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Abstract 

Many of the key issues in understanding quantum chromodynamics involve processes 
in nuclear targets at intermediate energies. I discuss a range of hadronic and nuclear 
phenomena-exclusive processes, color transparency, hidden color degrees of freedom in 
nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity 
selection rules, spin correlations, higher twist effects, and nuclear diffraction-as tools for 
probing hadron structure and the propagation of quark and gluon jets in nuclei. I also 
review several areas where there has been significant theoretical progress determining the 
form of hadron and nuclear wave functions, including QCD sum rules, lattice gauge theory, 
and discretized light-cone quantization. 1 also diBCU88 a possible interpretation of the large 
spin correlation ANN in proton-proton scattering, and relate this effect to an energy and 
angular dependence of color transparency in nuclei. 

1. Introduction 

The nucleus plays two complimentary roles in QCD: 

1. We can utilize a nuclear target as a control medium or background field to modify 
or probe quark and gluon subprocesses. 1 shall discuss eeveral novel examples in 
this talk, such as color traneparcncy: the predicted diminished attenuation in the 
nucleus of hadrons participating in high momentum transfer ezclusivc reactions, and 
formation xone phenomena the absence of hard collinear target-induced radiation 
by quarks or gluons interacting in a high momentum transfer inclusive reactions. A 
key test of the QCD prediction8 is given by the NA-10 observation8 for the Drell-Yan 
process in nuclei: as predicted, the transverse momentum distribution of lepton pairs 
is broadened; nevertheless, structure function factorization is maintained. Remark- 
ably, the incoming quark or anti-quark can suffer elastic initial state interactions 
even though hard collinear inclaetic interactions do not occur. These observations 
are important for the general understanding of the propagation of quark and gluon 
jet8 in nuclear matter. 

2. The nucleus itself must be described as a QCD structure. At ehort dietances nuclear 
wave functions and nuclear interactions necessarily involve hidden color degree8 of 
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freedom orthogonal to the channels described by the usual nucleon or isobar degrees 
of freedom. In the case of the deuteron, five color-singlet Fock states are required 
just to describe its six-quark valence wave function. At asymptotic momentum 
transfer, the deuteron form factor and distribution amplitude are rigorously calcu- 
lable. At sub-asymptotic momenta, one can derive new types of scaling laws for 
exclusive nuclear amplitudes in terms of the reduced amplitude formalism. I also 
discuss some novel features of nuclear difractive amplitudes-high energy hadronic 
or electromagnetic reactions which leave the entire nucleus intact. In the case of 
deep inelastic scattering, such leading twist contributions can give unusual non- 
additive contributions to the nuclear structure function at low XBj. In the case of 
vector meson electroproduction at highly virtual photon mass, diffractive processes 
can give essential information on non-forward matrix elements of the same operator 
products which control deep inelastic lepton scattering. 

In general, the nucleus may act to modify the properties of its constituent nucle- 
ons; a myriad of non-additive and shadowing effects have been suggested to explain the 
EMC/SLAC observations. In this talk I will only touch briefly on this important topic, 
emphasizing nuclear effects in the transverse momentum distribution of the bound quarks, 
and to point out a coherent nuclear effect relevant to non-additivity at low XBj. Measure- 
ments of nuclear non-additivity in individual electroproduction channels are needed to 
unravel the various contributing processes. 

The application of QCD to nuclei-Nuclear Chromodynamics has brought together 
two formerly distinct communities of physicists. Given that the natural scale of QCD is 1 
fermi, nuclear physics can hardly be, studied as an isolated subject, divorced from nucleon 
substructure. Indeed several traditional assumptions of nuclear theory are incompatible 
with QCD, such as (a) standard on-shell form factor factorization and (b) Dirac equation 
phenomenology for nucleon interactions in nuclei-since the NNT intermediate state is 
severely suppressed by nucleon compositeness.’ Conversely, the very difficult questions for 
particle theorists-the structure of the hadrons in terms of their quark and gluon degrees 
of freedom, gluonium and other exotic spectra, coherence effects, jet hadronization and 
particle formation, the nature of the pomeron, diffractive and forward processes, etc., 
require experimental input in the GeV regime or even lower. 

There has been significant progress in the theoretical development of QCD in the 
past few years. This includes the extension of factorization and evolution equations to the 
domain of exclusive hadronic and nuclear amplitudes. Moreover, QCD sum rule techniques 
have made tantalizing predictions for the required hadron wave functions, results which 
are being confirmed by lattice gauge theory computations. In high momentum transfer 
inclusive reactions, the underlying quark and gluon scattering processes lead directly to 
jet production in the final state. To leading order in l/Qz, the cross sections and jet 
hadronization can be understood at the probabilistic level. In contrast, in exclusive 
electroproduction processes, one studies quark and gluon scattering and their reformation 
into hadrons at the amplitude level. Exclusive reactions thus depend in detail on the 
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composition of the hadron wave functions themselves. 

There is now an extensive literature, both experimental and theoretical, describing 
the features of large momentum transfer exclusive reactions. The QCD predictions are 
based on a factorization theorem2-’ which separates the non-perturbative physics of the 
hadron bound states from the hard scattering amplitude which controls the scattering of 
the constituent quarks and gluons from the initial to final directions. This is illustrated 
for the proton form factor in Fig. 1. 
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Figure 1. (a) Factorization of the nucleon form factor at large &* in &CD. (b) The leading 
order diagrams for the hard scattering amplitude TH. The dots indicate insertions which enter the 
renormalization of the coupling constant. (c) The leading order diagrams which determine the Q2 
dependence of ~B(z, Q). 

Electroproduction of exclusive channels provides one of the most valuable testing grounds 
of this QCD formalism, since the incoming photon provides a probe of variable space-like 
mass directly coupling to the hard-scattering amplitude. 

It has been known since 1970 that a theory with underlying scale-invariant quark- 
quark interactions leads to dimensional counting rules’ for large momentum transfer ex- 
clusive processes; e.g. F(Q2) N (Q2)lsn where n is the minimum number of quark fields 
in the hadron. QCD is such a theory; the factorization formula leads to nucleon form 
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factors of the form:’ 

An outline of the derivation of this result is given in section 2. The first factor, in agreement 
with the quark counting rule, is due to the hard scattering of the three valence quarks from 
the initial to final nucleon direction. Higher Fock states lead to form factor contributions 
of successively higher order in 1/Q2. The logarithmic corrections derive from an evolution 
equation 2’5 for the nucleon distribution amplitude. The T,, are the computed anomalous 
dimensions, reflecting the short distance scaling of three-quark composite operators. The 
results hold for any baryon to baryon vector or axial vector transition amplitude that 
conserves the baryon helicity. Helicity non-conserving form factors should fall as an addi- 
tional power of 1/Q2. Measurements of the transition form factor to the J = 3/2 N(1520) 
nucleon resonance are consistent with J, = &l/2 dominance, as predicted by the helicity 
conservation rule! A review of the data on spin effects in electron nucleon scattering in 
the resonance region is given in Ref. 7. 

It is very important to explicitly verify that Fz(Q2)/Fr(Q2) decreases at large Q2. 
. The angular distribution decay of the J/X? --+ pp is consistent with the QCD prediction 

A, + A, = 0. 

The normalization constants anm in the QCD prediction for GM can be evaluated 
from ‘moments of the nucleon’s distribution amplitude 4(zi, Q). There are extensive on- 
going theoretical efforts computing constraints on this nonperturbative input directly from 
QCD. The pioneering QCD sum rule analysis of Chernyak and Zhitnitskii’ provides con- 
straints on the first few moments of 4(z,Q). Using as a basis the polynomials which 
are eigenstates of the nucleon evolution equation, one gets a model representation of the 
nucleon distribution amplitude, as well as its evolution with the momentum transfer scale. 

The QCD sum rule analysis predicts a surprising feature: strong flavor asymmetry 
in the nucleon’s momentum distribution. The computed moments of the distribution 
amplitude imply that 65% of the proton’s momentum in its S-quark valence state is carried 
by the u-quark which has the same helicity as the parent hadron. (See Fig. 2.) A recent 
comprehensive re-analysis by King and Sachrajda’ has now confirmed the Chernyak and 
Zhitnitskii form in its essential details. 

In addition, Dziembowski and Mankiewicz lo have recently shown that the asymmetric 
form of the CZ distribution amplitude can effectively be derived from a rotationally- 
invariant CM wave function transformed to the light cone using a Melosh-type boost 
of the quark spinors. The transverse size of the valence wave function is found to be 
significantly smaller than the mean radius of the proton-averaged over all Fock states. This 
was predicted in Ref. 2. Dziembowski and Mankiewicz also show that the perturbative 
QCD contribution to the form factors dominates over the soft contribution (obtained by 
convoluting the non-perturbative wave functions) at a scale Q/N w 1 GeV, where N is the 
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number of valence constituents. Similar criteria were also derived in Ref. 11. Results of the 
similar Jacob and Kisslinger 12 analysis of the pion form factor are shown in Fig. 3. Earlier 
claims’s that a simple overlap of soft hadron wave functions could fit the form factor data 
were erroneous since they were based on wave functions which violate rotational symmetry 
in the CM. 

+,(x, = V(x)-A(x) 

8-85 5207A7 

Figure 2. QCD sum rule prediction for the 
proton distribution amplitude. 
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Figure 3. Models for the “soft” contribution to the 
pion form factor. The Isgur-Llewellyn-Smith pre- 
diction l3 is based on a wave function with Gaus- 
sian fall-off in transverse momentum but power- 
law falloff at large z. The Jacob-Kisslinger predic- 
tion l2 is based on a rotationally symmetric form in 
the center of mass frame. The perturbative QCD 
contribution calculated with CZs distribution am- 
plitudes is consistent with the normalization and 
shape of the data for Q* > 1 GeV*. 

A detailed phenomenological analysis of the nucleon form factors for different shapes 
of the distribution amplitudes has been given by Ji, Sill, and Lombard-Nelsen?’ Their 
results show that the CZ wave function is consistent with the sign and magnitude of the 
proton form factor at large Q2 as recently measured by the American University/SLAG 
collaboration!’ (See Fig. 4.) The fact that the correct normalization emerges is a non- 
trivial test of the distribution amplitude shape; for example, if the proton wave function 
has a non-relativistic shape peaked at zi N l/3 then one obtains the wrong sign for the 
nucleon form factor. Furthermore symmetrical distribution amplitudes predict a very small 
magnitude for Q4GL(Q2) at large Q2. Gari and Stefams ’ l6 have developed a useful model 
for the nucleon form factors which incorporates the CZ distribution amplitude predictions 
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at high Q2 together with VMD constraints at low Q 2. Their analysis predicts sizeable 

values for the neutron electric form factor at intermediate values of Q2. (See Fig. 5.) 

Figure 4. Comparison of perturbative QCD 
predictions and data for the proton form factor. 
The calculation, based on the CZ QCD sum rule 
distribution amplitude, is from Ref. 14. The pre- 
diction depends on the use of the running coupling 
constant as a function of the exchanged gluon mo 
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Figure 5. Predictions for the nucleon form factors assuming ViIlD at low Q* and 
perturbative QCD at high Q*. From Ref. 16. 
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Measurements of the two-photon exclusive processes 77 + X+X- and K+K- are in 
excellent agreement with the perturbative QCD predictions. The analysis is based on the 
factorization illustrated in Fig. 6. The predictions are based on analyses valid to all orders 
in perturbation theory and do not suffer from the complications of endpoint-singularities 
or pinch contributions. The data l8 (see Fig. 7) extend out to invariant mass squared 
10 GeV2, a region well beyond any significant contribution from soft contributions. 

Figure 6. Application of QCD to two 
photon production of meson pairs. 

