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ABSTRACT 

. 
We study the heterotic string on the simplest (non-trivial) Calabi-Yau man- 

ifold, K3, and its orbifold limits. We set the background gauge connection equal 

to the spin connection. The massless spectrum of the field theory that is the low 

energy limit of the Es @ Es string is derived on K3. Some terms in the effective 

Lagrangian for the massless modes are shown to be determined by the topology 

of K3. Several orbifold limits of K3 are described as T4/Zl , after the singular 

points are removed and replaced by well behaved spaces. Massless spectra of 

the full string theory on these orbifolds are obtained. Orbifold and manifold 

results are compared. Knowing how to blow up the orbifolds determines much 

of the full string massless spectrum, including information about the spectra of 

the individual twisted sectors. 
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1. INTRODUCTION 

The space of vacuum solutions to the heterotic string theory is enormous and 

there is no known way to decide which solution the string theory will choose as 

its preferred vacuum. More detailed knowledge of this space, and the solutions 

themselves, may help in solving this dilemma. 

Two classes of vacuum solutions that yield quasi-realistic effective theories 

are those on Calabi-Yau manifolds ’ and those on orbifolds .213 These two classes 

are related; many of the orbifold compactifications are singular limits of Calabi- 

Yau compactifications. It is important to understand their relation, since much 

more can be said about strings on orbifolds than about strings on Calabi-Yau 

manifolds; perhaps some of this information can be carried over to the Calabi-Yau 

. case. If we restrict to these two classes, there is a unique theoretical laboratory. 

K3 is the simplest (non-trivial) Calabi -Yau manifold. It also has several distinct 

orbifold limits. 

In this paper we will study heterotic string propagation on K3 and its orb- 

ifold limits. We will consider the Es @  Es string and derive the massless spectra 

obtained by setting the background gauge connection equal to the spin connec- 

tion.“2’3 We will consider only those orbifold limits of K3 that are obtained as 

the four-dimensional torus T4 with points identified under the action of a group 

21. We denote these orbifold limits as K3(Zl)=T4/Zi . 

K3 has been discussed extensively in the physics literature. A review of its 

properties can be found in Ref. 4 . The simplest orbifold limit of K3, K3(&), 

has been 5-7 studied. We are aware of no discussions of the other orbifold limits 

K3(&), l # 2, and the spectra of heterotic strings on them. 
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The layout of this paper is as follows. In the second chapter, we analyse the 

propagation of the Es 8 Es string on the manifold K3. On a non-flat manifold, 

one can only deal with the field theory that is the low energy limit of the heterotic 

string. In section 2.1, the massless spectrum obtained from this theory is derived 

using index theory.* In section 2.2 these results are confirmed by writing the 

internal wave functions of the massless modes in terms of the harmonic forms on 

K3. This knowledge is also put to use by deriving terms in the six-dimensional 

effective lagrangian that are determined by the topology of K3. 

Chapter 3 is concerned with the orbifold limits of K3. In section 3.1 the 

orbifolds K3 (2 ) 1 are described. Their relation to the manifold K3 is established. 

Since the orbifolds K3(2) 1 are flat except at isolated singular points, the full 

string theory (not just the low energy limit) can be solved.2’3 This is done in 
. 

section 3.2. The results are compared with the earlier results. Finally, chapter 4 

is the conclusion. 

2. LOW ENERGY FIELD THEORY ON K3 

The authors of Ref. 1 showed that, assuming the background torsion van- 

ishes, requiring simple supersymmetry in four dimensions demands that the in- 

ternal manifold be a Ricci-flat Calabi-Yau space, provided the background gauge 

connection is set equal to the spin connection. Various consequences of this sce- 

nario have been worked out ‘-11 . What we do in this chapter is the analogue 

of the work just mentioned for the case of a four-dimensional internal manifold. 

The motivation for doing this is increased simplicity, and we will in fact find that 

much more can be said in the simpler four-dimensional case. 

: 
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2.1. MASSLESS SPECTRUM BY INDEX THEORY 

It can be verified that the analysis of Ref. 1 may be carried directly over 

to the case of a four-dimensional internal space. The preservation of simple 

supersymmetry in six dimensions requires that the internal space be a Calabi- 

Yau manifold with Ricci-flat metric tensor, assuming the background torsion 

vanishes. Although there is an enormous number of six-dimensional Calabi-Yau 

manifolds, the unique (non-trivial) four-dimensional Calabi-Yau space is K3, and 

the only two-dimensional example is the trivial torus. Thus K3 is the unique 

“test bed” for study of compactification on Calabi-Yau spaces. 

K3 has Euler characteristic 24, with Betti numbers bo = b4 = 1, bl = b3 = 0, 

and b2 = 22. A complex Riemann tensor in four dimensions that is Ricci-flat 

must be either self-dual or anti-self-dual. We choose an anti-self-dual Riemann . 

curvature, so that the signature of K3 is r = bz - b2 = -16, i.e. the b2 = 22 

harmonic 2-forms can be decomposed into b$ = 3 self-dual and b, = i9 anti-self- 

dual harmonic 2-forms. Since the Ricci-flat metric is KZhler, the harmonic forms 

can also be decomposed into harmonic forms with complex indices, counted by 

the Hodge numbers hPq . The nonzero hPq are ho0 = h22 = ho2 = h20 = 1 

and hll = 20. All the harmonic (1,1)-f orms are anti-self-dual, except the self- 

dual K%hler form K = ~gjhdz’ A dz ‘. The remaining self-dual 2-forms are the 

(0,2)-form, given by the antisymmetric tensor cij, and its complex conjugate 

(2,0)-form. The SU2- invariant tensor c;j appears because the holonomy group 

of K3 is SU2. 

