
SLAC-PUB-4397 
August 1987 
T 

. QUANTIZATION ON THE LIGHT-CONE: 

RESPONSE TO A COMMENT BY C. R. HAGEN* 

KENT HORNBOSTEL AND STANLEY J. BRODSKY 

Stanford Linear Accelerator Center 

Stanford University, Stanford, California, 94305 

and 

HANS-CHRISTIAN PAULI 

Max Plan& Institute fiir Kernphysik 

- D - 6900 Heidelberg 1, Germany 

ABSTRACT 

- We show that if carefully defined, light-cone commutation relations are not in- 

consistent with the charge and Lorentz invariance of the vacuum. We demonstrate 

this for charge invariance with an explicit example. 
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The method of discretized light-cone quantizationl (DLCQ) has recently been 

i ,--- applied to a series of field theories in one-space and one-time dimension, including 
Yukawa theory1 (charged- fermions coupled to scalar bosons), quantum electro- 

. dynamics,2 and quantum chromodynamics (for arbitrary Ncolor).3 By diagonalizing 
the Hamiltonian defined at a given light-cone time on a discrete momentum Fock 
basis, one obtains not only the charge zero spectrum but also the bound state 
wavefunctions of each field theory for arbitrary coupling constant and fermion 
mass. The numerical results agree with previous calculations of the spectrum 
where they are available. 

The Comment by C. R. Hagen raises several issues concerning the consistency 
of field theory quantized on the light cone. These should not be confused with 
gauge-fixing problems, such as the choice of light-cone gauge A+ = 0. A recent 
discussion of such problems is given in ref. 4. Indeed Hagen’s remarks are directed 
to the application of DLCQ to Yukawa theory where there are no gauge fields. 

Hagen’s first remark5 [see his equation (l)] concerns a possible unwanted term 
in the Poincare algebra. Our choice of periodic boundary conditions trivially elim- 
inates this term. The remainder of his comment reiterates claims made in his 
earlier papers that the light-cone vacuum is neither charge nor Lorentz invariant. 
Although these issues are not directly related to our paper, they should be eval- 
uated on their merit, independently of their relevance to our work. In fact, we 
shall show, by explicit counterexample that Hagen’s central “theorem” on which 
his main objections rely is false. In particular, we will investigate the claim that 
a charge-invariant light-cone vacuum cannot be defined;6 the discussion of Lorentz 
invariance is similar. 

Hagen’s theorem assumes a conserved current, the existence of a spectral de- 
composition for vacuum expectation values of this current, and standard light-cone 
equal-x+ commutation relations for scalar fields. To avoid any possible ambiguity 
or controversy arising from light-cone quantization techniques we will employ non- 

Triteracting scalar fields of mass m quantized at equal time. Although quantized 
conventionally, these fields will be shown to satisfy all the requirements necessary 
to test Hagen’s theorem. 

For simplicity, we work in the relevant two dimensions throughout. In equal- 
time quantization, commutators are fixed at 2 O = 0, but because in this example 
the fields are free, they are known for all x. In particular, ([$(x), $(O)]) is known 
at IC+ 3 x0 + x1 = 0 where 7 

- - ([4(x>, 4(O)]),+=, = iA(x; m2)z+=o = TE(x-). (1) 
This will be demonstrated below. (c(x) is the antisymmetric step function.) 
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Now allow for a conserved current by making 4(z) complex, with -@i(z) and 

,G-’ -&42(z) the real and imaginary parts. The commutator of 4 and $* is as in Eq.(l) 
. The current-current commutator, with .’ 

Y+:> =: $2(+%(~) - $1(z)dP42(x): 
may be expressed in a general spectral form, 

(2) 

([jyx),j”(o)]) = (gfiVd2 - PP) jdr21%(AP)iqi; ALP) (3) 
0 

where, for free fields, 

4m2 (1-s); 
fY(M2) = 0 1- M2 

( > 27rM2 - (4) 

- 

The assumptions of Hagen’s proof6 are therefore satisfied. 

The charge operator on the light-cone may be computed, also unambiguously: 

;- . 
Qr 

J 
$j+(z) = 

J 
q [j”(x) + j’(x)] 

. =2 
J [ 

dkl a$qz,(kl) - ap)a,(k’)] ) 
(5) 

where ai and CL!(F) are the usual equal-time creation and annihilation opera- 
tors. The charge defined in equation Eq.(5) is th us explicitly identical to the charge 

Q defined conventionally at equal time, 

Q E 
J 

dz'jO(z), (6) 

as current conservation guarantees. It is obvious that . 
_z_ 

-.- L-- 

Q IO) = 0 - - (7) 
and that, since &Q = 0 and &Q = 0, 
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i ,=-- . . . . d+Q=O, ,: (f-9 

in conflict with Hagen’s published claim that a charge-invariant light-cone vacuum 
does not exist. In this case the light-cone and ordinary vacuum are identical. 
We re-emphasize that although quantized at equal time, free charged scalar fields 
satisfy all the assumptions enumerated in Hagen’s theorem, and yet contradict his 
result. There is therefore no reason to give his work any further attention when 
considering light-cone physics. 