Figure 7. Measurements’s of exclu- 
sive two-photon reactions compared with 
the perturbative QCD predictions of Ref. 
17. The predictions are nearly independent 
of the shape of the meson distribution am- 
plitudes. 
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Nevertheless, the self-consistency of the perturbative QCD analysis for some exclusive 
channels can be questioned!’ particularly for baryon reactions at moderate momentum 
transfer: 

1. The perturbative analysis of the baryon form factor and large angle hadron-hadron 
scattering depends on the suppression of the endpoint regions 2i w- 1 and pinch 
singularity contributions. This suppression occurs automatically in QCD due to Su- 
dakov form factors, as has been shown by Muellerlg based on the all-orders analysis 
of the vertex function by Sen. 2o Since these analyses require an all-orders resumma- 
tion of the vertex corrections, they cannot be derived by standard renormalization 
group analysis. In this sense the baryon form factor and large angle hadron-hadron 
scattering results are considered less rigorous than. the results from analysis of the 
meson form factor and the 77 production of meson pairs. 17 

2. The magnitude of the proton form factor is sensitive to the x cv 1 dependence of 
the proton distribution amplitude, where non-perturbative effects could be impor- 
tant. The CZ asymmetric distribution amplitude, in fact, emphasizes contributions 
from the large z region. Since non-leading corrections are expected when the quark 
propagator scale Q2(1 - ) z is small, relatively large Q2 is required to clearly test 
the perturbative QCD predictions. A similar criterion occurs in the analysis of cor- 

-. rections to QCD evolution in deep inelastic lepton scattering. In a recent paper, 
Dziembowski and Mankiewicz” find that one can simultaneously fit low energy 
phenomena (the nucleon magnetic moments), the measured high momentum trans- 
fer hadron form factors, and the CZ distribution amplitudes with a self-consistent 
ansatz for the quark wave functions. Thus for the first time one has a rather com- 
plete model for the relativistic three-quark structure of the nucleon. 

A complete derivation of the nucleon form factors at all momentum transfers would 
require a calculation of the entire set of hadron Fock wave functions. This is the goal of 
the “discretized light-cone quantization” approach21 for finding the eigen-solutions of the 
QCD Hamiltonian quantized at equal light cone time r = t + z/c. using a discrete basis. 
The basis of the DLCQ method for solving field theories is conceptually simple: In general, 
one quantizes the independent fields at equal light cone time r and requires them to be 
periodic or anti-periodic in light cone space with period 2L. The commuting operators, the 
light cone momentum P + = FK and the light cone energy P- = &X are constructed 
explicitly in a Fock space representation and diagonalized simultaneously. The eigenvalues 
give the physical spectrum: the invariant mass squared M2 = P’P,. The eigenfunctions 
give the wave functions at equal r and allow one to compute the current matrix elements, 
structure functions, and distribution amplitudes required for physical processes. All of 
these quantities are manifestly independent of L, since M2 = P+P- = HK. Lorentz- 
invariance is violated by periodicity, but reestablished at the end of the calculation by 
going to the continuum limit: L + co, K + 00 with P+ finite. In the case of gauge 
theory, the use of the light cone gauge A + = 0 eliminates negative metric states in both 
abelian and non-abelian theories: 
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Eller, Pauli and I have obtained detailed results using the DLCQ method for the 
bound state and continuum spectrum and wave functions for QED in one-space and one- 
time dimension for arbitrary mass and coupling constant. The structure function of the 
lowest mass bound state in QED [l+l] as a function of a scaled coupling constant is shown 
in Fig. 8. We have also obtained the spectrum of the Yukawa theory with spin-zero bosons, 
a theory with a more complicated Fock structure. Vary and co-workers have analyzed r$* 
theory. 

0.0 0.2 0.4 0.6 0.8 x 1.0 
5561AB 

-. Figure 8. The structure function of the lowest mass 
bound state for QED in l+l space-time dimensions, as 

22 calculated in the DLCQ formalism. 

More recently Hornboste123 has extended the DLCQ analysis to the color-singlet, spec- 
t&n of QCD in one space and one time dimension for NC = 2,3,4. The results for the 
lowest, meson mass in the SU(2) theory agree within errors with the lattice hamiltonian 
results of Hamer. See Fig. 9. The method also provides the first, results for the baryon 
spectrum in a non-Abelian gauge theory. The lowest baryon mass is shown in Fig. 9 as 
a function of coupling constant. The corresponding structure function of the meson and 
baryon states is shown in Fig. 10. Further discussion can be found in Section 9. 

2. Exclusive Reactions as Tests of QCD and Hadron Wave Functions 

Even if we do not, have as yet complete information on the hadronic wave functions in 
QCD, it is still possible to make predictions at, large momentum transfer directly from the 
theory. Many of the results (such as meson form factors and 77 annihilation into meson 
pairs) can be proved rigorously, in the sense that they can be demonstrated to arbitrary 
order in perturbation theory. Other results require an all-orders resummation. 

The processes which are most, easily analyzed are those in which all final particles are 
measured at large invariant masses compared to each other, i.e. large momentum transfer 
exclusive reactions. This includes form factors of hadrons and nuclei at large momen- 
tum transfer Q and large angle scattering reactions such as photoproduction 7p + 7rr+n, 
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Figure 9. The baryon and meson spectrum 
in QCD [l+l] computed in DLCQ for NC = 
2,3,4 as a function of quark mass and cou- 
pling constant. (From ref. 23.) 
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Figure 10. The baryon and meson quark momen- 
tum distributions in QCD [l + 1] computed using 
DLCQ. (From ref. 23.) 

nucleon-nucleon scattering, photo-disintegration 7d + np at large angles and energies, 
etc. A key result is that such amplitudes factorize at large momentum transfer in the 
form of a convolution of a hard scattering amplitude TH which can be computed pertur- 
batively from quark-gluon subprocesses multiplied by process-independent “distribution 
amplitudes” +(z,Q) h h w ic contain all of the bound-state non-perturbative dynamics of 
each of the interacting hadrons. To leading order in l/Q the scattering amplitude has the 
form2* 

M = ‘Tx(zjsQ) n+H;(zj,Q)[dz] - J (2.1) 
a Hi 

Here TH is the probability amplitude to scatter quarks with fractional momentum 0 < 
zi < 1 from the incident to final hadron directions, and +H,. is the probability amplitude 
to find quarks in the wave function of hadron Hi collinear up to the scale Q, and 
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The key to the derivation of this factorization of perturbative and non-perturbative dy- 
namics is the use of the Fock basis {$a( zi, zli, Xi)} defined at equal r = t -+ z/c on the 
light-cone to represent relativistic color singlet bound states. Here Xi are the helicities; 
zi E (lcf + ?$)/(p’ + p”), (CF=r z; = l), and zL;, (Cr.i iii = 0), are the relative mo- 
mentum coordinates. Thus the proton is represented as a column vector of states tiQQq, 

rl, hP9 - * ** 9499’ In the light-cone gauge, A+ = A0 + A3 = 0, only the minimal “va- 
lence” Fock state needs to be considered at large momentum transfer since any additional 
quark or gluon forced to absorb large momentum transfer yields a power-law suppressed 
contribution to the hadronic amplitude. 

The factorization of large momentum transfer exclusive amplitudes can be understood 
as follows: the TH amplitude in leading order is the minimally-connected quark-gluon ma- 
trix element taking the valence quarks from the initial to final directions. It arises by 
iterating the gluon-exchange kernel in each wave function wherever large relative momen- 
tum occurs. The distribution amplitude is the coefficient in the wave function remaining 
after the iteration of the kernel, analogous to the wave function at the origin in non- 
relativistic quantum mechanics. All intermediate states in TH have constituents with 
relative transverse momentum larger than the momentum transfer Q. All the integrations 
up to Q are contained in r$(z, Q). 

‘The hard scattering amplitude TH(Zi, Q, e,,) has dimensions [Lln-* where n is the 
total number of incoming and outgoing field lines. At large momentum transfer Q is the 
only relevant scale: 

[ 1 1 n-4 
THY - 

Q 
f(Zi,~em) * 

This gives the main source of power-law behavior of the amplitude. One can check the 
power fall-off explicitly in A + = 0 gauge for tree graphs: each intermediate fermion 
line gives 1/Q2, each gluon propagator gives Q” since its numerator couplings cancel 
its denominator. The result is the same for instantaneous gluon exchange. Since all 
intermediate states have k: > G2, one can calculate TH perturbatively in powers of 
the running coupling constant; the leading power of (~~(9~) is given by the number of 
exchanged gluons. The minimum number (valence) Fock state dominates the amplitude 
in A+ = 0 gauge. (This is not true in covariant gauges.) 

The scale Q2 is set by the minimum virtuality of the propagators in TH; e.g. for form 
factors Q2 = n$n{xiyj}Q2 where zj -! ) and the light-cone fractions for the initial and 

final state. Thzendpoint region where zi = N 0 is thus potentially dangerous. In some 
processes, such as meson form factors or 77 + MM, the meson distribution amplitude 
falls sufficiently fast such that such regions give power-law suppressed contributions. In 
other processes such as hadron-hadron scattering one must deal with Landshoff pinch 
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singularities. Mueller lQ has shown that the Sudakov vertex form factors which appear 
when a quark or a gluon leg is close to the mass shell suppress near-on-shell contributions 
so that the leading power analysis is modified by a small residual fractional power law 
correction. The Sudakov form factor also eliminates possible anomalous contributions 
from end-point regions of integration in the calculation of baryon form factors. In the case 
of the FM(Q~) and 77 -+ MM processes, formal proofs of QCD factorization can also be 
given using operator product expansions and the renormalization group. 

The momentum dependent of +(z, Q) comes from the sensitivity to the upper limit 
of interaction of the transverse momentum integrals. This arises from the gluon exchange 
kernels which give integral of the form 

Q2 dk2 J $ad(k:) - th 
tn Q2/A2 

Ir2 L 
tnp2Q2 ’ 

One can use the iterative structure of the wave function equation in A+ = 0 gauge to 
sum the logarithmic dependence in the form of a sum of terms with anomalous dimension 
factors (En Q2/A2)- 7n where the 7n are determined by perturbative QCD. 

-. Since 4(z, Q) involves axially- symmetric kl integrations, L, = 0 to leading order in 
l/Q”> and the sum of the valence quark helicities equals that of the hadron. Furthermore, 
since QCD is a vector theory, quark helicity is conserved between initial and final states 
in the hard-scattering amplitude. Thus QCD predicts hadron helicity conservation: 

c X+py 
initial final 

at large momentum transfer. Notice that this result is independent of photon or lepton he- 
licity in photoproduction or electroproduction amplitudes and holds to all orders in 08(Q2). 
Thus an essential feature of the perturbative QCD is the prediction of hadron helicity 

conservation up to kinematical and dynamical corrections of order m/Q and (t,f~$)l’~ /Q 
where Q is the momentum transfer or heavy mass scale, m is the light quark mass. Here 

( > t+!$ is a measure of non-perturbative effects ascribed to chiral symmetry breaking of 
the QCD vacuum. Applying this prediction to pij annihilation, one predicts X, + X, = 0, 
i.e., S, = J, = If1 is the leading amplitude for heavy resonance production. Thus the $J 
is expected to be produced with J, = fl, whereas the x and rlc cross sections should be 
suppressed, at least to leading power in the heavy quark mass. 

The behavior Q4G~(Q2) - const at large Q225 provides a direct check that the 
minimal Fock state in the nucleon contains three quarks and that the quark propagator 
and the qq ---t qq scattering amplitudes are approximately scale-free. More generally, the 
nominal power law predicted for large momentum transfer exclusive reactions is given 
by the dimensional counting rule M - Q4-nTOTF(6cn) where r&TOT is the total num- 
ber of elementary fields which ‘scatter in the reaction. The predictions are apparently 
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compatible with experiment? As discussed above, for some scattering reactions there are 
contributions from multiple scattering diagrams (Landshoff contributions) which together 
with Sudakov effects can lead to small power-law corrections, as well as a complicated 
spin, and amplitude phase phenomenology!7 As shown in Fig. 7, recent measurements of 
77 + X+X-, K+K- at large invariant pair mass are consistent with the ‘QCD predic- 
tionsY8 In principle it should be possible to use measurements of the scaling and angular 
dependence of the 77 + Mti reactions to measure the shape of the distribution ampli- 
tude +~(z,Q).1n addition, it has been recently shown that the Q2 dependence of virtual 
processes such as 7*7 + 7r+n- (measured in tagged ee + eenr collisions) depends in 
detail on the z-dependence of the pion distribution amplitude. 

A serious challenge to QCD is not only to get the correct power law scaling for the 
proton form factor correct (Fr - 1/Q4, Fz - 1/Q6) but also to obtain the correct sign and 
magnitude of the l/Q’ coefficient. This is highly non-trivial: a non-relativistic 3 quark 
wave function invariably gives a negative sign for this coefficient (i.e., it predicts a zero 
at finite space-like q2 for Fi(Q2) and GM(Q~) and too small magnitude. This challenge 
appears to be successfully met by the QCD sum rule analysis of the proton distribution 
amplitude. 