The analysis of Ref. 1 is done on the field theory that is the low energy limit 

of the heterotic string. This field theory is ten-dimensional super-Yang-Mills 

theory coupled to ten-dimensional supergravity.12 The relevant supersymmetry 
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multiplets are the ten-dimensional supergravity multiplet R( lo), and super-Yang- 

Mills multiplet Y (10) : 

R(lO) = {SMN, &I, BMN, q(+), P) 

Y(10) = {AM, A(-)} 
(24 

R(lO) contains the graviton gMN, a negative chirality Majorana-Weyl gravitino 

( 1 \Ei , an antisymmetric tensor BMN, a positive chirality Majorana-Weyl spinor 

*(+I, and the dilaton cp. Y(10) includes a vector AM and a negative chiral- 

ity Majorana-Weyl spinor A(-), both transforming in the adjoint representation 

(248,l) ~3 (1,248) of the gauge group Es @  Es. 

The potential anomalies of this theory are cancelled because the antisym- 
13 metric tensor transforms non-trivially under the gauge and Lorentz groups. 

. 
Assuming the torsion H vanishes in the background implies that 

-. dH = 0 = $T~F~ - trR2 (24 

One solution of this constraint is to set the gauge connection equal to the spin 

connection, A = w, in the background. We will now derive the resulting massless 

spectrum in six dimensions obtained by doing this. This calculation has already 

been carried out, in Ref. 8. 

Massless modes are solutions of the linearised field equations. With the vac- 

uum of the form Ms @  K3, M6 being six-dimensional Minkowski space, these 

solutions can be written as direct products of tensors (or spinors) on Me with 

tensors (or spinors) on K3. The tensors (or spinors) on Me will be the wave 

functions of zero-mass particles in six dimensions provided the corresponding 

objects on K3 satisfy certain differential equations. So there is a one to one 

5 



correspondence between massless six- dimensional particles and solutions of cer- 

tain differential equations on the internal space, K3. The massless spectrum can 

be determined by counting the numbers of solutions to the internal differential 

equations. The internal differential equations are determined by the equations of 

motion of the ten-dimensional fields present in the theory. 

The situation is made simpler by supersymmetry. All six-dimensional par- 

ticles must be grouped into multiplets of simple supersymmetry. The possible 

massless multiplets are the supergravity multiplet R(6), the tensor supermultiplet 

T(6), the Yang-Mills supermultiplet Y(6), and the scalar supermultiplet S(6): 

v3) = w~;W-W 
(2-3) . Y(6) = {A,, A(+)} 

S(6) = {x’-),4d} 
-. 

(+I R(6) contains a graviton gPV, a Weyl gravitino ?+!J~ , and a self-dual antisym- 

metric tensor Biz). T(6) contains an anti-self-dual antisymmetric tensor BhiS;), 

a Weyl spinor T/J(-), and a scalar cp . Y(6) includes a vector A, and a gaugino 

it+); and the component fields of S(6) are a Weyl fermion ~(-1 and four scalars 

Since supersymmetry pairs bosons with fermions in the way we have just 

described, it is sufficient to count the massless fermions to deduce the full massless 

spectrum. To count the massless fermions, we use index theory. The index of a 

fermion is the difference in the numbers of normalisable negative chirality and 

positive chirality solutions of the equation of motion. At least this number of 

solutions (of the correct chirality) cannot be paired with solutions of opposite 
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chirality, and so must be massless solutions. Assuming these are the only zero- 

mass solutions, we can derive the full massless spectrum. 

Let us first use this method on the supergravity multiplet R(10).14 Consider 

the spinor q(+)(ur) = $(z) QD q(y), where I/J(Z) is a spinor on MS, whose coordi- 

nates we denote by zp, and q(y) is a spinor on K3, whose coordinates are ym. 

T/J(Z) will be a massless six-dimensional field provided r](y) satisfies the zero-mass 

Dirac equation on K3 : 

rrnb f-l(Y) = Y%(Y) = 0. 

Here V, is the gravitational covariant derivative on K3. The Dirac index on K3 

is 4 

Iy(K3) = n\-) - n\+) = l 
24(8r2) / 

trRr\R = 2 
5 I (24 

K3 

Each of the two unpaired negative chirality zero-modes on K3 give rise to what 

would have the right number of degrees of freedom to be a Majorana-Weyl positive 

chirality fermion in six dimensions. Majorana-Weyl fermions do not exist in six 

dimensions, however. So the two K3 zero-modes combine to result in one Weyl 

positive chirality six-dimensional fermion $(+)(z) . 

Similarly, the ten-dimensional gravitino !Pk)( w gives rise to six-dimensional ) 

gravitinos through Dirac zero-modes on K3. This happens when the vector index 

M is restricted to the external space Me : &‘(w) = ?&+I 8 q(-)(y). The two 

Dirac zero-modes yield one positive chirality gravitino Gi+‘(z) in six dimensions. 

When the gravitino index takes values on K3, Xl!h’(lu) = x(z) @  $m(y), 

massless solutions T+!J~ (y) of the internal Rarita-Schwinger equation yield massless 
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spin-i fields +( x in six dimensions. The spin-! (Rarita-Schwinger) index on K3 ) 

is 

Is (K3) = -21 Iy(K3) = -42 

But this index includes ghost contributions. There are just 40 positive chirality 

Rarita-Schwinger zero-modes on K3,14 giving rise to 20 negative chirality spin-i 

fields X(-)(Z) in six dimensions. 

The knowledge of these zero-modes is almost enough to give us the full mass- 

less spectrum arising from R(lO). Th ere is an ambiguity as to where to place the 

negative chirality fermions - in S (6) or T(6) multiplets. However, it is known 15 

that there is no six-dimensional Lorentz-invariant action for a single unpaired 

self-dual or anti-self-dual tensor field Bb$) or BiG) . Only when they are paired 

into unconstrained tensors B,, can we write such an action. The original ac- 

tion for the ten-dimensional field theory is Lorentz invariant, and we have chosen 

a background Me @  K3 such that this invariance is not spontaneously broken. 

