 

(or equivalent numbers of light) species can be accommodated in the standard 

model, for x 2 0.01 five neutrinos (or more) are consistent with the observed 

element abundances (see Fig.3). 

We have also confirmed consistency with observation of the 7Li abundance 

obtained from the code for this range of parameters. The abundances of 4He, 

D, and 7Li are all lower than in the standard model, whereas the H abundance 

8 



is slightly higher. The constraints on I become more restrictive in the 

presence of a nonzero x, but remain within the same range as in the standard 

model (lOml' 5 q (TN) < lo-'). Thus we reach these conclusions regarding 

nucleosynthesis: 

1) Primordial nucleosynthesis in the presence of a vacuum component with 

x 5 0.1 is consistent with observations of abundances of 4He, D and the 

other light nuclei. 

2) If x > 0, the preferred values of 7 at nucleosynthesis lie within the same 

range as in the standard model. 

3) If x > 0, Yr decreases. Observational estimates of the 4He abundance in 

HI1 regions have decreased recently, and may make even 3 light neutrinos 

uncomfortable for the standard nucleosynthesis model (See the contribu- 

tion by Page1 in these proceedings.) If these observations hold up and if 

NV > 3 neutrinos are found at the SLC (or if NV > 4 neutrinos are found, 

regardless), the standard model would be in difficulty. This could be re- 

solved by the presence of a small vacuum component at nucleosynthesis. 

We also note that non-standard scenarios (with baryon diffusion or late 

hadronic decays) with a large baryon density, fly N 1, rely on reducing 

an initial overproduction of 4He. Since our model underproduces 4He, the 

constraint on the vacuum component cannot be evaded by invoking such a 

scenario. 

ii) Microwave Background Distortions 

An interesting feature of models with x =const. and p,, - l/t2 is that some 

fraction of the microwave background photons in the present universe was created 

by the decay of the vacuum. The spectrum of radiation emitted by the decaying 

p,, is model-dependent: in general it may be quite different from the Planck 

distribution appropriate for fully equilibrated radiation. If this is the case, and if 

the processes involved in the relaxation of the injected photon spectrum toward 
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equilibrium are not 100% efficient, then distortions of the Planck spectrum may 

arise[8]. 

In this section we explicitly assume that the vacuum does not decay into pho- 

tons fully equilibrated to a Planck spectrum. As mentioned above, the most likely 

possibility seems to be that the emission is peaked at long wavelengths (E, < kT). 

In that case the photons would be efficiently absorbed by the free electron plasma 

via inverse bremsstrahlung, since the cross section for this process rises like 1/w3. 

At frequencies lower than the plasma frequency, any electromagnetic radiation 

produced by the decaying vacuum is rapidly damped and its energy transferred to 

the plasma by ohmic heating. (However, a zero-frequency magnetic component 

may survive; one can speculate that vacuum decay may produce large-scale pri- 

mordial magnetic fields.) The result in either case would be to increase the elec- 

tron energy density relative to the radiation density. However, at very early times, 

i.e., for redshifts greater than ZT = 6.3 x 104(nBh2)-s, the injected energy is 

completely thermalized by double Compton and bremsstrahlung process: no dis- 

tortions survive. [In this and all the following we take HO = 1OOh km/set Mpc-’ 

for the present value of the Hubble parameter, TO = 2.7 “K for the present radi- 

ation temperature and we assume 3 massless neutrino species;Rg is the density 

parameter for the ionized gas. We also neglect the small x-dependent factors in 

all redshifts defined in this section.] 

When z < ZT, the injected radiation energy heats the electron plasma, and 

photon production by the electron gas continues in the far Rayleigh-Jeans region 

(hw < kT). At higher energies, however, photon production by the hot electrons 

becomes inefficient, and Compton scattering cannot redistribute the excess low 

energy radiation toward the peak. Thus, except at the very low end of the 

spectrum, we have T, > T,, and multiple scattering off the electrons shifts the 

background radiation to higher frequencies without changing the total number 

of photons. The spectrum then takes on a Bose-Einstein form, with a nonzero 

chemical potential p. If 9 < 1, the resulting value of /.L (also small compared 

to kT,) depends only on the total amount of energy injected into photons, Apt, 
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and is independent of their initial frequency distribution: 

APT p = 1.4 kT,.- 
Pr (14 

For a continuous injection of photons by vacuum decay, * is the time integral 
of -5 (the contribution of neutrinos to pr cancels from the integral), 

Zf 
APT dv dt -=- 

Pr s FZdZ = r 
=i 

I (15) 

by Eqn.(S). Th ermalization to a Bose-Einstein spectrum requires multiple photon 

scattering, but the average number of scatterings per photon decreases as the 

universe expands. For times later than tl g 1011 set (or redshifts less than zr = 

8.5 x los(!-I&z”)-+), multiple scattering becomes inefficient, and the background 

subsequently evolves too slowly to relax to a Bose-Einstein spectrum. So we take 

zi = ZT and zf = zr for these p distortions. Since observations of the microwave 

background spectrum require ~1 < O.OlkT, [9] we obtain the bound on x: 

x < 4 x 1o-4 (16) 

where we have taken i2Bh2 = 2.5 x 10m2 here and below. 