To uncover the source of Hagen’s error, it is necessary to examine his calculation 
in detail. From Eq.( 3), for a general field theory, 

([j’(x),j’(O)]) = -48” p4%(W)i*(x: M2). (9) - 
0 

The commutator A(x; M”) is singular on the light cone, so the evaluation of Eq.(9) 
and related commutators at CC+ = 0 m ay depend on the procedure employed. 
Hagen formally shows ([a+Q,j+(O>]) t o b e non-zero by first differentiating Eq.(9) 
with respect to X+ and performing one X- derivative, then setting X+ identically 
to zero and replacing A(x; M2) with the standard equal-z+ commutator. Finally, 
he performs the second X- derivative and integrates over x-. 

Several facts about Hagen’s procedure indicate its speciousness. First, it gives 
zero for ([Q( x+ = o),.i+(o)l)7 P a ossibly finite number for ([8+&(x’ = O),j+(O)]), 
and divergences for higher derivatives in x +. However, as Q is conserved, it should 
have no x+ dependence, and there is no good reason to set x+ to zero at an 

-intermediate step. Had it been left arbitrary, Hagen would have obtained the 
conventional result that ([Q(x+), j+(O)]) is zero for all x+. Higher derivatives in 
x+ computed at this stage would then trivially give zero for all x+. Also, it can be 
seenfrom Eq.(9) that these quantities all involve an integral over a total derivative 
in x-. That Hagen doesn’t obtain zero for this, and that his result depends on a 
particular sequence of integration and differentiation suggests that he’s not working 
with well-defined integrals. That this is the case may be seen by carefully defining A 

. _Tz. the commutator in: Eq.(9). Th e f ormal representation in two dimensions, - ._ bp- ;. 

;A(x; M2) = 
J 

$6(k2 - M2)e(ko)exp{-ilc . x}, (10) 
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is, in light-cone variables, 

,=-- . . . . 
;A(x; iU2) = lim q-hot - iv) + 

0 (11) 

- expi{k+(x- + iv) + g(x’ + ;s)}]. 

Convergence factors are explicitly and necessarily included to ensure that the in- 
tegral exists, and that manipulations such as the rearrangement of integration and 
differentiation make sense. 

Near the light cone Eq.(ll) reduces to 

;A@:; M2)z24 = ; [e(x+) + e(x-,] + 0(x2) 

or equivalently, 
- 

= +(x0)0(x2) + 0(x2). (12) 
The damping prescription in Eq.( 11) uniquely defines c(y) and O(y) in Eq.( 12) to 
be zero and one-half, respectively, when y is identically zero. It therefore reproduces 
the standard equal-x+ commutat.or 

~A(x;M~),+=~ = +(x-). (13) 

Substituting Eq.(ll) into Eq.(9) y’ Id le s, after appropriate differentiation and 
integration, 

- 

([t3+Q(x+),j+(O)]) = ;l% ; ~dM2M’o(M2)~ 

0 
00 (14) 

J 
dk+6(k+)exp{G$x’ - 2yLT ,}. c 

. _T. --co 

- -(If d esired, a limiting procedure could also be introduced to explicitly define S(k+), 
- - with the same conclusion.) As long as all the steps leading to this were well-defined, 

that is, as long as ‘7 was kept infinitesimal but not zero, then Eq.(14) and all higher 
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derivatives in x+ are unambiguously zero independently of x+. This is consistent 

i ,=-- with an invariant vacuum as illustrated in our initial free scalar field example. 
Hagen’s’ result is obtained. if both x+ and q are set to zero identically, but then his 

. intermediate manipulations are evidently suspect. 

Finally, if one insists on employing the commutator at equal-x+ explicitly, 
Eq.(ll) with x+ at zero has been shown to provide an adequate definition of the 
scalar light-cone commutator, and it produces consistent results as long as 77 is 
taken to zero only at the end.7 

Computations involving singular quantities in a field theory are always poten- 
tially ambiguous. In general, one must define such quantities by a prescription, 
when one exists, consistent with the desired properties of that theory. That at 
least one prescription does exist for the light-cone commutators in question consis- 
tent with the charge and Lorentz invariance of the vacuum has been demonstrated 
above. It seems peculiar to insist instead on another which is ill-defined and which 
pretends to render inconsistent not only light-cone quantization but even standard 
free scalar field theory. 
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