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ABSTRACT 

The method of Baier and Katkov is applied to calculate the correction terms to the Sokolov- 
Temov radiation formula due to the variation of the magnetic field strength along the trajectory 
of a radiating particle. We carry the calculation up to .the second order in the power expansion 
of &r/B, where r is the formation time of radiation. The exprmion is then used to estimate 
the quantum beamstrahlung average energy loss from e+e’ bunches with gaussian distribution in 
bunch currents. We show that the effect of the field variation is to reduce the average energy 
loss from previous calculations based on the Sokolov-Ternov formula or its equivalent. Due to the 
limitation of our method, only an upper bound of the reduction is obtained. 

1. INTBODUCTION 

For future e+e- linear colliders, radiation induced by beam-beam collisiin is expected to, be 
very strong [l]. Thii radiation, called beamstrahlung, would cause substantial loss of energy &d 
degredation on energy resolution. Due to these concerns, the study of the subject has been intensive 
during recent years. Rigorously speaking, the problem is very complex in the sense that the e+e- 
bunches would be continuously deformed during colliiion. A complete analytic treatment would 
be formidable if not impossible. Fortunately, it occurs that in a large range of beam parameters 
the bunches would only be slightly deformed. It is therefore a reasonable approximation to assume 
no bunch deformation in a calculation as a East attempt. 

Hiiel and Sigreet [Z] estimated the average beamstrahlung energy loss in a conceptual 
5 TeV+S TeV collider, with number of particles in each bunch N = 1.2 x 108, and beam size 
or = 2.5 A, us = 0.4 pm. The calculation assumes uniform particle distribution within a cylinder 
bunch, where the radius is R = 2a, and the length is L = 2fi u.. By assuming no disruption, each 
particle would execute a linear trajectory at a fixed impact parameter with respect to the oncom- 
ing bunch. An approximate radiation power spectrum based on the well-known Sokolov-Temov 
formula for uniform magnetic fields 13) was then used to obtain an average fractional enczgy lees 
of (0 = 14.5% [4]. 

Recently Blankenbecler and Drell [5\ studied this problem with a different approacn. They 
sum over individual potential scatterings of a test charge traversing through the oncomirkg bunch 
in the target’s rest frame. This is an Eikonal type aproximation but retaining one more order in 
the expansion of the phase. The result agrees reasonably well with Himel and Siegrest. Soon after 
Bell and Bell [6] h s owed that the two approaches are equivalent to the extent that the spin flip 
contribution~to the radiation was omitted in the Blankenbeckler-Drell calculation, which is minor. 

On the other hand, there have also been efforts to calculate beamstrahlung from gaussian 
bunches. Noble developed a computer simulation code for beam&&lung with negligible disrup 
tion (71. During the collision, at each time step the Sokolov-Temovradiation probability is invoked 
based on the local field strength. The result for the same beam parameters turns out to be very 
close to the calculations on an equivalent cylinder bunch. Yokoya independently developed a com- 
puter code which is capable of simulating both beams&&lung and disruption effects 18). Again 
the Sokolov-Ternov formula was used in the code. 
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As is well-known, the Sokolov-Temov formula was derived by assuming a uniform field, whereas 
in the problem of beamstrahlung the field is both spatially finite and inhomogeneous. In the 
calculations invoking uniform cylindrical charge distribution, the radiating particles do experience 
constant field along the trajectories inside the target bunch if disruption is neglected. But to enter 
and to exit the target, the particles would encounter abrupt changes of field strength. In the case 
of gaussian bunches the field strength is continuously changing during the traverse of the radiating 
particle even if disruption is neglected. The smooth variation in the latter case can be considered 
as a smearing of the abrupt diicontinuity in the former case. One natural question therefore arises 
as to how important this “slope” effect would be in the context of modifying the average fractional 
energy loss in beamstrahlung. 