The requirement that the nucleon is the I = l/2, S = l/2 color singlet representation 
of three quark fields in QCD uniquely specifies the zi permutation symmetry of the proton 
distribution amplitude: 2Q 

+ $ w1ut - utu141 ’ & fN [4N(s3zZsl) - ‘$N(zlz2z3)] 

The neutron distribution amplitude is determined by the substitution dn = -&(u + d). 
Moments of the nucleon distribution amplitude can be computed from the correlation 
function of the appropriate local quark field operators that carry the nucleon quantum 
numbers. 

The model wave function proposed in Ref. 29, consistent with the derived moments, 
is 

4N (212223) = hasympt * [11.35(~: + of) + 8.82~: - 1.68~3 - 2.94 - 6.72(~; - zf)] 

where +asymt = 120 ~1~2~3. The renormalization scale is p G 1 GeV. The normalization 
of the nucleon valence wave function is also determined: 

fN(p = 1 GeV) = (5.2 f 0.3) x low3 GeV . 

A striking feature of the QCD sum rule prediction is the strong asymmetry implied by 
the first moment: 65% of the proton momentum (at P, =+ oo) is carried by the u quark 
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with helicity parallel to that of the proton. [See Fig. 2.1 The two remaining quarks each 
carry - 15 to 20% of the total momentum. 

The distribution amplitudes based on QCD sum rules are strikingly different from the 
symmetric forms derived in the Q2 + oo limit. This is in analogy to the-case of deep 
inelastic structure functions which only approach the formal limit of a J-function at z = 0 
at a momentum transfer scale very remote from the experimentally accessible range. The 
implication that the nucleon and pion valence wave functions are broad in longitudinal 
momentum also suggests a broad transverse momentum distribution (small radius) and 
indicates that quarks bound in light hadrons are highly relativistic. 

The striking shape of the CZ wave function is due to the fact that only the first 
few eigensolutions to the nucleon evolution equation are used as a basis. Since one is so 
far from full evolution, there is no compelling reason why this should be correct. The 
essential feature of the sum rule predictions is the strong asymmetry, together with the 
value of fN which give perturbative predictions for the proton and neutron form factors 
consistent both in &gn and magnitude with experiment. (See Fig. 4:) These main features 
of the QCD sum rule calculation for the nucleon distribution amplitude have recently been 
confirmed by King and Sachrajda? 

It has also been suggested that the relatively large normalization of Q”Ga(Q”) at 
large Q2 can be understood if the valence three-quark state has small transverse size, 
i.e., ,is large at the origin. 3o The physical radius of the proton measured from Fi(Q2) at 
low momentum transfer then reflects the contributions of the higher Fock states qqqg, 
qqqtjq (or meson cloud), etc. A small size for the proton valence wave function (e.g., 

R&q - 0.2 to 0.3 fm) can also explain the large magnitude of (ki) of the intrinsic quark 
momentum distribution needed to understand hard-scattering inclusive reactions. The 
necessity for small valence state Fock components can be demonstrated explicitly for the 
pion wave function, since +,rp/X is constrained by sum rules derived from X+ ---t .@v, and 
no ---) 77. One finds a valence state radius R:, - 0.4 fm, corresponding to a probability 

Pz2 - l/4. 

As shown by Carlson, Gari, and Stefanisa’ the proton and neutron form factors, the 
axial-vector nucleon form factor, and the leading N - A transition form factor can all be 
related to the shape of the nucleon distribution amplitude. Measurements of these form 
factors will provide severe tests on the applicability of the QCD sum rule predictions. 

I have emphasized that dimensional counting rules give a direct connection between the 
degree of hadron compositeness and the power-law fall of exclusive scattering amplitudes 
at fixed center of mass angle: M - Q4-nF(8Em) where n is the minimum number of 
initial and final state quanta. This rule gives the QCD prediction for the nominal power 
law scaling, modulo corrections from the logarithmic behavior of Q#, the distribution 
amplitude, and small power-law’corrections from Sudakov-suppressed Landshoff multiple 
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scattering contributions. For pp one predicts: 

g (FP + 77) = & f77(COS 0, !nPT) 

!& (pp + BB) Cv & f BB(,Os 8, i!npT) 
T 

The angular dependence reflects the structure of the hard scattering perturbative TH 
amplitude, which in turn follows from the flavor pattern of the contributing duality dia- 
grams. For example, a minimally connected quark interchange diagram is approximately 
characterized as 

111 
TIT-~;;. 

Comparisons between channels related by crossing of the Mandelstam variables places 
a severe constraint on the angular dependence and analytic form of the underlying QCD 
exclusive amplitude. For example, it is possible to measure and compare 

iiP-*77 : 7P--‘7P : 77-+iiP 

Fp*7* 
0 : 7p+lr*p : TOP + 7P * 

SLAC measurements32 of the 7p + n+n cross section at 8c~ = rrr/2 are consistent with 
the normalization and scaling 

One thus expects similar normalization and scaling for s @p -+ 7x*); all angle measure- 
ments up to s s 15 GeV2 appear possible given a high luminosity p beam. 

The dimensional counting rules give the leading power behavior of exclusive ampli- 
tudes and are essential features of the theory. They appear to be reasonably well verified 
by experiment including the recent series of measurements of meson-nucleon reactions done 
at BNL.” By comparing the magnitude and angular dependence of various meson-nucleon 
cross sections in the power-law scaling regime, one can establish that quark interchange 
amplitudes rather than flavor-independent gluon exchange diagrams appear to dominate 
at large momentum transfer. 
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In the case of pp elastic scattering, the fixed angle data on a log-log plot (see Fig. 11) 
appears consistent with the nominal s-l* f (O,,) dimensional counting production. How- 
ever, as emphasized by Hendry:’ the sl*do/dt cross section exhibits oscillatory behavior 
with PT. Even more serious is the fact that polarization measurements (see Fig. 12) show 
significant spin-spin correlations (ANN), not predicted by QCD-inspired models. suggest- 
ing significant non-leading corrections. Recent discussions of these effects have been given 
by Farrar35 and Lipkin? A possible explanation of the ANN effect and its connection 
with color transparency is given in the next section. 
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Figure 11. Comparison of proton-proton scattering at fixed B,, with the dimensional count- 
ing prediction. The best fit is s-9,7. 
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Figure 12. Spin asymmetry for polarized pp elastic scattering. From Ref. 37. 

3. Color T ransparency 

The QCD analysis of exclusive processes depends on  the concept of a  Fock state 
expansion of the nucleon wave function, projected onto the basis of free quark and gluon 
Fock states. The  expansion is done at equal time  on  the light-cone and in the physical 
l ight-cone gauge.  At large momentum transfer the lowest part icle-number “valence” Fock 
component  with all the quarks within an  impact distance bl 5  l/Q  controls the form 
factor at large Q  2. Such a  Fock state component  has a  small color dipole moment  and 
thus interacts only weakly with hadronic or nuclear matters8”’ Thus if elastic electron- 
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scattering is measured as a quasi-elastic process inside a nucleus, one predicts negligible 
elastic and inelastic final state interactions in the target as Q becomes large. 

This is illustrated in Fig. 13. Integrating over Fermi-motion, one predicts” that the 
differential cross section is additive in the number of nucleons in the nucleus.. The primary 
test of this idea is to study the attenuation of the recoil nucleon in quasi-elastic electron- 
nucleon scattering inside of a nuclear target. At large momentum transfers the final state 
nucleon should emerge from the target without suffering elastic or final state scattering. 
Most important, the shape of the transverse momentum distribution out of the scattering 
plane should be determined by the Fermi distribution alone. 

5837A25 A-l 

Figure 13. Quasi-elastic hadron nucleon scattering in 
a nuclear target. Color transparency predicts diminished 
initial and final state elastic and inelastic interactions at 
large momentum transfer. 

A test of this novel effect, Ucolor transparency”, has recently been carried out at 
Brookhaven for large momentum transfer elastic pp scattering at 8 z z/2 in nuclear 
targets by a BNL-Columbia collaboration?3 The attenuation of the recoil proton as it tra- 
verses the nucleus and its momentum distribution dN/dp, transverse to the x-z scattering 
plane were measured. The acceptance is restricted so that only quasi-elastic events are 
selected. The data for incident proton momentum plab = 10 GeV/c (fi = 4.54 GeV), 
in Aluminum (A=27) are particularly interesting. The dN/dp, distribution shows strong 
peaking for 1 pv J<: 0.2 GeV/c, consistent with Fermi smearing alone. In conventional 
multi-scattering theory, the dN/dp, distribution reflects the Fermi motion of the bound 
nucleon plus the initial state interactions of the incoming proton and the final state inter- 
actions of the two outgoing protons. The apparent absence of significant elastic initial or 
final state interactions provides striking confirmation of the color transparency concept. 
The transparency ratio 

T = Wdtbp + PP@ - 1)) 
Zd+(w + PP) 

measured at Pl&, = 10 GeV/ c in aluminum and carbon is about 50% of the value expected 
from standard multi-scattering theory, also supporting the color transparency predictions. 
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However the data at plob = 12 GeV/c, (fi = 4.93 GeV) show quite different behavior: 
the dN/dp, out-of-plane momentum distribution shows almost no peaking. The spreading 
of the recoil distribution appears consistent with conventional elastic Glauber initial and 
final state scattering. How can we account for this bizarre behavior? Perturbative QCD 
predicts that color transparency should be increasingly more accurate with increasing 
momentum transfer. The data seem to imply the reverse. I will mention two possible 
explanations: 

1. Interference of pinch and hard scattering contributions: QCD predicts contribu- 
tions to pp scattering from hard scattering processes, such as quark interchange, as 
well as “pinch” (Landshoff) contributions arising, for example, from three equal- 
angle nearly on-shell qq scatterings. As discussed earlier, pinch contributions are 
suppressed by Sudakov form factors in QCD, changing the sW8F(6,,) perturbative 
contribution to da/dt(pp + pp), close to the canonical s-lo dimensional counting 
prediction. Because of the complicated phase structure of the pinch amplitudes, 
it is conceivable that interference 4o with hard scattering terms can reproduce the 
observed factor of two oscillation 34 in s1°da/dt(r/2). A relative maximum occurs at 
s = 27 GeV2. (See Fig. 12). The vanishing of color transparency at Pl&, = 12 GeV/c 
in this model is then attributed to the relative dominance of the pinch amplitudes 
which involve somewhat larger scale physics than the short-distance dominated hard 

41 scattering contributions. 

2. Resonance plus hard scattering: The spin asymmetry ~~~~~ in pp scattering with 
both protons polarized normal to the scattering plane, shown in Fig. 12, displays 
a strong enhancement at fi cv 5 GeV, the same energy where the oscillation is 
large, and where color transparency fails. All of these phenomena can be simul- 
taneously explained if a di-baryon resonance exists with mass M II 5 GeV and 
width I’ N 0.5 GeV, in addition to the usual hard scattering contributions. The 
resonance contribution to the elastic cross section has a slow f3,, dependence and 
thus will dominate over the hard scattering contribution at large angles. Note that 
a spin-triplet S = 1 pp resonance will automatically lead to a large value for ANN. 
(As shown in Ref. 42, the pinch singularity model gives somewhat smaller values.) 
Furthermore, unlike the hard scattering contribution, a resonance couples to the 
full large-scale structure of the proton. Thus ordinary initial and final state inter- 
actions are expected in the nucleus wherever a di-baryon resonance dominates the 
scattering amplitude. 

Because of Fermi statistics, a triplet S = 1 pp state has odd parity. Thus the state 
at fi = 5 GeV cannot be a simple s-wave six-quark resonance. Di-baryon resonances can 
be associated with hidden color” degrees of freedom of the six-quark statet3 An attractive 
possibility is that there are a series of B = 2 overall color singlet states corresponding to 
six quarks plus one or more gluon constituents. The evidence for a ggg state at mass E 
3 GeV is discussed in section 10. The corresponding qqqqqqggg dibaryon resonance would 
then have mass N 5 GeV. An even more provocative possibility is that44 the resonance 
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corresponds to uuuuddc-d; i.e.: a B = 2 resonance at the charm production threshold. In 
either case one can account for the high mass scale of the di-baryon state, explain why 
the resonance is so inelastic (couples so weakly to two protons), and explain the strong 
ANN correlation. An important test of the resonance plus hard scattering model is that 
color transparency will reappear in dN/dp, at lower values of 19,~ where hard scattering 
dominates. If the resonance is a (hidden) charm state, its main decay channels will contain 
two charmed hadrons. The initial results are suggestive of diminished absorptive cross 
sections at large momentum transfer. If these preliminary results are verified they could 
provide a striking confirmation of the perturbative QCD predictions. 