Therefore the single self-dual tensor B$) of R(6) must be paired with a single 

anti-self-dual tensor IIhi) of T(6). Therefore R(lO) yields 

R(lO) d R(6) + T(6) + 2OS(6). (2.5) 

We now move on to the Yang-Mills sector. The sole ten-dimensional fermion 

in this sector in the gaugino A(-)(w), t ransforming in the adjoint representation 

(248,1) @  (1,248) of the gauge group Es @I Es. With the background gauge 

connection set equal to the SU2 spin connection on K3, the branching rule for 
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the adjoint of & @  Es into the maximal subgroup ET @  SU2 ~9 Es is relevant: 

(248,l) @  (1,248) = (133,1,1) CB (1,3,1) @  (56,2,1) @  (1,1,248) (2.6) 

The SU2 subgroup will be spontaneously broken, since the vacuum value of the 

gauge field is nonzero. Dirac zero-modes on K3 which are SU2 singlets, doublets, 

and triplets will yield massless six-dimensional fields in the (133,l) @  (1,248), 

(56,1), and (1,l) representations, respectively, of the unbroken gauge group E7 @I 

Es. The numbers of gauge nonsinglet zero-modes are given by the twisted Dirac 

index theorem on K34 : 

Ig(K3) = n!-)(c) - r++‘(c) = $ / (&trR A R - tr,F A F) (2.7) 
2 

K3 . 

c is the relevant gauge representation, and here it is a representation of SU2. D, 

is the covariant derivative on K3 including the SU2 gauge connection. Setting the 

gauge connection equal to the spin connection gives tr2 F A F = itr R A R, since 

the 4 of SO4 is two doublets of SU2. Now 6tr,F A F = (c - l)c(c + l)trzF A F 

so that using (2.4) we have 

IG(K3) = 2c(3 - 2c2) 

This result for c=l agrees as it should with the untwisted Dirac index (2.4), 

and shows that we obtain positive chirality six-dimensional gauginos in the 

(133,l) @  (1,248) representation of E7 @  Es . For c=Z, we get 10 negative 

chirality fermions x (-l(x) in the (56,l) representation, and with c=3 we obtain 

45 negative chirality fermions ~(-1 that are gauge singlets. 
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In the Yang-Mills sector there is no ambiguity in placing fermions in the 

appropriate supermultiplets. The massless spectrum in the Yang-Mills sector is 

Y(10) =+Y(6)[(133,1) @  (1,248)]+ 

S(6)[10(56,1) Cl3 45(1, l)] 

so that the entire massless six-dimensional spectrum is 

R(6)+T(6)+ 

Y(6)[(133,1)@(1,248)]+ 

S(6)[10(56,1)cB65(1, l)] 

P-8) 

Potential anomalies give us a quick check of our result: Compactification 

on a four-dimensional ma~nifold will preserve the anomaly cancellation present in 
. 

the ten-dimensional theory.* Anomalies in six dimensions are formally propor- 

tional to an 8-form. The only terms that cannot possibly be cancelled by the 
-. 

Green-Schwarz mechanism l3 are the “leading” gravitational and gauge anoma- 

lies, proportional to trR4 and trF4 , respectively. 

The gauge anomaly can in our case be cancelled by the Green-Schwarz mech- 

anism, because trF4 is proportional to (trF2)2 for both gauge groups E7 and Es. 

The contributions of a positive chirality gravitino and a positive chirality spin-$ 

fermion to the leading gravitational anomaly are in the proportion 245:1.16 With 

a single T(6) multiplet in the theory, this means that the total numbers, s and 

y, of S(6) and Y(6) multiplets must satisfy s - y = 244. This is satisfied by the 

spectrum of (2.8). 
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2.2. ZERO-MODES AND HARMONIC FORMS ON K3 

Many of the zero-modes we have just counted can be written explicitly in 

terms of objects known to exist, the harmonic forms on K3. In general, this 

not only confirms index theory results, but can also tell us the numbers of zero- 

mass positive and negative-chirality spinors separately ( this happens in the six- 

dimensional Calabi-Yau case ’ ). It gives information about bosonic zero-modes, 

whereas index theory can only under special circumstances, like when there is 

supersymmetry. Also, with the explicit forms of the zero-modes, we will be able to 
9,17 calculate some topological terms in the effective six-dimensional Lagrangian. 

As in the previous section, we first consider the gravitational sector, the fields 

in R(lO). Perturbing the metric gMN --) gMN + hMN and insisting that the 

background remains Ricci-flat (R MN = 0) gives the free graviton (Lichnerowicz) 

equation in a Ricci-flat background: 

-V2hMN + 2RMNpQhPQ = 0 

V”hMN = 0 gMNhMN = 0 

For hmn(w) = 4(x) 8 hmn(y), 4( x is a massless scalar field if and only if h,, ) 

satisfies the Lichnerowicz equation on K3. The solutions to this equation can be 

constructed from the 3 self-dual and 19 anti-self-dual harmonic 2-forms S,, and 

A mn- Being harmonic, Am, and Sm, satisfy 

V2fmn - Rpqmn jpq = V2 jmn + 2Rmpqn jPQ = 0 

But the Riemann tensor is anti-self-dual so that the forms S,, are covariantly 

constant. The exterior derivative d and its adjoint 6 both annihilate the harmonic 
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forms Am,, SO that 

VmAnp + VpAmn + VnApm = 0 V”A,, = 0 

Using these equations and the (anti-)self-dual property of the (A,, and Rmnpq) 

S mn9 it can be verified that the following are bz x a, = 57 solutions of the 

Lichnerowicz equation on K3! 

h mn = A,PSpn + A,PSpm 

There is also the dilatational zero-mode 6g,, = Xgmn, which is not traceless 

but still preserves the Ricci-flatness. So there are a total of 58 zero-modes of the 

Lichnerowicz operator on- K3P’18 each giving rise to a massless scalar 4(x) in the 

external space, Me. 