In this paper we present a calculation based on a method developed by Baier and Katkov [S,lO), 
which enables one to calculate radiation intensity in inhomogeneous fields. The homogeneity of a 
field along particle’s trqjectory can be teeted by the condition 

g<1 , 
where B characterizes the change of the field within the radiation formation time r. While saving 
only the zeroth order of &/I3 in the radiation formula, Baier and Katkov reproduce the well- 
known expressions in both classical and quantum regimes. Our task is to retain higher terms in 
the expansion of I&/B, and apply to our specific problem. 

In Sec. 2 we review briefly the Baier-Katkov method. We then derive the extra term for the 
radiation formula up to the order (Br/B)2 for head-tail symmetric inhomogeneous fields in Sec. 3. 
Our result shows a reduction from the leading Sokolov-Temov contribution in the quantum regime 
and no effect in the clasical regime. A physical argument is given to explain these facts. The 
expression is then applied to the specific numerical example of Hiiel and Siegrest in Sec. 4. Due 
to the limitation of our perturbative approach to the Baier-Katkov method, however, we are only 
able to estimate the upper bound of the radiation reduction due to the “slope” effect, which gives 
a lower bound of average fractional energy loss (E) 2 10.2% for the Himel-Siegrest parameters. 

3. BAIER-KATKOV METHOD 

Our starting point is the Baier-Katkov method of radiation calculation [9,10]. A similar method 
had been used earlier by Schwinger [ll]. The method is based on the. realization that when the 
radiating particle is ultrarelativistic, its radiation in a magnetic field is a quasi-classical problem. 
By that we mean the motion of an electron becomes more and more yclassical” ss its energy 
increases that it makes sense to describe the particle by its trajectory. The radiation is therefore 
viewed as induced by the bending of the trajectory. The only role that quantum physics plays 
is the noncommutativity between the electron field and the photon field, and the conservation of 
initial and final energies in a discrete manner. The general expression of radiation intensity (in the 
Coulomb gauge) is 

I=~~&(il/dh~ dtz e’W(‘L-‘a)W (t2) M (tl) If) , 

where Q = l/l37 is the fine structure constant, (w,i) the four-momentum of the photon, (ii, (fl 
the initial and final states of electron, respectively, and M the transition matrix. To the accuracy 
of the order of l/r, Baier and Katkov show that the phase factor from M’M 

where r E tz - tl and t = tl + t2, commutes with both the Hamiltonian U and the electron 
momentum F. After summing over the spins of the final electron and polarizations of the photon, 
and averaging over the initial electron spins, the radiation intensity can be written as 
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where E and E ’ are the initial and &ml energies of the electron and 

G(t7(tl) $(ts)) = a 
a 

(v’(:s) *v’(tr) - 1) 

+ (g)’ (G(h) . Wl) - 1+ $1 * 

(5) 

From now on we will simplify the notations by designating 4 and 4 for v’((tr) and o’(ts), reepectively. 
Siilar notations apply for fit). It is obeerved that the dominant contribution of the r integration 
in Eq. (4) comes from the value at 67 u l/r. Thii corresponds to the situation where the electron 
position vector has swept through an angle l/r, or correepondiigly the outcoming phuton lies 
within an open cone of angle l/7. We shall call thii period of time the radiation formatior, time r, 
and the corresponding distance of travel by the electron the radiation formation length, LR. Since 
l/7 a 1 we can Taylor expand v’2 and F’ in terms of C’r and F”: 

In their paper (91 Baier and Katkov truncated the expansion at &r2, thus the assumption wss 
. . . 

(l/6)(3119 

(1/q1&172 
al . (7) 

Since B a ir in a magnetic field, and V’L = constant, we have v’s v’ = 0. Taking time derivatives 
successively, we have 

c.;-= . . . . . . -v’.v’ ( g.;=-35.;’ , etc. (8) 

Using these relations the assumption can be translated into &r/B a 1, as is in Eq. (1). Now we 
define a dimensionless, Lorentz invariant parameter T: 

2w, 673 ‘=7.+T=T * 
c 

where Be = m2c3/eh u 4.4 x 10 l3 Gauss is the Schwinger critical field strength, and we is the 
critical frequency in classical sychrotron radiation. The radiation intensity for electrons in an 
inhomogenous field satisfying Eq. (1) can then be obtained in terms of T: 

dIo 
?jam2T2 l-qT+48T2+... ( , Tal . 