Color transparency can be used to discriminate mechanisms for hadron scattering. For 
example, in the case of nucleon transition form factors measurable in inelastic electron 
nucleon scattering, the magnitude of the final state interactions should depend on the 
nature of the excited baryon. For example final state resonances which are higher orbital 
qqq states should have large color final state interactions. Perhaps the most dramatic 
application of color transparency is to the QCD analysis of the deuteron form factor 
at large momentum transfer. 118’S A basic feature of the perturbative QCD formalism is 
that the six-quark wave function at small impact separation controls the deuteron form 
factor at large Q2. (I discuss this further in section 11.) Thus even a complex six- 
quark state can have negligible final state interactions in a nuclear target-provided it is 
produced in a large momentum transfer reaction. One thus predicts that the “transparency 
ratio* g[eA + ed(A - l)]/ g[ed + ed] will increase with momentum transfer. The 
normalization of the effective number of deuterons in the nucleus can be determined by 
single-arm quasi-elastic scattering. 

4. Diffractive Electroproduction Channels 
at Large Momentum Transfer 

As a further example of the richness of the physics of exclusive electroproduction 
consider the “diffractive” channel r*p -+ pop. At large momentum transfer, QCD factor- 
ization for exclusive amplitudes applies, and one can write each helicity amplitude in the 
form: 2 

This represents the convolution of the distribution amplitudes 4(z,Q) for the in-going 
and out-going hadrons with the quark-gluon hard scattering amplitude TH(~+ + (qqq)p --t 

(qP),o + (wq)g) for th e scattering of the quarks from the initial to final hadron direc- 
tions. Since TH involves only large momentum transfer, it can be expanded in powers 
of cyb(Q2). The distribution amplitudes 4(zi,pT) only depend logarithmically on the mo- 
mentum transfer scale, as determined from the meson and baryon evolution equations. 
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As discussed in eralier sections, the functional dependence of the meson and baryon dis- 
tribution amplitudes can be predicted from QCD sum rules. A surprising feature of the 
Chernyak and Zhitnitskii analysis* of the distribution amplitude of helicity-zero mesons 
is the prediction of a double-hump shape of c$~(z,Q) with a minimum at equal partition 
of the light-cone momentum fractions. (See Fig. 14.) This result has now been confirmed 
in a lattice gauge theory calculation of the pion distribution amplitude moments by Mar- 
tinelli and Sachrajda? Similar conclusions also emerge from the wave function ansatz of 
Dziembowski and Mankiewicz!’ 

1.6 

. 

Figure 14. Theoretical predictions for the pion 
distribution amplitude. (See Kronfeld and Photiadis, 
Ref. 46.) 

The main dynamical dependence of the electroproduction amplitude is determined 
by TH. To leading order in c~,(p$), TH can be calculated from minimally-connected tree 
graphs; power counting predicts 

and thus 

to leading order in l/p+ and aa( This prediction is consistent with the dimensional 
counting rule da/dt - s~-~~(O~~) h w ere n = 9 is the total number of initial and final 
fields. The scaling laws hold for both real and virtual photons. The data32 for 7p -+ bn 
are consistent with the QCD scaling law prediction. 

The leading contributions at large momentum transfer in QCD satisfy hadron helicity 
conservation 6 

A, = A,, + A, . 

This selection rule is an important test of the vector coupling of the gluon in QCD. The 
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result is independent of the photon helicity! Furthermore, the leading behavior comes from 
the “point-like” Fock component of the photon. The vector-meson-dominance contribution 
corresponds to the qp state where the constituent momenta are restricted to be collinear 
to the photon. This region gives a power-law suppressed (l/~$)~ contribution to the cross 
section at fixed 0,,. 

The dependence on the photon mass in exclusive electroproduction amplitudes in QCD 
occurs through the scaling variable Q2/p$. Thus for Q2 < p$, the transverse photon 
electroproduction amplitudes are predicted to be insensitive to Q2. This is in striking 
consequence to the vector meson dominance picture, which predicts a universal l/(1 + 
Q2/m;) dependence in the amplitude. Furthermore, since only the point-like component 
of the photon is important at large pT, one expects no absorption of the initial state photon 
as it penetrates a nuclear target. The reaction 7’n ---) r-p is a particularly interesting 
test of color transparency since the dependence on photon mass and momentum transfer 
can be probed. 

Figure 15. Conventional description 
of nuclear shadowing of low Q2 virtual pho- 
ton nuclear interactions. The 2-step am- 
plitude is opposite in phase to the direct 
contribution on nucleon N2 because of the 
diffractive vect,or meson production on up- 
stream nucleon N1. 
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.The conventional theory4’ of shadowing of photon interactions is illustrated in Fig. 15. 
At large Q2 the two-step amplitude is suppressed and the shadowing effect becomes neg- 
ligible. This is the basis for a general expectation that shadowing of nuclear structure 
functions is actually a higher-twist phenomena, vanishing with increasing Q2 at fixed 
z. [A recent analysis on shadowing in electroproduction by Qiu and Mueller48 based on 
higher-twist inter-nucleon interactions in the gluon evolution equation in a nucleus sug- 
gests that shadowing decreases slowly as Q2 increases.] Thus one predicts simple additivity 
for exclusive electroproduction in nuclei 

g (7‘A + p’N(A - 1)) = A 2 (7*N -+ p”N) 

to leading order in l/pi. ( The bar indicates that the cross sections are integrated over 
the nucleon Fermi motion.) This is another application of color transparency. What is 
perhaps surprising is that the prediction holds for small Q2, even Q2 = O! Note that 
the leading contribution in l/p; (all orders in aa( comes from the 7 -P qp point-like 
photon coupling in TH where the relative transverse momentum of the qij are of order PT. 
Thus the “impact” or transverse size of the qij is l/p~, and such a “small” color dipole has 
negligible strong interactions in a nucleus. The final state proton and p” also couple in 
leading order to Fock components which are small in impact space, again having minimal 
initial or final state interactions. If this additivity and absence of shadowing is verified, it 
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will also be important to explore the onset of conventional shadowing and absorption as 
p$. and Q2 decrease. 

5. Electroproduction of Diffractive Channels and the QCD Pomeron 

Exclusive processes such as virtual Compton scattering, 7*p + 7p and p” electro- 
production 7’p -+ pop play a special role in QCD as key probes of “pomeron” exchange 
and its possible basis in terms of multiple-gluon exchange. 4Q At large photon energy, the 
diffractive amplitudes are dominated by J = 1 Regge singularities. 

Recent measurements of 7’p -+ pop by the EMC group5’ using the high energy muon 
beam at the SPS show three unexpected features: (1) The p” is produced with zero 
helicity at Q2 2 1 GeV2; (2) the falloff in momentum transfer becomes remarkably flat 
for Q2 2 5 GeV2; and (3) th e integrated cross section falls off approximately as l/Q”. 
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Figure 16. The slope parameter b for the form 
da/&t = Aebt’ fit to the EMC data (Ref. 50) for pip + pp”p 
for It’1 6 1.5 GeV2. 

The most surprising feature of the EMC data is the very slow fall-off in t for the 
highest Q2 data. (See Fig. 16.) Using the parameterization ebt’, t’ = It - tminl, the 
slope for 7 5 Q2 5 25 GeV2, Er, = 200 GeV data is b - 2 GeVe2. If one assumes 
Pomeron factorization, then the fall-off in momentum transfer to the proton should be at 
least as fast as the square of the proton form factor:’ representing the probability to keep 
the scattered proton intact. (See Fig. 17(b).) The predicted slope for ItI < 1.5 GeV2 is 
b - 3.4 GeVs2, much steeper than the EMC data. The background due to inelastic effects 
is estimated by the EMC group to be less than 20% in this kinematic domain. 
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In the vector meson dominance picture one expects: (1) dominantly transverse p 
polarization (s-channel helicity conservation); (2) fall-off in t similar to the square of 
the proton form factor (Pomeron factorization); and (3) a l/Q* asymptotic fall-off when 
longitudinal photons dominate. 

Y* 
PO 

P J-c P’ 

k, 

(0) 

(b) 
Local 

Pomeron 

Figure 17. (a) Diffractive electroproduction of vector 
mesons. (b) Local pomeron contribution coupling to one 
quark. (c) Perturbative pomeron contribution. For large 
transverse loop momentum k: z Q2 two-gluon exchange 
contributions are dominant. 

The physics of electroproduction is quite different in QCD. At large Q* > & diffrac- 
tive channels take on a novel character!’ (See Fig. 17(c).) The transverse momentum kT 
in the upper loop connecting the photon and p” is of order the photon mass scale, kT - Q. 
(Other regions of phase space are suppressed by Sudakov form factors). Thus just as in 
deep inelastic inclusive scattering, the diffractive amplitude involves the proton matrix 
element of the product of operators near the light-cone. In the case of virtual Compton 
scattering 7+p -+ 7p’, one measures product of two electromagnetic currents. Thus one 
can test an operator product expansion similar to that which appears in deep inelastic 
lepton-nucleon scattering, but for non-forward matrix elements. In such a case the upper 
loop in Fig. 17( c can be calculated using perturbative methods. The p enters through the ) 
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same distribution amplitude that appears in large momentum transfer exclusive reactions. 
Since the gauge interactions conserve helicity, this implies X, = 0, X, = XL independent 
of the photon helicity. The predicted canonical Q* dependence is l/Q’, which is not 
inconsistent with the EMC data. 

Since the EMC data is at high energy (E7 = 200 GeV, 8 >> p$.) one expects that the 
vector gluon exchange diagrams dominate quark-exchange contributions. One can show 
that the virtuality of the gluons directly coupled to the 7 --+ p transition is effectively of 
order Q*, allowing a perturbative expansion. The effect is a known feature of the higher 
Born, multi-photon exchange contributions to massive Bethe Heitler processes in QED. ‘* 

The dominant exchange in the t-channel should thus be the two-gluon ladder shown 
in Fig. 17(c). This is analogous to the diagrams contributing to the evolution of the 
gluon structure function. If each gluon carries roughly half of the momentum transfer to 
different quarks in the nucleon, then the fall-off in t can be significantly slower than that 
of the proton form factor, since in the latter case the momentum transfer to the nucleon 
is due to the coupling to one quark. This result assumes that the natural fall-off of the 
nucleon wave function in transverse momentum is Gaussian rather than power-law at low 
momentum transfer. 

. In the case of quasi-elastic diffractive electroproduction in a nuclear target, one expects 
neither shadowing of the incident photon nor final state interactions of the outgoing vector 
meson at large Q* (color transparency). 

Thus p” electroproduction and virtual Compton scattering can give essential informa- 
tion’on the nature of diffractive (pomeron exchange) processes. Data at all energies and 
kinematic regions are clearly essential. 

6. Formation Zone Phenomena in Deep Inelastic Scattering 

One of the remarkable consequences of QCD factorization for inclusive reactions at 
large pT is the absence of inelastic initial or final state interactions of the high energy 
particles in a nuclear target. Since structure functions measured in deep inelastic lepton 
scattering are essentially additive (up to the EMC deviations), factorization implies that 
the qp -+ p+p- subprocesses in Drell-Yan reactions occurs with equal effect on each 
nucleon throughout the nucleus. At first sight this seems surprising since one expects 
energy loss from inelastic initial state interactions. 