In complex notation (i,? = 1,2), the zero-modes are expressed as follows: 

hi5 = Fi3 

hij = (cikFjf+ EjkFii)gik 

hq = (hii)* 

where Fij is a harmonic (1,1)-f orm. Note that the hij, hG vanish if F=K, the 

Kghler form, so we again get 58 solutions. 

With h,,(w) = hpy(x> Q+(Y), we obtain the external Lichnerowicz equation, 

so that h,,(x) represents a six-dimensional graviton, provided 4(y) is a massless 

scalar on K3. Of course, this is true if and only if 4 = constant, so we get one 

graviton in six dimensions. In the language of forms, we say that 4(y) must be 

a harmonic O-form, and since be = 1 on K3, we get a single external graviton. 
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With hpm(w) = A,(z) @  jm(y),Ap(x) is massless provided jm(y) is covari- 

antly constant on K3. Harmonic l-forms are covariantly constant on Ricci-flat 

spaces. Since br = 0 on K3, there are no massless vectors A, obtained in six 

dimensions. 

The ten-dimensional gravitino satisfies the Rarita-Schwinger equation 

r”(V~*~ - VMQN) = 0 

With $J,(TU) = $J~(x) @  Q(y), $J~(x) satisfies the external Rarita-Schwinger equa- 

tion provided q(y) satisfies the internal massless Dirac equation. From tire last 

section we know there are 2 such solutions on K3. To construct these spinors 

we note the correspondence between (O,p)-forms and spinors on a complex n- 

dimensional manifold “‘c: any spinor r/~(y) can be written 
. 

qqy) = j(")(y)R + j;llJ(y)rz' R + . . . + f~~~...;n(Y)r;L;il.;nn 

where XI is a spinor annihilated by the internal r-matrices II” with complex in- 

dices, l?CI = 0, and the j(p) are (O,p)-forms. Furthermore, if the manifold is 

KZhler and Cl is covariantly constant, T/J(Y) obeys the massless Dirac equation if 

and only if the j(p) are harmonic. 

So there is a one to one correspondence between spin-i zero-modes and har- 

monic (O,p)-forms. On K3, ho0 = ho2 = l,hol = 0, and so the two Dirac 

zero-modes can be written as 

R, rin =o 

(2.9) 

These two zero-modes both have negative internal chirality, as required, and they 

give rise to one positive chirality gravitino $h+‘(x) in six dimensions. 
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With *m(w) = X(X) @  tirn(Y),X( ) x is a massless spinor if $m(y) obeys the 

internal Rarita-Schwinger equation. The solutions can be written using the har- 

monic (l,l)-forms F on K3: 

When F=K, the Kghler form, these solutions are covariantly constant. Otherwise 

F is traceless (in real notation they are anti-self-dual) so that l?$i = I’;r,$ = 0. 

Because the holomorphic and antiholomorphic exterior derivatives a and 8, and 

their adjoints 8 and 8, annihilate harmonic forms such as F, 

,3F = 8J = a+$’ = jj+F = 0 t 

. we have 7mVm$i = 7”V,k = 0. So there are 40 Rarita-Schwinger zero-modes 

as claimed above. The result is 20 negative chirality fermions x(-)(x). 

The equation of motion for the antisymmetric tensor BMN of R(lO) is exactly 

the harmonic equation for 2-forms: V2B~~ - RMN~QB~Q = 0 ; VPBpg = 

0. The three cases to discuss are BP,,, BPLn, and B,,. For Bmn(w) = g%(x) @  

fmn(y), 4(x) is m=sless if fmn(~> is h armonic. Since b2 = 22 on K3, we obtain 22 

scalars 4(x) in six dimensions. For Bpm(w) = AIL(x) @  jm(y) to yield a massless 

vector, fm (Y) must again be harmonic. But br = 0, so no massless vectors 

are generated from the antisymmetric tensor. With B,,(w) = BPy(x) @  1, one 

massless tensor, or equivalently, a self-dual tensor Biz)(x) and an anti-self-dual 

tensor Bhi)(x) are obtained. 

The spinor II, ‘+‘(w) = t+b(-j(x) @  r+-)(y) y ie Id s a massless six-dimensional 

spinor $(-l(x) when r](-)(y) = R+ iw. The remaining field in R(lO), the dilaton, 

produces a scalar in six dimensions in the trivial way, p(w) = p(x) 8 1. 
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Gathering our results from the supergravity multiplet R(lO), we have 81 

scalars, 21 negative chirality spin-i fermions, one gravitino, one graviton,and one 

antisymmetric tensor. The unique way (with six-dimensional Lorentz invariant 

action) to fit these zero-modes into simple supersymmetry multiplets is as in 

(2.5). 

Moving on to the Yang-Mills sector, we will examine the fermions first. Since 

the gauge connection is set equal to the spin connection, there is a background 

SU2 gauge field on K3. Because of (2.6), the gaugino A(-)(W) gives a spin-$ six- 

dimensional particle in the E7 @  Es representation (133,l) $ (1,248); (56,l); and 

(1,l) for every internal spinor in the 1,2,3 representations of SU2 respectively, 

that is annihilated by the internal Dirac operator rrnDm. Here Dm includes the 

SU2 gauge connection as well as the gravitational connection. The SU2 singlets 

are n and w, so that we get the positive chirality gaugino X(+)(x) transforming 

in the adjoint representation (133,l) @  (1,248) of the gauge group. 