-= 
dt 

$$l? ($) am2 (3T)2/3 + . . . , T>l . 
(10) 

In the above equation the expression for Y a 1 is the well-known formula for classical syn- 
chrotron radiation, including the quantum correction first derived by Schwinger [ll], and indepen- 
dently by Sokolov, Klepikov and Ternov [12], and higher terms in T. The expression for T > 1 
corresponds to the synchrotron radiation in the extreme quantum limit studied by many people, 
but we will from now on simply call it Sokolov-Ternov formula [3]. The fact that Baier and Katkov 
reproduce these formulas in a straightforward manner suggests the power of this method. 
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3. RADIATION FROM INHOMOGENEOUS FIELDS 

Consider a magnetic field that pointa to the direction transverse to the axis where an electron 
enters, and its strength that varies along the r&s. Let t = 0 when the electron passes the geometric 
center of the field. We are interested in the case where the field variation is such that B(t) is an 
even function in .f, which is also called head-tail symmetric. Since from Lorentz force ti a B(t), 
we see that ii a B(t) is an odd function in t. Therefore, in the study of radiation from a head-tail 
symmetric inhomogeneous magnetic field, the terma linear in 3 would vanish when integrating over 
t. This meana the leading correction term is of the order e2. We should thus retain the Taylor 
expansion in the integrand G up to the term gr*‘;;‘lr’ where the recurrence relation 

which is obtained from one more derivative on Eq. (8), lii the term with 2. $ and v’. ;’ where 
both are even functions in time. 

An for the phzure, retaining terma up to a. ? we have 

-{~[w~+~(c.cs-i,,-YT)]} =exP(i(*o+*l)) , 02) 
where 

4, = u&r I-ir*ii- 
[ 

1,. 1. 
zn-i7r+-v'sir2 

6 1 , I 

andu=w/E’,iis 6/w, ia the phase angle that gives rise to Eq. (10) in the previous section, and 

. - 41 =uEr [ 1 
. 
a.$+ 1 (3z;: +q $4 :- - - 8 $3 120 

is the additional phase that we retain. Notice that in Qpr and the last term in 00 we had made the 
approximation of replacing ii by 6’. 

We further assume that 01 a 1, which ia usually satisfied if only u Bl, or the final energy of 
the electron E ’ > m. This doea not introduce extra assumption since the Baier-Katkov method 
has already assumed relativistic electron before and after emitting the photon. Therefore we make 
the following approximation: 

exp (4 (40 + 01)) = (1 - i*r) exp (400) . (13) 

Retainiig terms to the same order in the integrand G, and combining with Eq. (13), we 8nd the 
in&grand to be 

G = Go + Gl + G2 , (14) 
where 

Go = --;(l+u)-~(l+u+;)6*r* 

. 
is the part that reproduces the Sokolov-Temov formula, Gr a Br/B is an odd function in time 
and would give zero contribution for head-tail symmetric fields, and G2 ia 

G2=-(l+u+f) ($+;$)ti4r4 

+i$j (y) (3%+4$)#9 

+i31+u+;) (,g+2+7*7 . 

(15) 

In the above expression the vector products v’. 3 and v’. 3 have been replaced by Bb and Bi. 
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Thin is because the only componenb that $ and ;’ contribute are proportional to v’x 3 and v’ x 8, 
reepectively. 

Following the mathematical techniques & by Baier and Katkov [Q], we introduce angles 8 
and V, where 0 is the angle between the unit vector ii of photon propagation and the plane (C, $), 
and up ia the angle between the projection of ii on (5, r?) and v’, i.e., 

fi.v’= vco6(psine ) A.i=tirin(pcc#e . 06) 

Takii into account the fact that up to ternur of highest order in l/7* the principal contribution 
cornea from amall B and p, and by &iii the origin of r to r + (p/G, the phase can be written M 

where 

fi~l-v*c08*e~ L+e* , 
7* 

and 

With the definition of T in Eq. (9) the cafficienta in the phue can be symboli by 

k3 P = g (7*&‘* . 