In fact, potential inelastic reactions such as quark or gluon bremsstrahlung induced 
in the nucleus which could potentially decrease the incident parton energy (illustrated in 
Fig. 18) are suppressed by coherence if the quark or gluon energy (in the laboratory frame) 
is large compared to the target length: 

Here p* is the difference of mass squared that occurs in the initial or final state collision. 
This phenomenon has its origin in studies of QED processes by Landau and Pomeranchuk. 
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The QCD analysis is given by Bodwin, Lepage and myself? Elastic collisions, however, are 
still allowed, so one expects collision broadening of the initial parton transverse momen- 
tum. Recent measurements of the Drell-Yan process TA + p+p-X by the NA-10 group’s 
at the CERN-SPS confirm that the cross section for muon pairs at large transverse mo- 
mentum is increased in a tungsten target relative to a deuteron target. (See Fig. 19). 
Since the total cross section for lepton-pair production scales linearly with A (aside from 
relatively small EMC-effect corrections), there must be a corresponding decrease of the 
ratio of the differential cross section at low values of the di-lepton transverse momentum. 
This is also apparent in the data. 
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Figure 19. The ratio a(x-W + /bp-X)/ 
a(n-D + /.I+/.J-X) as a function of the pair trans- 
verse momentum. From Ref. 53. 

Figure 18. Induced radiation from 
the propagation of an antiquark through 
a nuclear target in massive lepton produc- 
tion. Such inelastic interactions are coher- 
ently suppressed at parton energies large 
compared to a scale proportional to the 
length of the target. 

These results have striking implications for the interaction of the recoil quark jet in 
deep inelastic electron-nucleus scattering. For the quark (and gluons) satisfying the length 
condition, there should be no extra radiation induced as the parton traverses the nucleus. 
However, low energy gluons, emitted in the deep inelastic electron-quark collision, can 
suffer radiative losses, leading to cascading of soft particles in the nucleus. It is clearly 
very important to study this phenomena as a function of recoil quark energy and nuclear 
size. 

It should be emphasized that the absence of inelastic initial or final state collisions 
for high energy partons does not preclude collision broadening due to elastic initial or 
final state interactions. The elastic corrections are unitary to leading order in l/Q and 
do not effect the normalization of the deep inelastic cross section. Thus one predicts that 
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the mean square transverse momentum of the recoil quark and its leading particles will 
increase as AlIs. 

The transverse momentum of the recoil quark reflects the intrinsic transverse momen- 
tum of the nucleon wave function. The EMC effect So implies that quarks in a nucleus have 
smaller average longitudinal momentum than in a nucleon. ” Independent of the specific 
physical mechanism underlying the EMC effect, the quarks in a nucleus would also be 
expected to have smaller transverse momentum. This effect can counteract to a certain 
extent the collision broadening of the outgoing jet. 

Unlike the struck quark the remnant of the target system does not evolve with the 
probe momentum Q. However, since the quantum numbers of the spectator system is 3 
in color, nonperturbative hadronization must occur. Since the transverse momentum of 
the leading particles in the spectator jet is not affected by the QCD radiative corrections, 
it more closely reflects the intrinsic transverse momentum of the hadron state. 

It is also interesting to study the behavior of the transverse momentum of the quark 
and spectator jets as a function of z~i. For ZBj N 1, the 3-quark. Fock state dominates 
the reaction. If the valence state has a smaller transverse size2 than that of the nucleon, 
averaged over all of its Fock components, then one expects an increase of (k:) in that 
regime. Evidence for a significant increase of (k:) in the projectile fragmentation region 
at large quark momentum fractions has been reported by the SFM group” at the ISR for 
pp.+ di-jet +X reactions. 

7. Diffraction Channels and Nuclear 
Structure Function Non-Additivity 

One unusual source of non-additivity in nuclear structure functions (EMC effect) 
are electroproduction events at large Q2 and low z which nevertheless leave the nu- 
cleus completely intact z < (l/Mh~). In th e case of QED, analogous processes such as 
7*A -+ p+p-X yield nuclear-coherent contributions which scales as A,ff = Z2/A. (See 
Fig. 20(a).) Such processes contribute to the Bjorken-scaling, leading-twist cross section!’ 
In QCD we expect68 the nuclear dependence to be less than additive for the analogous 
gluon exchange contributions (see Fig. 20(b)) b ecause of their diffractive coupling to the 
nucleus. One can identify nuclear-coherent events contributions by observing a rapidity 
gap between the produced particles and the recoiling target. An interesting question is 
how the gluon momentum fraction sum rule is modified by the diffractive contributions. 
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Figure 20. Leading twist contributions to 
deep inelastic lepton-nucleus scattering that leave 
;Fa;p;et intact. (a) QED example. (b) QCD 

8. Studying “Jet-Coalescence” in Electroproduction 

What happens if two jets overlap in phase-space ? Certainly independent fragmenta- 
tion of the jets will fail because of coherent effects. For example, in QED there are strong 
final state interactions when two charged particles are produced at low relative velocity. 
In the case of particles of opposite charge Zre, -&e, the QED Born cross sections are 
corrected by the factor:” 

29rZ~Z2cu/V 
d = O” 1 - ezp(2n&&a/v) 

which increases the cross section dramatically at low relative velocity v. We expect similar 
effects in QCD when two jets can coalesce to attractive color channels (&&a + CFCY~ for 
qp color singlets). In the case of electroproduction, the low relative velocity enhancements 
provide a simple estimate of the increase of the ep -+ eX cross section at low values of 
IV2 = (q + P)~, beyond that given by simple duality arguments. 

Gunion, Soper and Is2 have recently proposed this jet coalescence mechanism as an 
explanation of the observed leading particle correlations seen in charm hadroproduction 
experiments and the anomalously large cross section 6o observed at the SPS for C-N + 
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A+(csu)X at large ZL. [The hyperon momentum was 135 GeV/c.] In the case of heavy 
quark electroproduction e.g. 7’9 + es, CE, one predicts an enhancement of the cross 
section when the produced quark is at low rapidity relative to the target fragmentation 
region. The correction to the rate, integrated over relative rapidity, is found to vanish 
only as a single inverse power of the heavy quark mass, and thus may give significant 
corrections to charm production rates and distributions. 

The Sommerfeld factor also can be used to estimate the behavior of exclusive ampli- 
tudes near threshold. For example, the production of meson pairs in two photon annihi- 
lation can be modeled” by calculating the differential cross section in QCD tree graph 
approximation (as in Fig. 6), and then multiplying by the QCD version of the Sommerfeld 
factor appropriate to the relative velocity and color correlation of each quark pair. Further 
discussion may be found in Ref. 61. 

9. Discretized Light-Cone Quantization 

Is it possible to solve the light-cone equation of motion HLC@ = M2\k for QCD, at 
least in an approximate form ? Recently H. C. Pauli and I have taken a direct approach 
of attempting to diagonalize the light-cone Hamiltonian on a free particle discretized mo- 

-. mentum Fock state basis. Since HLC, P+, pl, and the conserved charges all commute, 
HLC is block diagonal. By choosing periodic (or anti-periodic) boundary conditions for 
the basis states along the negative light-cone 

-. 
l+q%-- = +L) = *t@- = -L) , 

the Fock basis becomes restricted to finite dimensional representations. The eigenvalue 
problem thus reduces to the diagonalization of a finite Hermitian matrix. To see this, note 
that periodicity in .z- requires 

The dimension of the representation corresponds to the number of partitions of the integer 
K as a sum of positive integers n. One can easily show that P- scales as L: we define 
P- E &H . The eigenstates with P2 = M2 at fixed P+ and FJ. = 0 thus satisfy 

KHl\k) = M21Q) , 

independent of L (which corresponds to a Lorentz boost factor). Unlike conventional 
space-time lattices, L in DLCQ does not impose a physical scale on the theory. 

For a finite resolution K, the wave function is sampled at the discrete points 

k+ ni Zi=j$=K= 
K-l 

K 

The continuum limit is clearly K + 00. 
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The commuting operators K, Q and H = HO + V are given by 

K = c n(bLb, + dtnd,) + n(aLa,,) 
n=l 

Ho = c $ (b;bn + did,) + 
k: .ta n n 

n=l n 

V=92 ~ c btb,d;d,;-r”‘j; +. . . 
n,m,k,t=O 

I have only displayed one fermion anti-fermion (abelian) interaction, corresponding to 
instantaneous gluon exchange. The Q = 0 Fock state basis states are of the form 

b:dkal IO) = In; m; t) 

-. 
(n+m+t= K) h w ere IO) is the perturbative vacuum. (Spin, color and transverse 
momentum for any number of dimensions are represented as extra internal variables.) We 
then solve 

HK IXP) = M2 IXl?) 

on the free particle basis 

We also take the kl as discrete variables on a finite Cartesian basis consistent with the 
ultraviolet cutoff. 

The eigenvalues of H projected on the discrete light cone basis give not only the bound 
state spectrum, but also all of the multi-particle scattering states with the same quantum 
numbers. 

The simplest application of DLCQ to local gauge theory is QED in one-space and 
one-time dimensions. Since A+ = 0 is a physical gauge there are no photon degrees of 
freedom. The fermion anti-fermion interaction is simply 

J&92 
T (n ! t)2 - (k -‘rn)2 I 

There are also induced mass terms from pairwise contractions of the normal-ordered 
Hamiltonian. Explicit forms for the matrix representation of HQED are given in Ref. 22. 
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Schwinger has shown that massless (QED)r+r is equivalent to a free boson theory. 
In the light-cone formalism one can demonstrate the solution explicitly. One defines62 
bilinear operators in the fermion fields a, and a!, which have normal boson commutation 
rules. Then for Q = 0 

H = m2 2 i (b:bn + d:d,) + $5 f a~an . 
n+l n=l 

Thus for m2 = 0 (or g2/lr > m2), HQED is equivalent to free boson theory with rni = g2/n. 

For the general case m2 # 0, (QED)l+r can be solved by numerical diagonalization. 
The complete spectrum (normalized to the ground state mass) for K = 16 is shown as a 
function of coupling constant in Fig. 21. Since the physics can only depend on the ratio 
m/g, it is convenient to introduce the parametrization 

which maps the entire range of m and g onto the finite interval 0 2 X 5 1. . 
Figure 8 shows the structure function for the ground state of (QED)i+i as a function 

of A. In the weak binding limit g -+ 0 or (m + oo), the structure function becomes a 
delta function at equal partition of the constituent momentum, as expected. 

6 

5 

3 

Figure 21. Spectrum of QED in one- 2 
space and one-time dimension for harmonic 
resolution K = 16. The ratios itli/bfl are 
plotted as a function of the scaled coupling 
constant X = 1. The Schwinger limit is X = 
1. (From Ref. 22.) 1 
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In the strong coupling limit g + 00 (m + 0) the structure function becomes flat. 
This is consistent with the interpretation of the Schwinger boson as a point-like composite 
of a fermion and anti-fermion. The contribution to higher Fock states to the lowest mass 
structure function is strikingly small; the probability of non-valence states is less than 1% 
for any value of A. 

As discussed above, the application of DLCQ to a gauge invariant abelian field theory 
like QED2 is straightforward. For any given resolution K the number of contributing Fock 
states is finite because of the positivity of the light cone momenta and the Pauli principle 
(in the case of massless fermions). No unexpected problems appear in the calculations. 
QED2 in A+ = 0 gauge is much simpler than the scalar Yukawa field theory, since the 
transverse degrees of freedom and therefore the photons are absent in l+l dimensions. 
One can see immediately in the DLCQ approach that QED2 has an arbitrary mass scale. 
This scale can be adjusted by (re)normalizing the lowest mass to an arbitrary but fixed 
value. 

We have also established precise agreement between the DLCQ results and the exact 
solutions of the Schwinger model proper at any resolution K, as well as in the continuum 
limit. This result gives further evidence that quantizing a system at equal light cone time 
is equivalent to quantizing it at equal usual time. 

. 
In the case of the massive Schwinger model (QEDz), we established the existence of 

the continuum limit numerically; for sufficiently large resolution K the results become 
independent of K. The essential criteria for convergence is that the intrinsic dynamical 
structure of the wave functions is sufficiently resolved at the rational values z = n/K, 
n = 1,2, . . . . K - 1 accessible at a given K. Unlike the case in the usual space-time 
methods, the size of the discretization or lattice length scale L, is irrelevant. 

In the large K limit, the eigenvalues agree quantitatively with the results of 
Bergknoff 62 and with those of a lattice gauge calculation by Crewther and Hamer? This 
result is important in establishing the equivalence of different complementary nonpertur- 
bative methods. 