The SU2 doublets are the most interesting. Because the gauge connection 

has been set equal to the spin connection, an SU2 doublet index can be related 

to a complex coordinate index on K3 .l’lo’g Consider an element V of H’(T), the 

first a-cohomology group with values in the complex tangent bundle: 

a V = V;Pdzz- 
aza 

The a is a complex tangent index on K3. It is this index that can be identified 

with the SU2 gauge doublet index, in the following sense. If V is harmonic it 

satisfies: 

8+V = - 2g’jVjVT-& = 0 
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A spinor constructed from such an object, $a = V-aI”fl, satisfies the Dirac equa- 

tion 

(y?))” = (vkvz)arkrSn + (vTvT)arir’n = o (2.10) 

V is the gravitational covariant derivative, now including spin connection terms 

because of the tangent index a. The key is that these extra terms are exactly the 

required gauge connection terms for an SU2 doublet spinor, provided the gauge 

connection is identical to the spin connection. Therefore, the solutions to (2.10) 

are the required solutions. 

To count the number of solutions, we count the number of harmonic elements 

of H1 (T). These are isomorphic to the harmonic (l,l)-forms F, in the following 

way: 

Fb; = VTaCab, V E H1(T) 

Since hll = 20, we obtain 10 negative chirality spinors X(-)(X) in the (56,l) 

representation of E7 8 Es, in agreement with the index theory results. 

The analysis is not so easy for the triplet zero-modes. A 3 index of SU2 is 

equivalent to a pair of symmetrised doublet indices. The symmetrisation makes 

it impossible to relate these zero-modes to forms. For the 45 E7 @  Es singlets in 

six dimensions, we cannot construct the corresponding zero-modes on K3. 

Note that the situation on K3 is nevertheless simpler than that on six- 

dimensional Calabi-Yau spaces. This is because on the six-dimensional spaces, 

index theory cannot be used to derive the massless four-dimensional spectrum. 

There is no general method available to count the gauge singlet zero-modes anal- 

ogous to our SU2 triplets (these are the SU3 octets in the six-dimensional case 
19 
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). In the K3 case, we at least know there are 45 gauge singlet fermions in the 

Yang-Mills sector, by index theory. 

What about the supersymmetry partners of the gauge nonsinglet fermions? 

These bosons come from the vector gauge boson AM(W) in Y(10). With 

A&) = A,(x) @  1, we get the vector gauge boson in the (133,l) $ (1,248) 

adjoint representation of the gauge group. For the gauge bosons A~5692p’)(w) in 

the (56,2,1) p re resentation of the subgroup E7 @  SU2 @  Es s Es @  Es, we write 

A;56’2~‘)(w) = g$ (56,1)(x) @  V;“(y) 

where V E H1(T). S o we obtain both the 10 fermions x(-)(x) and the 40 scalars 

. 4(x) in the (56,l) multiplet from the elements of H’(T), as it should be, by 

supersymmetry. 

In summary, we have constructed all the zero-modes derived by index theory, 

except those that are SU2 triplets. So we have partially confirmed the above 

results. In addition, with the explicit constructions we will be able to extract 

some information about the effective Lagrangian in six dimensions. 

The topology of a six-dimensional Calabi-Yau space tells us much about 

the effective four-dimensional field theory.“17 The same is true for K3. If we 

concentrate on the Yang-Mills sector, The only non-trivial zero-modes are the 

SU2 doublets given by the harmonic (l,l)-forms. Since effective Lagrangian 

terms are obtained by integrating over the internal manifold, we expect any such 

topological object to be quadratic in the fields. 

A natural candidate is the intersection matrix for 2-forms on K3.20 Its ele- 
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ments are given by 

/ 
fAh 

K3 

where j and h are harmonic 2-forms. The intersection matrix is topological. 

First of all, it depends only on the cohomology classes of j and h, not that 

they are harmonic. Also, one can associate with each harmonic a-form f the 

two-dimensional submanifold M(j) of K3 that is dual to j. The integral above 

is proportional to the number of points at which the submanifolds M(f) and 

M(h) intersect, weighted by their relative orientation. This number is invariant 

under smooth deformations of K3, i.e. it is topological. Because of this it doesn’t 

depend on the detailed (unknown, in general) form of the metric on K3, and can 

be calculated. The result is 

-2[e(8) CD e(8) CD 0’ CB 0’ @ 0’1 

where a1 is the usual Pauli matrix, e(8) is the Cartan matrix for the algebra of 

Es, and we have divided out a factor of the K3 volume. 

The intersection matrix is 22-dimensional because b2 = 22. If we diagonalise 

each of the a1 matrices, then the 19 anti-self-dual 2-forms correspond to the e(8)@ 

e(8) part along with the +l eigenvalues of the three a1 matrices. The remaining 

(l,l)-form is the KZhler form which corresponds to one of the -1 eigenvalues of 

the three o1 matrices. The other two -1 eigenvalues come from the harmonic 

(0,2)- and (2,0)-forms. 

We now show that the intersection matrix does determine effective field the- 

ory terms. If V, V are elements of H1 (T), they give rise to six-dimensional neg- 

ative chirality fermions x,x”, in the (56,l) representation of E7 @  Es in the way 
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we have described: 

ha(w) = x(X) @vgy)r’n ia(w) = X”(X) QD V<(#n 

Substituting these expressions into the the ten-dimensional gaugino kinetic en- 

ergy term gives 

/ 
d”wfi f Tr (XIY”a~A) 

= N- xx 
/ 

d6xfi f tr (~7mc3mx) + . . . 

with 

/ 
d4y& x”i” V; qf,a g?’ 

K3 

Using the isomorphism (2.11) between elements of H’(T) and harmonic (l,l)- 

forms, we obtain 

NFx = a 
/ 

FA$ 
K3 

F,g are the harmonic (1,1)-f orms isomorphic to V,v, respectively. The (l,l)- 

forms are real and all are anti-self-dual except the Kghler form, which is self-dual. 