The radiation intensity associated with head-tail symmetric inhomogeneoua field ia then 

dI2 4a dt=m k*dkdsin8; o o ~ldrldyDlap(--a(t+~d+y+fy’)}’ . (18) 

Recall that u = w/E’ = w/(& -w), and k*dk = w*&, we find that 

k*dk = ;‘I;, . 

The intergrationa over 2 and y give Bessel functions of fractional order Kr,s(q) and &lS(~). For 
the evaluation of the integral over u it ia convenient to introduce the representation [131 

(1 :,, = & 
A+iDOr(-a)r(m + 8)u‘* 
I w4 

, 
A-i00 

(20) 

where 1 - m < A < 0. After this transformation the integration over u turna the Bessel functions 
into gamma functions, multiplied by a factor (7*~()-~(#+~)/* among other things. We can then 
carry out integration over sin B zs B by the following formula 113): 

on Qo 

J (r24 -J(~+Wyd(g = 
/ 

(1 + 72g2)3(r+n)/27~ = firt3’i2 + (3n - ‘)12) 
r(38/2 + 3n/2) 

. 
(21) 

-00 --o 
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All integration8 in Eq. (18) are straightforward, though tedious. The result before carrying out 
the 6nal integration over s is 

dh -=w- 
dt 

da 2'(3T)' 
r(r+I) + r(u+2) r(-r) 

I 
A-h r(4) -r(o r(2) 

x[-(~$+t+)~(~+~)r(~+~)r(~+~)r(~+~) 

i r(r+ s) ---r(~+~)r(;+~)r(~+~)r 2 r(8+2) 

+r(i+:)r(i+%)r(i+%)r(i+%) 

+ $$+&~)[~r(~+~)r(~+~)r(~+~)r(~f~) 
( 

(22) 

where’-1 < X < 0. The above expression include8 only contribution8 from the ri’r’ and C7r7 
terms in Eq. (15) because it can be shown that the contribution from the isr3 term is significantly 
smaller, and thus negligible. 

The integral over s can be evaluated by closing the contour of integration either to the right 
for T a 1, or to the left for T > 1. For T a 1, we have 

dI2 o -W 
dt , ye:1 , 

identically. For T > 1 we have, to the leading order in T, 

dIz -w-~r(3)r(~)~(~~-~~)(BT)-‘/’ , Y>l . 
dt 

(24) 

This result is valid for any head-tail symmetric inhomogeneous magnetic field which satisfies the 
assumptions given previously. 

Now we apply Eq. (24) to the field from a relativistic gaussian bunch with standard deviation 
Uzr: 

B(t) = Boe-2’a~uf , (25) 

where the time of flight of the test electron traversing the oncoming bunch is t = z/2. Then we get 

G 32 r (2/3) ,,2 (gy)2/3 
z=- 35 (~,[12QQ7(~)2-1804)]) , YBl , (26) 



where F % LR/Q. irr the formation length parameter a88ociated with LR(w) in the quantum lit 
for photon frequency w = E: 

LR(W = f) = g%)““= (;>‘f3A& , (27) 

Combining Eqs. (23) and (26) with Eq. (lo), we obtain 

jam!T* (l+qT+48T*+...) , Tal , 
dI dIo d12 
-=dt+dt= dt 

~ypLTn*(3T)‘ls 1 { -~&$+997(g,‘-1804]} ) T,l . 

Our ramlt can be appreciated by the following physical argumenta: Con&da the Merential 
radiation inten8ity P(w) where 

In the classical lit P(w) in the case of a uniform 5eld acaAa as 

aa shown by the solid curve in Fig. 1. As is introduced in Eq. (Q), classical lit Y at: 1 corresponds 
to the situation we’ a E, meaning the typical frequency of radiated photons is much less than the 
kinetic energy of the radiating particles. Thus the entire spectrum of Eq. (30) is observable. On 
the contrary, the extreme quantum limit T > 1 corresponds to E a w,, therefore the spectrum 
beyond the electron energy is kinematically forbidden, and the observable spectrum scales roughly 
as wl/= . 