We also verified numerically that different Fock space representations yield the same 
physical results. In particular we solved the QED2 spectrum in the space corresponding 
to the solutions of the free, massive Dirac equation (i7pac, + mF)rC) = 0 as well as of the 
massless equation i7”8,5!~ = 0. We only found convergence problems for the very large 
coupling regime X near 1. 

Even for moderately large values of the resolution, DLCQ provides one with a qual- 
itatively correct picture of the whole spectrum of eigenfunctions. This aspect becomes 
important for the development of scattering theory within the DLCQ approach. For ex- 
ample we have found the rather surprising result that the lowest eigenfunction has virtually 
no components of 2f; 27) and higher particle Fock states (i.e. no ‘sea quarks’). 

I 
There are a number of important advantages of the DLCQ method which have emerged 

from this study of two-dimensional field theories. 
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(1) The Fock space is denumerable and finite in particle number for any fixed resolution 
K. In the case of gauge theory in 3+1 dimensions, one expects that photon or gluon quanta 
with zero Cmomentum decouple from neutral or color-singlet bound states, and thus need 
not be included in the Fock basis. The transverse momenta are additive and can be 
introduced on a Cartesian grid. Hornboste12’ has developed methods to implement the 
color degrees of freedom for the non-Abelian theories. 

(2) U n i e a 1 k 1 tt ice gauge theory, there are no special difficulties with fermions: e.g., 
no fermion doubling, fermion determinants, or necessity for a quenched approximation. 
Furthermore, the discretized theory has basically the same ultraviolet structure as the 
continuum theory. It should be emphasized that unlike lattice calculations, there is no 
constraint or relationship between the physical size of the bound state and the length 
scale L. 

(3) The DLCQ method has the remarkable feature of generating the complete spec- 
trum of the theory; bound states and continuum states alike. These can be separated 
by tracing their minimum Fock state content down to small coupling constant since the 
continuum states have higher particle number content. In lattice gauge theory it appears 
intractable to obtain information on excited or scattering states or their correlations. The 
wave functions generated at equal light cone time have the immediate form required for 

. relativistic scattering problems. 

(4) DLCQ is basically relativistic many body theory, including particle number cre- 
ation and destruction, and is thus a basis for relativistic nuclear and atomic problems. In 

_ the ‘non-relativistic limit the theory is equivalent to many-body Schrodinger theory. 

The immediate goal is gauge theory in 3+1 dimensions. Even in the Abelian case it 
will be interesting to analyze QED and the positronium spectrum in the large a! limit. 
Whether the non-Abelian theory can be solved using DLCQ -considering its greater num- 
ber of degrees of freedom and its complex vacuum and symmetry properties is an open 
question. The studies for Abelian gauge theory in l+l dimensions do give some grounds 
for optimism. 

10. Helicity Selection Rule and Exclusive Charmonium Decays 

The helicity selection rule may be relevant to an interesting puzzle concerning the 
exclusive decays of .J/~+!J and $J’ + ps, K*x and possibly other Vector-Pseudoscalar (VP) 
combinations. One expects J/S(@) to decay to hadrons via three gluons or, occasionally, 
via a single direct photon. In either case the decay proceeds via l@(0)12, where X&(O) is the 
wave function at the origin in the non-relativistic quark model for ci?. Thus it is reasonable 
to expect on the basis of perturbative QCD, that for any final hadronic state h: 

B(+’ --) h) B(t)’ + e+e-) 
Qh= B(J/$+ h) y B(J/+, e+e-) =0.135f0.023. 

Usually this is true, as is well documented in Ref. 64 for ppr”, 27r+2s-s”, X+X-W, and 
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3a+37rr-7r0, hadronic channels. The startling exceptions occur for p’lr and K’x where the 
present experimental limits” are 

Qpr < 0.0063 and QK.z < 0.0027 . 

Recently San Fu Tuan, Peter Lepage, and I65 have proposed an explanation of the puzzle 
by assuming (a) the general validity of the perturbative QCD theorems6 that total hadron 
helicity is conserved in high momentum transfer exclusive processes, but supplemented by 
(b) violation of the QCD theorem when the J/$J decay to hadrons via three hard gluons 
is modulated by the gluons forming an intermediate gluonium state 0 before transition 
to hadrons. In essence the model of Hou and Soni6’ takes over in this latter stage. 

Since the vector state V has to be produced with helicity X = fl, the VP decays 
should be suppressed by a factor l/s in the rate. The $’ seems to respect this rule. The 
J/$ does not and that is the mystery. Put in more quantitative terms, we expect on the 
basis of perturbative QCD66 

assuming quark helicity is conserved in strong interactions. This includes a form factor 
suppression proportional to [M,~I+/M+,]‘. The suppression (3) is not large enough, though, 
to account for the data- the exponent would have to be greater than 23 to explain it. 

.One can question the validity of the QCD helicity conservation theorem at the charmo- 
nium mass scale. Helicity conservation has received important confirmation in J/$J -t pi 
where the angular distribution is known experimentally to follow [l + cos2 191 rather than 
sin2 8 for helicity flip. The $J’ decays clearly respect hadron helicity conservation. It is 
difficult to understand how the J/$J could violate this rule since the J/T+!J and $J’ masses 
are so close. Corrections from quark mass terms, soft gluon corrections and finite energy 
corrections would not be expected to lead to large J/$ d ff i erences. It is hard to imagine 
anything other than a resonant or interference effect that could account for such dramatic 
energy dependence. 

A relevant violation of the QCD theorem which does have significance to this problem, 
is the recognition that the theorem is built on the underlying assumption of short-range 
“point-like” interactions amongst the constituents throughout. For instance J/$J(cE) -+ 3g 
has a short range Y l/m, associated with the short time scale of interaction. If, however, 
subsequently the three gluons were to resonate forming a gluonium state 0 which has 
large transverse size E ~/MH covering an extended (long) time period, then the theorem 
is invalid. Note that even if the gluonium state 0 has large mass, close to MJ/+, its size 
could still be the standard hadronic scale of 1 fm, just as the case for the D-meson and 
B-mesons. 

We have thus proposed, following Hou and Soni, that the enhancement of J/Cc, + K*K 
and J/rl, t pz decay modes is caused by a quantum mechanical mixing of the J/G with 
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a Jpc = I-- vector gluonium state 0 which causes the breakdown of the QCD helicity 
theorem. The decay width for J/t,b t pz(K*K) via the sequence J/$ * 0 -+ plr(K*K) 
must be substantially larger than the decay width for the (non-pole) continuum process 
J/t,b -+ 3 gluons --+ pz(K*f;i). In the other channels (such as p~,pj%r”,2~+2x-~o, etc.), 
the branching ratios of the 0 must be so small that the continuum contribution governed 
by the QCD theorem dominates over that of the 0 pole. For the case of the $’ the 
contribution of the 0 pole must always be inappreciable in comparison with the continuum 
process where the QCD theorem holds. The experimental limits on Qpr and QK.x are 
now substantially more stringent than when Hou and Soni made their estimates of MO, 
I’o-,~% and I?O+K.~ in 1982. 

It is interesting, indeed, that the existence of such a gluonium state 0 was first 
postulated by Freund and Nambu” based on 021 dynamics soon after the discovery of 
the J/g and $’ mesons. In fact Freund and Nambu predicted that the 0 would decay 
copiously precisely into pz and K*z with severe suppression of decays into other modes 
like e+e- as required for the solution of the puzzle. 

Final states h which can proceed only through the intermediate gluonium state satisfy 
the ratio: 

. B(t,b’ -+ e+e-) 
Qh = B(J/$ 

(MJ/+ - Mo)~ + i I’8 
--) e+e-) (M+ 8 - Mo)~ + i I’: ’ 

We have assumed that the coupling of the J/G and $’ to the gluonium state scales as the 
e+e- coupling. The value of Qh is small if the 0 is close in mass to the J/$. Thus we 
require 

(MJ/+ - Mo)~ + i ri S 2.6 Qh GeV2 . 

The experimental limit for QK.x then implies 

(MJI$ - Mo)~ + t I’$] 
112 

S 80 MeV 

This implies 1 MJ/+ - MO I< 80 MeV and I’0 < 160 MeV. Typical allowed values are 

MO = 3.0 GeV , l?o = 140 MeV 

or 

MO = 3.15 GeV , I?0 = 140 MeV . 

. . 

Notice that the gluonium state could be either lighter or heavier than the J/t,b. The 
branching ratio of the 0 into a given channel must exceed that of the J/t,b. 

It is not necessarily obvious. that a J pc = l-- gluonium state with these parameters 
would necessarily have been found in experiments to date. One must remember that 
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though 0 -+ pn and 0 + K*E are important modes of decay, at a mass of order 3.1 
GeV many other modes (all be it less important) are available. Hence, a total width I’0 Y 
100 to 150 MeV is quite conceivable. Because of the proximity of MO to MJ/#, the most 
important signatures for an 0 search via exclusive modes J/tC, + K’Kh, J/lc, ---) prh; 
h = AT, q, ‘I’, are no longer available by phase-space considerations. However, the search 
could still be carried out using $’ --, K’xh, $J’ + prh; with h = XX, and q. bother 
way to search for 0 in particular, and the three-gluon bound states in general, is via the 
inclusive reaction $J’ + (7~) + X, where the RX pair is an iso-singlet. The three-gluon 
bound states such as 0 should show up as peaks in the missing mass (i.e., mass of X) 
distribution. 

Perhaps the most direct way to search for the 0 is to scan jjp or e+e- annihilation at 
,/S within - 100 MeV of the J/t), triggering on vector/pseudoscalar decays such as rrp or 
lTK*. 

The fact that the pr and K*x channels are strongly suppressed in $’ decays but not 
in J/t) decays clearly implies dynamics beyond the standard charmonium analysis. As we 
have shown, the hypothesis of a three-gluon state 0 with mass within g 100 MeV of the 
J/$ mass provides a natural, perhaps even compelling, explanation of this anomaly. If 
this description is correct, then the $J’ and J/$J h a d ronic decays are not only confirming 
hadron helicity conservation (at the $J’ momentum scale) but are also providing a signal 
for bound gluonic matter in QCD. 

11. Exclusive Nuclear Processes in QCD 

One of the most elegant areas of application of QCD to nuclear physics is the domain 
of large momentum transfer exclusive nuclear processes. Rigorous results have been given 
by Lepage, Ji and myself45 for the asymptotic properties of the deuteron form factor at 
large momentum transfer. The basic factorization is shown in Fig. 22. In the asymp 
totic Q2 + oo limit the deuteron distribution amplitude, which controls large momentum 
transfer deuteron reactions, becomes fully symmetric among the five possible color-singlet 
combinations of the six quarks. One can also study the evolution of the =hidden color” 
components (orthogonal to the np and AA degrees of freedom) from intermediate to large 
momentum transfer scales; the results also give constraints on the nature of the nuclear 
force at short distances in QCD. 

Of the five color-singlet representations of six quarks, only one corresponds to the 
usual system of two color singlet baryonic clusters. 6g The exchange of a virtual gluon in 
the deuteron at short distance inevitably produces Fock state components where the three- 
quark clusters correspond to color octet nucleons or isobars. Thus, in general, the deuteron 
wave function will have a complete spectrum of “hidden-color” wave function components, 
although it is likely that these states are important only at small inter-nucleon separation. 

Despite the complexity of the multi-color representations of nuclear wave functions, 
the analysis45 of the deuteron form factor at large momentum transfer can be carried 
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Figure 22. Factorization of the deuteron form factor at large Q*. 

out in parallel with the nucleon case. On ly the m inimal six-quark Fock state needs to be  
considered to leading order in 1/Q2. The  deuteron form factor can then be  written as a  
convolution [see F ig. 221, 

. 1 

Ei(Q2) = /[dzj [&I &Y,Q) T~+7*46*(~> Y,Q) h(x,Q) , 

0 

-. where the hard scattering amp litude scales as 

T6’?+7=-“%  = H 

The anomalous dimensions 7: are calculated from the evolution equations for 4d(zi, Q) 
derived to leading order in QED from pairwise gluon-exchange interactions: (CF = 4/3, 
cd = -445) 

71 &(xi,Q) = -y j[dy] v(xi, yi)g,(yi>Q) . 