Therefore 

and the + sign occurs only when F is the Kghler form. So we see that the inter- 

section form determines the normalisation matrix N;X for the negative chirality 
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spinors transforming in the (56,l) representation of the gauge group Er @  Es. 

The result is 

IV;~ = i[e(8) @ e(8) @ 141 

where we have again divided out a factor of the volume of K3. 

The terms related to the x kinetic energy terms by six-dimensional super- 

symmetry and Er @I Es gauge invariance are also determined by the intersection 

matrix. Besides these terms, there are no others in the Yang-Mills sector deter- 

mined solely by the topology of K3. 

To close this chapter, let us mention a couple of properties of K3 that result 

in simplifications over the case of compactification on six-dimensional Calabi- 

Yau manifolds. K3 is simply connected so that no Wilson lines are possible. 
. 

In the six-dimensional case, manifolds with reasonably low Euler characteristic 

are usually non-simply connected, and Wilson lines can be used to break the 

“lo gauge group. The non-simply connected manifolds are the spaces obtained 

from simply connected manifolds by identification under the action of a freely 

acting discrete isometry . The resulting non-simply connected manifold is al- 

lo ways a Calabi-Yau space. However, K3 is the unique 4-dimensional Calabi-Yau 

manifold, simply connected or otherwise. Division is not possible, therefore, and 

Wilson lines cannot be included. 

Another simplification is that the Ricci-flat metric is a solution of the equa- 

tions of motion, since K3 is a hyperkghler manifold. For the six-dimensional 

Calabi-Yau spaces, the four loop p-function does not vanishy1’22 so that the 
23,24 

metric must be modified to a non-Ricci-flat one. 

.: 
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3. HETEROTIC STRINGS ON ORBIFOLD LIMITS OF K3 

Some Calabi-Yau manifolds can be deformed such that all the curvature is 

“pinched off” into a finite number of isolated singular points. This deformation 

is an orbifold limit of the Calabi-Yau manifold. In general, there are many such 

limits for a single manifold. The subject of this chapter is a class of orbifold 

limits of K3. 

In the limit that all the curvature is concentrated at isolated singular points, 

the resulting object can in some cases be identified with the orbifold constructed 

from a torus by modding out the action of a discrete isometry group. Then the 

singular points are those points fixed under the action of the isometry group. 

The orbifold limits K3(Z ) 1 can be constructed in this way: K3(Zl)=T4/Zl. 

. In the first section of this chapter we construct these orbifolds and show how 

they can be “blown up” into K3. In the second section we derive the massless 

spectra of the Es @ I Es heterotic string on these orbifolds. We then show how 

the string spectrum makes sense in light of the knowledge of how to blow up the 

orbifolds. 

3.1. ORBIFOLD LIMITS OF K3 

The simplest example of an orbifold limit of K3 is the torus T4 divided by 

reflections Q ym Q-r = -ym, K3(&) = T”/& .5 If T4 is four-dimensional 

Euclidean space with the identifications ym Z ym + 1, there are 16 points fixed 

under the reflection; ym = 0, i, say. 

To obtain K3 from K3(22), surgery must be performed. Neighbourhoods 

containing the 16 singular points must be excised and replaced by appropriate 

non-compact regions containing no singular points. For a Ricci-flat K3 metric 
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25 we use the Ricci-flat Eguchi-Hanson space, which we denote by E(Zz). The 

boundary of E(Z2) at 00 is S3/Zz, so that it fits the hole left by an excised region. 

However, the fit is only precise in the limit the Eguchi-Hanson region shrinks to 

zero size. This is the orbifold limit K3+K3(22). 

Using this construction, we can calculate the Euler characteristic of K3. Let 

z = WF[N] denote the manifold obtained by first dividing the manifold M by 

the discrete isometry group G of order g, then excising the fixed point set F and 

replacing it with appropriate non-compact well-behaved regions N. The Euler 

characteristic of 2 is 

x(3) = )x(M) - X(F)1 + X(N) (3.1) 

K3 can be obtained with M = T4, F = 16 fixed points, and N = l6E(&). 

Since x[E(&)] = 2,x(T4) = 0, and x = 1 for a point, we get the correct result 

x(K3) = 24. 

The Euler characteristic is not the only information we can deduce about the 

harmonic forms of K3 in the orbifold limit K3 + K3(&). The signature of an 

Eguchi-Hanson space is r = -1, so its nonzero Betti numbers are bo = b, = 1. 

Therefore 16 of the 19 anti-self-dual harmonic 2-forms are located in the Eguchi- 

Hanson regions. The remaining 3 are paired with 3 self-dual harmonic 2-forms. 

These 6 are not localised near the fixed points. In fact, they are the forms 

dy” A dy”, the harmonic 2-forms of T4, which survive because they are invariant 

under reflections. 

The construction above can easily be generalised. Consider T4 as the direct 

product of two 2-tori (T4 = T2 63 T2), each being a complex plane with the 
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identifications zj E zj + 1 g zj + eq (j = 1,2). Then the discrete isometry 

generated by Q z1 Q-l = e%z’ and Q z2 9-l = eez2 has 9 fixed points: 

23 = 0, d -i-e? 2-e?; j = 
‘d 

1,2. K3 can be obtained by replacing each of the 

fixed points with a non-compact Ricci-flat space whose boundary at oo is S3/Zs, 

and has r = -2, x = 3. Such a space exists ,‘” and we denote it by E(Zs). 

These 9 spaces provide all the harmonic 2-forms of K3, except for 4. These 4, 

one anti-self-dual and the other three self-dual, survive from the torus. They are 

dz’ A dz2, dzi A dz”, dzr A dz’, and dz2 A dz’; with the anti-self-dual combination 

being dz’ A dz’ - dz2 A dz”. 