In the ca8e of nonuniform fields the spectrum differ8 from that of uniform fields. In the classical 
limit the problem has been studied by CoTsson [14], and independently by Bagrov, Fedosov and 
Temov [15j. It is found that for a short magnet which k comparable in length with &, the 
radiation spectrum is modified in such a way that the low-frequency regime is suppressed in favor 
of high frequencies beyond we. The total intensity, however, remain8 the same. The prediction WM 
confirmed by Bossart et al. [16] with observations in SPS at CERN. We can extrapolate thii fact by 
suggesting that when the magnet length L’ a LR, the spectrum would be a constant independent 
of w up to a maximum frequency w’ u we(.&/p) (see the dashed curve in Fig. 1). Our result for 
the classical limit shows that the total intensity dI/dt is the same for uniform and gaussion fields. 
Thii is a confirmation of the previous studies. 

The situation for short magnets is different in the quantum limit. Again, spectrum beyond f is 
energetically forbidden. But now that the low frequency regime is suppressed, the overall inteanity 
is reduced. This explains why our dlz/dt is opposite in sign from dIo/dt. From Eq. (28) it can 
be seen that when L!R a o;, or when the bunch ia very long, dIz/dt -* 0, and we have vanishing 
correction to the Sokolov-Ternov formula. A pronounced effect occur8 when LR is not much smaller 
than uz. 
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Fig. 1. Radiation spectrum in the two asymptotic liib. For long magneto, 
L’ > CR, we have the well-known spectrum in solid cIvve. In the oppoeite limit 
L’ a fR9 the ip3CkUm approaches a COMtant. h quantum bit We ObMrVe Only 

the low frequency regime. 

4. QUANTUM BEAMSTRAEIJJNG 

We now apply Eq. (28) to a specific example. In order to appreciate the elope effect, we choose 
to calculate the rama set of beam parameters ilmt diiuaoed by Himel and Siegrest, where the 
Lorentz factor for 5 TeV beams ia 7 = 
size a, = 0.4pm and 0; = 2.5 A. 1 x lo’, numbex of particle per bunch N = 1.2 x ld, bunch 

To focus on the longitudinal effect, we assume “cylindrical gaunaian” bunches, i.e., uniform 
density in r < 2~~ and gausGan in z. Then 

. - T(p,<) = TopC~‘/’ ( 

where p = t/u,, < = z/u. are the normalii coordinatea, and 

is the reference beam&&lung parameter corresponding to twice the field strength (i.e., 
ISI = @I) 1171 at (p,s) = (1,O) in the target bunch. The formation length parameter F is 
alo a function of < and p: 

(35) 

where the reference formation length parameter 

F. X,7 = 0 3 
u3 

qq-= 0*015 pm z = 0 ’ 0375 * 0 s 0.4 jbm (36) 

Let us first calculate the average energy lose .based on Sokolov-Ternov formula (i.e., dlo/&). 
Let c = (f - f ‘)/f be the fractional energy loss of an electron having impact parameter p. Then 
the average fractidnal energy loss of the entire bunch is 

(37) 

for our cylindrical gaussian bunches. Replacing dt by (u,/2)dC, and defining 
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we find for the leading Sokolov-Temov term 

(b>oo = 
lSd'(2/3) 

243 
. $ . (3To)2'3 (p)*l’ 7 e-ca/3dC , (39) 

-W 

where the mean impact parameter 

(p) = -[ 1 s; PSf3dP 3t2 = l 3. j&G * 
in our example. For the Himel-Siegrest parameters we have 

(eo)oo = 15.2% , WI 

which agreea rwnably well with previous calculations [2,4]. 