At later times t > tl, energy injected and efficiently absorbed by the electron 

plasma produces a different distortion of the microwave background spectrum. 

Compton scattering shifts the photons to higher energies, creating an excess in 

the Wien region and a shortage in the Rayleigh-Jeans part of the spectrum. 

The resulting spectrum is parametrized by a new variable y, which can again be 

related to the total energy injected: 

1 APT 
y=Gr= 

(17) 

by Eqn.(lS). 
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If we assume that the injected photons are too low in energy to reionize the 

gas after it has recombined, then Zf for this distortion should be taken to be of 

the order of the redshift of recombination, ~2 g 103. For t > t2, energy injection 

will continue to raise the temperature of the residual ionized gas and heat the 

intergalactic medium, without distorting the microwave spectrum. 

Taking zi = ~1 and zf = ~2 in Eqn.(l7) and using the observational bound 

y < 0.02 [9] yields the following bound on x: 

x < 5 x 1o-3 (18) 

so that the ~1 bound is the most stringent constraint on x we have obtained. These 

constraints are so severe because the background radiation is being subjected to 

the injection of energy over many expansion times, when the $rocesses responsible 

for restoring equilibrium are inefficient. We reiterate that the key assumptions 

-. used in deriving these bounds are (i) that the vacuum produces photons which 

are out of equilibrium with the pre-existing radiation and (ii) that essentially all 

of the energy injected by the vacuum decay goes into heating the electron gas to 

T, > Tr. If the vacuum decays into some non-interacting form of dark matter 

instead, then (ii) need not be true and we would again lose the very stringent 

bounds of Eqns.(16,18). 

iii) Entropy Generation 

Since entropy is produced by the decay of the vacuum, Q decreases with tem- 

perature according to Eqn. (8). Th e vacuum energy density can be constrained by 

the evolution of 7 after nucleosynthesis. The most stringent bound is obtained if 

the vacuum decays to a thermal spectrum of radiation for all time. In this case, 

Eqn.(7) applies through the present epoch, 

q(2.7K)=q(TN) g *. 
( ) 

(19) 

Taking ~(2.7 K) 2 2x lo-l1 [7] f or a conservative lower bound today and q (TN) 5 

12 



lo-' at nucleosynthesis, we find 

x 5 0.07 (20) 

On the other hand, if, as considered above, the radiation produced by vacuum 

decay only thermalizes up to a time tT, then q remains constant for T < TT N 

(3.3 x 105(nh2)-t) 1--2 2.7 K. In this case, we obtain the less stringent bound 

x < 0.15. (21) 

Additional model-dependent bounds on x from the evolution of q arise from 

consideration of big bang baryogenesis; the limits are comparable to those above. 

We have investigated the cosmological constraints on and consequences of 

a vacuum energy density which dynamically decays in time. We conclude that 

such a scenario can be consistent, but the universe cannot be vacuum-dominated 

for times later than about t - lsec. For vacuum decay to a non-thermal radi- 

ation distribution, the microwave background spectrum provides the strongest 

constraint, x < 4 x 10m4. On the other hand, if the radiation produced by the 

vacuum retains a Planck spectrum for all time, the requirement that the baryon- 

to-photon ratio not drop too low after nucleosynthesis gives the strongest bound, 

x < 0.07. Vacuum decay appears to be a promising framework for solving the 

cosmological constant problem, but more work needs to be done in constructing 

realistic particle physics models. For example, the simplest ‘feedback’ relaxation 

models suggest values of x - 1. It would be interesting to see if more sophis- 

ticated models can naturally generate the requisite smaller values of x reported 

here, without fine tuning. 
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FIGURE CAPTIONS 

1) Element abundances as a function of the vacuum energy density parame- 

ter x and the baryon-to-photon ratio at TN, 7 = v_l~lO-~~ for NV = 3 

neutrino species. The primordial 4He abundance satisfies 0.22 < YP < 0.26 

and the ratio 10e5 < D/H < lo- 4. Cross-hatching indicates the allowed 

region. 

2) Same as Fig.1 for NV = 4 neutrino species. 

3) Same as Fig.1 for NV = 5 neutrino species. Note that models with x > 0 

can accomodate NV > 4. 
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