In fact, non-compact spaces that are both Ricci-flat and asymptotically S3/G, 

with G being any discrete subgroup of SU2, are known to exist.27 In keeping 

with the notation above, we denote them by E(G). One can use these spaces 

to construct K3 from orbifolds of the general type T4/G, in the way we have 

sketched. 

In this paper we restrict ourselves to the groups G = Zi. The Euler charac- 

teristic of E(Zl) is I, and its nonzero Betti numbers are bo = 1, b2 = b, = 2 - 1. 

Its only harmonic forms (besides a constant) are 1 - 1 2-forms which are all 

anti-self-dual, and can also be written as (l,l)-forms. 

Besides I = 2 and 3, I = 4 and 6 are possible. First we discuss the 24 case. For 

24 symmetry, T4 must be defined by the equivalences zj E zj+l E zj+;; j = 1,2. 

The 24 isometry is then generated by Q z1 Q-’ = iz’ ; Q z2 q-l = -iz2. 

There are four points fixed under Q: 

(z1,z2) = (w),(o, ‘;i),(~,o),(q,~) 

Besides these 4 points, there are also 12 points fixed under Q2. (Note that in the 
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cases 1=2,3 it was sufficient to consider just those points fixed under Q.) These 

12 points transform non-trivially under 24. They can be paired into 6 “doublets” 

whose two component points are transformed into each other by Q: 

(z’, z2) = K~~~Mo,;)l , [(f,o),(;,o)l, 
I(- y,;),(p)] ,[(f,!g),(f,$)], 

I($ a,, (;, $1 , [(f, ;I, (f, $1. 

This means that when a fundamental region of T4 is chosen that is Z4-invariant, 

it will contain 4 singular points that can be repaired using E(.&)‘s, and 6 more 

that can be repaired with E(Z ) 2 ‘s. This is because the 6 points (one point of 

each doublet above) are fixed under Q2, which generates a 22 subgroup of 24. 

To verify that the manifold obtained is indeed K3, we calculate its Euler 

characteristic using (3.1). S ince F = 16 points, and N = 4E( 24) + 6E(Z2), 

we ‘have 

x = X(T4) - 16 
4 + 4X[E(Z4)] + 6X[E(Z2)] = 24 

The harmonic 2-forms of K3 are either localised at the replaced fixed points, 

or survive from T4 because they are Z4-invariant. The non-localised harmonic 

2-forms are 3 self-dual forms, c, C, and the Kghler form K; along with the anti-self- 

dual form dz’ A dz’ - dz2 A dz”. The localised a-forms are all anti-self-dual and of 

type (1,l). The four E(Z4) support 3 each and each of the six E(&)‘s support 

one. So we have hl’ = 2 + 4(3) +6(l) = 20, bz = 3, by = 1 + 4(3) + 6(l) = 19, 

as required. 

Finally, for the 2s case we must use the torus T4 as defined for the 2s case 

discussed above: zj E zj + 1 % zj + e%. The 2s isometry is generated by 
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Q 21 Q-1 = e% 21, Q 22 Q-1 = eqz2. There is just one point fixed under Q, 

the origin (0,O). Th ere are 9 fixed under Q2; besides (0,O) these can be grouped 

into four “doublets”, whose components are transformed into each other by the 

action of Q: 

(z1,z2) = [(0, se?), (0, $e*)],[(-$e+,O), (se%,O)], 

[($er, -&e2), (se?, ~ ’ 2-eG)],[(-.j-e+, se?), ($62, -j--e+)]. 

Under the action of Q 3, there are 16 fixed points. Again excluding (O,O), they 

can be grouped into triplets under the action of Q: 

(A z2) = [(o, ‘+,“f),(o,;),(o,~)], s 
[(l+ e3 

2 ,o),(~,o),(~,o)l, 

K 1 ‘,“g, 1 +2ey ), (i, It), (e+, cJl, 

K 
1 ‘,“+ , IL), (IL, e+), ($, l’,“+ )], 

I( 
1 +2e”, e+), (I., 1 +2e+ ), ($, f,lS 

Therefore we must use one E(Zs), four E(Za)‘s, and five E(Zz)‘s to blow up 

fixed points in a fundamental region of T4/Zg. 

The Euler characteristic can again be seen to be 24, since 24 points are 

removed from T4 and N = J!?(&) + 4E(&) + 5E(&) for this case (see (3.1)): 

0 - 24 
X= 6 

+ l(6) + 4(3) + 5(2) = 24. 

The harmonic 2-forms surviving from T4 are the same that survived in the 2s 

and 24 cases. The remaining 18 anti-self-dual harmonic (l,l)-forms are localised 
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in the inserted regions as follows: 5 in the single E(&), 2 in each of the four 

E(Zs)‘s, and 1 in each of the five E(Zz)‘s. 

So now we have a picture of four distinct orbifold limits of K3. In each of the 

limits we know how to blow the orbifold up into K3. Hence we know how the 

harmonic forms of K3 arise in each of the orbifold limits. As shown in section 

2.2, the harmonic forms are the origin of massless particles when the heterotic 

string is compactified on K3. 

In the analysis of the low energy field theory limit of the heterotic string on 

K3, the detailed knowledge of the harmonic forms does not enter. For example, 

we do not know where any of the harmonic forms on K3 may be localised. The 

results were topological and therefore independent of such information. However, 

. in the orbifold limit, one can solve the full string theory on K3.2’3 In this case, as 

we will demonstrate in the next section, the detailed knowledge we have obtained 

is important. 

3.2. THE HETEROTIC STRING ON K3 ORBIFOLDS 

In this section we will derive the massless spectra obtained by compactifying 

the heterotic string on the orbifold limits K3(Zl) of K3. For definiteness we are 

considering the Es @Es string. We will use the Green-Schwarz formulation of the 

superstring in the light cone gauge, and also follow Ref. 28, where the bosonic 

formulation of the gauge degrees of freedom was first used. 