To include the correction term we should real& that our perturbation breaks down before 
dIo/dt and d&/dt becomes equal in magnitude at mme point I = & from the centroid of the 
bunch, beyond which the total intensity would turn negative and be certianly unphysical. Since we 
lack the knowledge on the behavior of higher order term8, we can only estimate the upper bound 
of the reduction effect by extending dIz/dt all the way to ce and assuming total supprent4on beyond 
that point, aa shown schematically in Fig. 2. From Eq. (28) this threshold occum at 

w/~) ho 2 
iiiQFz ( > p4’2eG12 (12QQ7$ - rrJo4) = 1 . (41) 

=. 
From this equation it ia obvious that the cut-off SC i8 radial dependent. For the sake of simplicity in 
our diicusaion, we make a further approximation by evaluating cc at the mean impact parameter 
(p) = 1.30, and we get 

SC = 1.49 . 

Thus the mean radiation loss is suppressed to 

(42) . 

where 

and 

WC. = bob. + (f2)t. 3 i43) 

(4h. = - ls;E3) $‘ro)*/3 %!!&~(p)-2” f &‘/3(129975* - I&)& . 

-6 I 

Plugging in number8 we get 

koh. = 0.78(to)ao = 11.8% 

and 

(c2)t. = -O.ll(~)~ = -1.6% . 

Thus the corrected quantum beamstrahlung average fractional energy lo88 is 

(8) z (C)f* =,10.2% . 

This is substantially different from the previous results. 

(44) 

(45) 

(46) 
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dI.%!+!% 
dt dt dt I 

0.6 

0.2 

0 

- dI/dt 

--- -dIz/dt - 

0 ' cc 2 
.-,t c= z/n L,I.A~O 

Fig. 2. Radiation intensities as function of longitudinal target bunch coordinate I. 
The dash-dot curve is the Sokolov-Temov radiation. The dash curve is the negative 
of our gaussian slope correction. The net intensity is represented by the solid curve. 
Beyond the point t where dIo/dt and - d&/dt meet, we assume a total suppression. 

. _ 
:- 

5. DISCUSSION 

Due to the constraints of the perturbative approach to the gaussian slope correction, we can only 
estimate the upper bound of the reduction. The pathology lies in that while the B-field atrength 
decreases exponentially to the head and the tail in the oncoming target bunch, 8r increases more 
than exponentially. These facts force &r/B ceases to be much less than one at some point. The 
symptom is actually rather generic in beamstrahlung. For example, consider replacing the gaussian 
distribution by a parabolic one. Though we may have the advantage of terminating the field at 
some finite diitance, but the fact that B-field vanishes forces upon us that somewhere before the 
bunch ends, h/B a 1 must be violated. 

As long as the cutoff se is several standard deviations from the bunch center, however, the 
correction that we calculated would be valid since the field beyond se would contribute very little 
to the radiation in the frrst place. For the case of Himel-Siegrest parameters the situation is a little 
awkward. As shown in the previous section, the average energy loss within se accounts for .only 
~1 78% of the total loss based on Sokolov-Temov formula. To improve the calculation, methods 
other than perturbation should be pursuit. 

Aside from this technical difficulty, the physics involved is rather clear: In addition to the 
beamstrahlung parameter TO, one more parameter, the radiation formation length parameter 3’0, 
is essential in determining beamstrahlung properties. When FO approaches unity, the reduction of 
the average energy loss in the quantum regime becomes nonnegligible. Actually, our claim is that 
not only (c) is reduced, but also the energy resolution is improved because there would be less hard 
photons radiated as can be seen from Fig. 1. These features suggest that the situation is in favor 
of ultrashort bunches in future linear colliders 1181 if this is technically attainable. 

We should point out that for the purpose of estimating the energy loss we calculated the 
second order correction in &r/B for an ideal symmetric bunch. In reality, the bunches would be 
continuously deformed during collision, and the head-tail symmetry is destroyed. In that case there 
will even be first order correction in &r/B. Recently there has been interest to consider colliding 
beams at an angle in future linear colliders. In this scenario the head-tail symmetry is naturally 
broken, and the first order correction would appear inherently. 
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