0 

Here we have defined 

Q(xi,Q) = fi x&(x&?), 
k=l 

and the evolution is in the variable 

The  kernel V is computed to leading order in cy1(Q2) f rom the sum of gluon interactions 
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between quark pairs. The general matrix representations of 7n with bases l-&I x? 
I > 

is given in Ref. 43. The effective leading anomalous dimension 70, corresponding to the 
eigenfunction H(xi) = 1, is 70 = (6/5)(C~/p). 

In order to make more detailed and experimentally accessible predictions, we will 
define the “reduced” nuclear form factor in order to remove the effects of nucleon com- 
positeness: ‘O 

Fd(Q2> fd(Q2) = Fi!(Q2/4) * 

The arguments for each of the nucleon form factors (FN) is Q2/4 since in the limit of zero 
binding energy each nucleon must change its momentum from N p/2 to (p + q)/2. Since 
the leading anomalous dimensions of the nucleon distribution amplitude is C~/2/3, the 
QCD prediction for the asymptotic Q2-behavior of fd(Q2) is 

. where -(2/5)(C~/p) = -8/145 for nf = 2. 

ix-- 
b 
x 

Figure 23. (a) Comparison of the .s? 
,D 

asymptotic QCD predictions with experi- 
ment using FN(Q~) = [1+(Q2/0.71 GeV2)lW2. 

;1 

The normalization is fit at Q2 = 4 GeV2. 
~~~~~ 
yo.1 - 

(b) Comparison of the prediction [l + 
(Q2/dMQ2) o( (f’n Q2)-1-(2/5)(CF/P) 

l_l 

with data. The value rnz = 0.28 GeV2 is 0 I I I I I 
used. 0 I ‘2 3 4 5 6 

1-13 Q2 (GeV2) 4115’2 

Although this QCD prediction is for asymptotic momentum transfer, it is interesting 
to compare it, directly with the available high Q2 data2’ (see Fig. 23). In general one 
would expect, corrections from higher twist effects (e.g., mass and kl smearing), higher 
particle number Fock states, higher order contributions in cy,(Q2), as well as non-leading 
anomalous dimensions. However, the agreement of the data with simple Q2fd(Q2) w const 
behavior for Q2 > l/2 GeV2 implies that, unless there is a fortuitous cancellation, all of 
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the scale-breaking effects are small, and the present QCD perturbative calculations are 
viable and applicable even in the nuclear physics domain. The lack of deviation from the 
QCD parameterization also suggests that the parameter A is small. A comparison with 
a standard definition such as Am would require a calculation of next to leading effects. 
A more definitive check of QCD can be made by calculating the normalization of fd(Q2) 
from TH and the evolution of the deuteron wave function to short distances. It is also 
important to confirm experimentally that the helicity X = X’ = 0 form factor is indeed 
dominant. 

Because of hidden color, the deuteron cannot be described solely in terms of standard 
nuclear physics degrees of freedom, and in principle, any physical or dynamical property of 
the deuteron is modified by the presence of such non-Abelian components. In particular, 
the standard “impulse approximation” form for the deuteron form factor 

Fd(Q2) = Fiody(Q2) FN(Q2) , 

where FN is the on-shell nucleon form factor, cannot be precisely valid at any momentum 
transfer scale Q2 = -q2 # 0 because of hidden color components. More important, even if 
only the nucleon-nucleon component were important, Thus the conventional factorization 

. cannot be reliable for composite nucleons since the struck nucleon is necessarily off-shell’l 
in the nuclear wave function: Ik” - k2 1 - %Q . ’ 2 Thus in general one requires knowledge 
of the nucleon form factors FN(q2, k2, k”) for th e case in which one or both nucleon legs 

_ are off-shell. In QCD such amplitudes have completely different dynamical dependence 
compared to the on-shell form factors. 

Although on-shell factorization has been used extensively in nuclear physics as a start- 
72 ing point for the analysis of nuclear form factors, its range of validity has never been 

seriously questioned. Certainly in the non-relativistic domain where target recoil and 
off-shell effects can be neglected, the charge form factor of a composite system can be 
computed from the convolution of charge distributions. However, in the general situation, 
the struck nucleon must transfer a large fraction of its momentum to the spectator system, 
rendering the nucleon state off-shell. As shown in Ref. 43, the region of validity of on-shell 
form factor factorization for the deuteron is very small: 

Q2 < 2MdCd 

i.e., Q 5 100 MeV. However, in this region the nucleon form factor does not deviate 
significantly from unity, so the standard factorization is of doubtful utility. The reduced 
form factor result has general utility at any momentum scale. It is also important to 
confirm experimentally that the helicity X = X’ = 0 form factor is indeed dominant. 

The calculation of the normalization Tzf7*d6q to leading order in aa will require 
the evaluation of over 300,000 Feynman diagrams involving five exchanged gluons. Fortu- 
nately this appears possible using the algebraic computer methods introduced by Farrar 
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and Nerl ‘7’ The method of setting the appropriate scale 0 of cyf(g2) in TH is given in 
Ref. 74. 

The deuteron wave function which contributes to the asymptotic limit of the form 
factor is the totally anti-symmetric wave function corresponding to the orbital Young 
symmetry given by [6] and isospin (T)+ spin (S) Young symmetry given by (33). The 
deuteron state with this symmetry is related to the NIV, AA, and hidden color (CC) 
physical bases, for both the (TS) = (01) and (10) cases, by the formula” 

Thus the physical deuteron state, which is mostly $NN at large distance, must evolve to 
the tj$]{33} state when the six quark transverse separations b’, < 0(1/Q) ---) 0. Since 
this state is 80% hidden color, the deuteron wave function cannot be described by the 
meson-nucleon isobar degrees of freedom in this domain. The fact that the six-quark 
color singlet state inevitably evolves in QCD to a dominantly hidden-color configuration 
at small transverse separation also has implications for the form of the nucleon-nucleon 
(S, = 0) p t t 1 o en ia , which can be considered as one interaction component in a coupled -. 
scattering channel system. 

As the two nucleons approach each other, the system must do work in order to change 
the six-quark state to a dominantly hidden color configuration; i.e., QCD requires that 
the nucleon-nucleon potential must be repulsive at short distances (see Fig. 24)? The 
evolution equation for the six-quark system suggests that the distance where this change 
occurs is in the domain where cra(Q2) most strongly varies. The general solutions of the 
evolution equation for multi-quark systems is discussed in Ref. 43. Some of the solutions 
are orthogonal to the usual nuclear configurations which correspond to separated nucleons 
or isobars at large distances. 

The existence of hidden color degrees of freedom further illustrates the complexity 
of nuclear systems in QCD. It is conceivable that six-quark d’ resonances corresponding 
to these new degrees of freedom may be found by careful searches of the y’d --) yd and 
-y*d --+ rd channels. 

“eff 

Figure 24. Schematic representation 
of the deuteron wave function in QCD in- 
dicating the presence of hidden color six- 
quark components at short distances. 
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12. Reduced Nuclear Amplitudes 

- 

One of the basic problems in the analysis of nuclear scattering amplitudes is how to 
consistently account for the effects of the underlying quark/gluon component structure 
of nucleons. Traditional methods based on the use of an effective nucleon/meson local 
Lagrangian field theory are not really applicable, giving the wrong dynamical dependence 
in virtually every kinematic variable for composite hadrons. The inclusion of ad hoc vertex 
form factors is unsatisfactory since one must understand the off-shell dependence in each 
leg while retaining gauge invariance; such methods have little predictive power. On the 
other hand, the explicit evaluation of the multi-quark hard-scattering amplitudes needed 
to predict the normalization and angular dependence for a nuclear process, even at leading 
order in ad requires the consideration of millions of Feynman diagrams. Beyond leading 
order one must include contributions of non-valence Fock states wave functions, and a 
rapidly expanding number of radiative corrections and loop diagrams. 

The reduced amplitude method:’ although not an exact, replacement for a full QCD 
calculation, provides a simple method for identifying the dynamical effects of nuclear sub- 
structure, consistent with covariance, QCD scaling laws and gauge invariance. The basic 
idea has already been introduced for the reduced deuteron form factor. More generally 
if we neglect nuclear binding, then the light-cone nuclear wave function can be written . 
as a cluster decomposition of collinear nucleons: tiq/~ = @N/A nN \k,/N where each nu- 
cleon has l/A of the nuclear momentum. A large momentum transfer nucleon amplitude 
then contains as a factor the probability amplitude for each nucleon to remain intact after 
absorbing l/A of the respective nuclear momentum transfer. We can identify each prob- 
ability amplitude with the respective nucleon form factor F (ii = +5 tA4 ). Thus for any 
exclusive nuclear scattering process, we define the reduced nuclear amplitude 

M 
m= 

n&l FN(t*i) 

The QCD scaling law for the reduced nuclear amplitude m is then identical to that of 
nuclei with point-like nuclear components: e.g., the reduced nuclear form factors obey 

fA(Q2) - FA(‘~?~) 

[FN(Q2,A2)]* - [‘1A-’ * 

Comparisons with experiment and predictions for leading logarithmic corrections to this 
result are given in Ref. 70. In the case of photo- (or electro-) disintegration of the deuteron 
one has 

M 
m7d-bnp = 

7d-v N 2- f(L) 
J’n(tn)J’p(tp) PT 

i.e., the same elementary scaling behavior as for M7~+qp. Comparison with experiment 
is encouraging (see Ref. 70.) showing that as was the case for Q2 fd(Q2), the perturbative 
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QCD scaling regime begins at Q2 ;5 1 GeV2. Detailed comparisons and a model for 
the angular dependence and the virtual photon-mass dependence of deuteron electro- 
disintegration are discussed in Ref. 70. Other potentially useful checks of QCD scaling of 
reduced amplitudes are 

mpp--rdr+ - PT2 fW 

mpd4i8r+ - PT4 fW 

mnd-wd - PT4 fW) * 

It is also possible to use these QCD scaling laws for the reduced amplitude as a 
parametrization for the background for detecting possible new di-baryon resonance states. 
In each case the incident and outgoing hadron and nuclear states are predicted to display 
color transparency, i.e. the absence of initial and final state interactions if they participate 
in a large momentum transfer exclusive reaction. 

13. Conclusions 

There has clearly been remarkable recent progress understanding the structure of the 
hadrons and their interactions from first principles in QCD. Lattice gauge theory and 
QCD sum rules are providing beautiful constraints on the basic shape of the distribution 
amplitudes of the mesons and baryons. A new method, discretized light-cone quantization, 
has been tested successfully for QCD in one space and one time dimensions and should 
soon yield detailed information on physical light-cone wavefunctions. 

The recent work of Dziembowski and Mankiewicz provides a convenient relativistic 
model for hadronic wavefunctions consistent with the known constraints. Their work 
provides the starting point for a consistent description of exclusive amplitudes such as 
form factors from low to high momentum transfer. The controversy concerning the range 
of validity of perturbative QCD predictions for exclusive amplitudes has thus been largely 
resolved. Where clear tests can be made, such as two-photon processes and the hadron 
form factors, the perturbative QCD predictions appear correct in scaling behavior, helicity 
structure, and absolute normalization. Most interesting, there is now evidence for the 
remarkable color transparency phenomenon predicted by perturbative QCD for quasi- 
elastic scattering within a nucleus. 

One of the most serious challenges to the validity of QCD are the pseudo-scalar vector 
decays of the J/9. We have shown that this puzzle can be resolved if a gluonium state 
exists with mass near 3 GeV/c. I have also discussed a possible explanation for the strong 
spin correlations in proton-proton elastic scattering in terms of novel type of high mass 
di-baryon resonance. A key tool in this analysis is the use of color transparency in nuclei 
to filter out large and short distance phenomena. I also discussed the role of the formation 
zone and target length condition in understanding nuclear effects in the propagation of 
quarks and gluons in nuclear matter. 
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Another new and important testing ground of QCD is meson electro-production at 
large virtual photon mass. We have shown how the operator product analysis can be ex- 
tended to these exclusive channels, with results in strong contrast with vector meson dom- 
inance models. Many of the anomalous features recently observed in p” muo-production 
are readily explained in the QCD approach. 

Finally, I have discussed applications of QCD to nuclear amplitudes and to the basic 
structure of the nucleus itself. I have also noted areas of potential conflict between QCD 
and more conventional approaches to nuclear interactions; e.g. Dirac phenomenology, 
factorization of on-shell nucleon form factors, and the breakdown of conventional Glauber 
theory due to color transparency in exclusive reactions, and formation zone phenomenology 
in inclusive reactions. 

Acknowledgements 

I would like to thank Professor Leonard Kisslinger and Professor Ye Ming-han for 
their hospitality in Beijing and for organizing this very interesting symposium. I also 
wish to acknowledge helpful discussions with G. de Teramond T. Eller, K. Hornbostel, 
T. Jaroszewicz, C.R. Ji, G.P. Lepage, A. Mueller, H.C. Pauli, and S:F. Tuan. Parts of this 
talk were also presented to the Workshop on Electronuclear Physics with Internal Targets, 
SLAC, 1987, and the VIIIth Nuclear and Particle Physics Summer School, Launceston, . 
Australia, 1987. 

References 

1.. An analysis of Z-graph suppression for composite systems will be given by S. J. 
Brodsky and T. Jaroszewicz, (in progress). See also M. Blesynski and T. Jaroszewski, 
UCLA preprint, 1987. 

2. G.P. Lepage and S.J. Brodsky, Phys. Rev. D22, 2157 (1980); G.P. Lepage, S.J. 
Brodsky, T. Huang and P.B. Mackenzie, CLNS-82/522, published in the Proc. of 
the Banff Summer Institute, 1981. 

3. S.J. Brodsky, Y. Frishman, G.P. Lepage and C. Sachrajda, Phys. Lett. 91B, 239 
(1980). 

4. S.J. Brodsky and G.R. Farrar, Phys. Rev. Lett. 31, 1153 (1973); Phys. Rev. Dll, 
1309 (1975). 

5. S.J. Brodsky and G.P. Lepage, Phys. Rev. D23, 1152 (1981); S.J. Brodsky, G.P. 
Lepage and S.A.A. Zaidi, Phys. Rev. D23, 1152 (1981). 

6. S.J. Brodsky and G.P. Lepage, Phys. Rev. D24, 2848 (1981). 

7. V. D. Burkert, CEBAF-PR-87-006. 

8. V.L. Chernyak and A.R. Zhitnitskii, Phys. Rept. 112, 173 (1984). See also Xiao- 
Duang Xiang, Wang Xin-Nian, and Huang Tao, BIHEP-TH-84, 23 and 29 (1984). 

9. I.D. King and C.T. Sachrajda, SHEP-85/86-15 (1986), p. 36. 

10. Z. Dziembowski and L. Mankiewicz, Warsaw University preprint (1986). 
43 



11. S.J. Brodsky and B.T. Chertok, Phys. Rev. Lett. 37, 269 (1976); Phys. Rev. D114, 
3003 (1976). 

12. O.C. Jacob and L.S. Kisslinger, Phys. Rev. Lett. 56, 225 (1986). 

13. N. Isgur and C.H. Llewellyn Smith, Phys. Rev. Lett. 52, 1080 (1984). 

14. C-R Ji, A.F. Sill and R.M. Lombard-Nelsen, SLAC-PUB-4068 (1986). 

15. R.G. Arnold et al., SLAC-PUB-3810 (1986). 

16. M. Gari and N. Stefanis, Phys. Lett. Bl75, 462 (1986), M. Gari and N. Stefanis, 
preprint RUB-TPII-8621 (1986). 

17. S.J. Brodsky and G.P. Lepage, Phys. Rev. D24, 1808 (1981). The next to leading 
order evaluation of TH for these processes is given by B. Nezic, Ph.D. Thesis, 
Cornell Univ. (1985). 

18. J. Boyer et al., Phys. Rev. Lett. 56, 207 (1986). 

19. A.H. Mueller, Phys. Rept. 73, 237 (1981). S ee also S. S. Kanwal, Phys. Lett. 294, 
(1984). 

20. A. Sen, Phys. Rev. D24, 3281 (1981). 

21. H.C. Pauli and S.J. Brodsky, Phys. Rev. D32, 1993 (1985); Phys. Rev. D32, 2001 
(1985). 

22. T. Eller, H.C. Pauli and S.J. Brodsky, Phys. Rev. D35, 1493 (1987). 

23. K. Hornbostel, to be published. 

24. G.P. Lepage and S.J. Brodsky, Phys. Rev. D22, 2157 (1980). 

25. M.D. Mestayer, SLAGReport 214 (1978); F. Martin et al., Phys. Rev. Lett. 38, 
1320 (1977); W.P. Schultz et al., Phys. Rev. Lett. 38, 259 (1977); R.G. Arnold 
et al., Phys. Rev. Lett. 40,1429 (1978) and SLAC-PUB-2373 (1979); B.T. Chertok, 
Phys. Lett. 41, 1155 (1978); D. Day et al., Phys. Rev. Lett. 43, 1143 (1979). 
Summaries of the data for nucleon and nuclear form factors at large Q2 are given 
in B.T. Chertok, in Progress in Particle and Nuclear Physics, Proceeding of the 
International School of Nuclear Physics, 5th Course, Erice, 1978, and Proceedings 
of the XVI Rencontre de Moriond, Les Arcs, Savoie, France, 1981. 

26. D. Sivers, S. Brodsky and R. Blankenbecler, Phys. Rept. 23C, 1 (1976). 

27. S.S. Kanwal, Phys. Lett. 142B, 294 (1984); A. Mueller, Phys. R.ept. 73, 237 (1981). 

28. S.J. Brodsky and G.P. Lepage, Phys. Rev. D24, 1808 (1981). The calculation of 
77 + BB is given by G.R. Farrar, E. Maina and F. Neri, RU-85-08 (1985). 

29. V.L. Chernyak and I.R. Zhitnitskii, Nucl. Phys. B246, 52 (1984). 

30. S.J. Brodsky, T. Huang and G.P. Lepage, in Particles and Fields 2, edited by 
A.Z. Capri and A.N. Kamal, Plenum (1983); T. Huang, SLAC-PUB-2580 (1980), 
published in the Proceedings of the XXth International Conference on High Energy 
Physics, Madison, Wisconsin, 1980. 

44 



31. C. E. Carlson, M. Gari, and N. G. Stefanis, Phys. Rev. Lett. 58, 1308 (1987). 

32. R.L. Anderson et al., Phys. Rev. Lett. 30, 627 (1973). 

33. S. Heppelmann, DPF Meeting, Salt Lake City, 1987; G.C. Blazey et al., Phys. Rev. 
Lett. 55, 1820 (1985). 

34. A.W. Hendry, Phys. Rev. DlO, 2300 (1974). 

35. G.R. Farrar, RU-85-46 (1986). 

36. H.J. Lipkin, private communication. 

37. A.D. Krisch, UM-HE-8639 (1987). 

38. A.H. Mueller, Proc. of the Moriond Conf., 1982. 

39. S.J. Brodsky, XIII Int. Symp. on Multiparticle Dynamics, 1982. 

40. J.P. Ralston and B. Pire, Phys. Rev. Lett. 57, 2330 (1986). 

41. This explanation has also been advocated by J. Ralston (private communication). 

42. S.J. Brodsky, C.E. Carlson and H.J. Lipkin, Phys. Rev. D20, 2278 (1979); H.J. 
Lipkin, private communication. 

43. C.-R. Ji and S.J. B&sky, Phys. Rev. D34, 1460; D33, 1951; D33, 1406; D33, 
. 2653 (1986); Phys. Rev. Lett. 55, 2257 (1985). 

44. S. J. Brodsky and G. de Teramond, in preparation. 

45. S.J. Brodsky, C.-R. Ji and G.P. Lepage, Phys. Rev. Lett. 51, 83 (1983). 

46. G. Martinelli and C.T. Sachrajda, CERN-TH-4637/87 (1987). The results are 
based on the method of S. Gottlieb and A.S. Kronfeld, Phys. Rev. D33,227 (1986); 
A.S. Kronfeld and D.M. Photiadis, Phys. Rev. D31, 2939 (1985). 

47. S.J. Brodsky and J. Pumplin, Phys. Rev. 182, 1794 (1969); S.J. Brodsky, F.E. 
Close and J.F. Gunion, Phys. Rev. D6, 177 (1972). 

48. A.H. Mueller and J. Qui, Nucl. Phys. B268, 427 (1986); J. Qui, preprint CU-TP- 
361. 

49. S.J. Brodsky and A.H. Mueller, in preparation. 

50. J.J. Aubert et al., Phys. Lett. 123B, 275 (1983); For recent reviews see E. L. 
Berger, ANGHEP-PR-87-45 and E.L. Berger and F. Coester, ANGHEP-PR-87-13 
(to be published in Ann. Rev. of Nucl. Part. Sci.). 

51. A. Donnachie and P.V. Landshoff, Phys. Lett. 185B, 403 (1987). 

52. S.J. Brodsky, J.F. Gunion and D. Soper, SLAC-PUB-4193 (1987). 

53. P. Bordalo et al., CERN EP/87-67 and 68 (1987). 

54. S.J. Brodsky, G.T. Bodwin and G.P. Lepage, in the Proc. of the Volendam Multi- 
part. Dyn. Conf., 1982, p. 841; Proc. of the Banff Summer Inst., 1981, p. 513. This 
effect is related to the formation zone principle of L. Landau and I. Pomeranchuk, 
Dok. Akademii Nauk SSSR 92, 535,735 (1953). 

45 



55. For a recent review and further theoretical references, see E.L. Berger and F. Co- 
ester, ANGHEP-PR-87-13 (1987). 

56. H.G. Fischer, presented at the Leipzig Conference, 1984. 

57. G. Alexander, E. Gotsman and U. Maor, Phys. Lett. 161B, 384 (1985). 

58. S.J. Brodsky and M. Soldate, unpublished. 

59. A. Sommerfeld, Atombau and Spektallinen (Vieweg, Braunschweig, 1939). 

60. S.F. Biagi et al., Z. Phys. C28, 175 (1985). 

61. S. J. Brodsky, G. Kopp, and P. Zerwas Phys. Rev. Lett. 58, 443 (1987). 

62. H. Bergknoff, Nucl. Phys. B122, 215 (1977). 

63. D.P. Crewther and C.J. Hamer, Nucl. Phys. B170, 353 (1980). 

64. M.E.B. Franklin, Ph.D Thesis (1982), SLAG254, UC-34d; M.E.B. Franklin et al., 
Phys. Rev. Lett. 51, 963 (1983); G. Trilling, in Proceedings of the Twenty-First 
International Conference on High Energy Physics, Paris, 2631 July 1982; E. Bloom, 
ibid. 

65. S.J. Brodsky, G.P. Lepage, and San Fu Tuan, SLAC-PUB-4276 (1987). 

-. 66. S.J. Brodsky and G.P. Lepage, Phys. Rev. D24, 2848 (1981). 

67. Wei-Shou Hou and A. Soni, Phys. Rev. Lett. 50, 569 (1983). 

68. P.G.O. Freund and Y. Nambu, Phys. Rev. Lett. 34, 1645 (1975). 

69. See, e.g., V. Matveev and P. Sorba, Nuovo Cimento Lett. 20, 435 (1977). 

70. S.J. Brodsky and J.R. Hiller, Phys. Rev. C28, 4115 (1983); S.J. Brodsky and 
B.T. Chertok, Phys. Rev. Lett. 37, 269 (1976), Phys. Rev. Dl4, 3003 (1976); S.J. 
Brodsky, in Proceedings of the International Conference on Few Body Problems in 
Nuclear and Particle Physics, Lava1 University, Quebec, 1974. 

71. For a general discussion of off-shell nucleon form factors, A.M. Bincer, Phys. Rev. 
118, 855 (1960). 

72. S.A. Gurvitz, Phys. Rev. C22, 725 (1980). M eson exchange current contributions 
take the form of the reduced form factor. See R. Blankenbecler and J. F.Gunion, 
Phys. Rev. D4, 718 (1971). 

73. G.R. Farrar and F. Neri, Phys. Lett. 130B, 109 (1983). 

74. S.J. Brodsky, G.P. Lepage and P.B. Mackenzie, Phys. Rev. D28, 228 (1983). 

75. M. Harvey, Nucl. Phys. A352, 301 (1981) and A352, 326 (1981). 

76. Similar considerations for nonrelativistic systems are given in A. Faessler et al., 
Nucl. Phys. A402, 555 (1983); S. Furui and A. Faessler Nucl. Phys. A397, 413 
(1983). 

46 