To solve string theory on an orbifold T4/Zl, one first solves it on T4. Pro- 

jecting out everything but the Zl-singlet states then gives part of the theory, the 

states of the untwisted sector. To get the rest of the theory the procedure must be 

repeated for strings that are only closed after the identification under the action 
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of the group Zl. These open strings on T4 obey twisted boundary conditions 

X(U+T,T) = Q” X(U,T) Q-” ;s=l,...Z-1 (3.2) 

where here X is a generic string coordinate. The states formed using the coordi- 

nates obeying (3.2) are the states of the twisted sectors. 

XM = X”(o,r) will denote the 8 transverse coordinates of the string. The 

index M splits up into 4 transverse coordinates Xp(,, r), describing the string in 

transverse six-dimensional spacetime, and 4 internal coordinates Xm (a, 7). The 

centre of mass coordinate for the Xm takes values in the range of the ym, the 

coordinates of the internal spaces, K3(21). We split the string coordinates XM 

into complex coordinates 

zi = x2’--’ + ix2i ;i= 1,...4 

Z3 and Z4 are the complex coordinates associated with the transverse spacetime 

coordinates in six dimensions. 2’ and Z2 are the complex string coordinates on 

the orbifolds, so that their centre of mass coordinates take values in the ranges 

of z1 and z2, respectively. 

In the Green-Schwarz formalism there is also the right-moving Majorana- 

Weyl spinor S” = S”(r - a), the spacetime superpartner of the right-moving 

bosonic string coordinates X”(r - a). The index & is a conjugate spinor index 

of the rotation group SOs of transverse spacetime. We have also the 16 “extra” 

left-moving string coordinates X’ = Xr (7 + u , responsible for the gauge degrees ) 

of freedom of the string. All these closed string coordinates are periodic functions 
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of 0 5 u < z. On a flat space they have the following normal mode expansions: 

pf(7. - a) = ;xM + $M(T _ a) + i c $ e-2in(r--a) 

GO 

Sh(r _ a) = C St e--2in(r-u) 
n 

X”(T+u) = ;xM + $,Mcr + a) + i c F e-2in(r+u) 

n#O 

X1(7 +a) = XI + pl(T + a) + i C z e--2in(r+a) 

n#O 

The fermionic oscillators obey 

From the zero-modes St we can construct operators 8;, 8; obeying the anticom- 

mutation relations of annihilation and creation operators: 

The indices ;,j are transverse complex indices taking values from 1 to 4. 

For the Es @  Es string, the centre of mass coordinates of the 16 extra string 

coordinates X’ lie on the self-dual lattice A @  A, where A is the root lattice of 

Es. Vectors on the lattice A fall into the following two classes: 

pl = (%,..48) p2 = (n1+ ;,.. .,ns+$ (3.4 

with the restriction in both cases that the integers n; satisfy Cf=, n; = Omod2. 
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In keeping with our descriptions of the orbifolds K3(21) in the last section, 

the twist Q generating 21 is specified by 

Q 21,2 Q-1 = eqz1,2 Q 2394 Q-1 = 2314 

This twist induces a similar action on the fermionic operators 8 : 

Q Bi,z Q-l = &,2 Q f18,a Q-’ = e=?fjs,a 

(3.5) 

w-9 

It remains to specify the action of the twist Q on the gauge degrees of freedom. 

For Abelian groups like Zl, the twist can be represented in the bosonic formulation 

as a shift in the extra 16 coordinates 28. . 

Q X’Q-1 = X’ + rqz 

Since our twist is of order I, we must have Zq E A @  A. We will write q = (ql, 42) 

with Zql,Zq2 E A. 

The choices of shift vectors q are limited by modular invariancea0’31 and one 

can also restrict without loss of generality to those shift vectors having a length 

smaller than a maximum.3 Even with these restrictions, however, many choices 

are still possible. Only one corresponds to setting the gauge connection equal 

to the spin connection. That choice is the shortest possible shift vector, with 

q2 = $-. For this choice, we can use q2 = 0, q1 = f eg = + (wvu40,0,1,1) 
32 where eg is the lattice vector on A that is dual to the eighth simple root es. 

Right away we can find the gauge group to which Es @I Eg is broken. Since 

q2 = 0, the second Eg is untouched. Let us denote the Es root vectors by 

29 



ei,i=l , . . .8, and let eo be the negative of the highest root. For Es, eo = -eg, 

where the ez (i = 1,. . . 8) are dual to the root vectors: e; . e; = 6ij. The 9 root 

vectors are depicted in the extended Dynkin diagram of Es, drawn in Figure 1. 

In the heterotic string theory, the Es generator corresponding to the root e, e 

being one of the e; or ee, is built from the factor : e2ie.X(r+a) :.33 With q = teg, 

the Es generator corresponding to the simple root es is twisted and so will not 

survive the projection. The ei, i # 8, are the simple roots of E7 c Es. The 

generator given by eo can be used as the simple root of SUz, if it is a Q-singlet. 

But it picks up a phase exp[ y(e1;)2] = ezp( 7). Therefore, only for 1 = 2 

does it survive the projection to a Zl-invariant theory, and for 1 = 2 we obtain 

the gauge group E7 8 SU2 @ Es. For Z # 2, we have the smaller gauge group 

E7 @ U1 @ Es, with U1 charge proportional to the projection onto ec. 
. 

: 
We can now derive the massless spectrum. For a state ] )L @ ] )R to be 

massless, both the left-moving state ] )L and the right-moving state ] )R must be 

massless. States satisfying this constraint obey 

NL+@$+Czd)=o NR+Cg)=O 
I 

(3.7) 

The Cpk are the normal ordering constants in the sector twisted by Q”. If a , 

bosonic (fermionic) string field oscillator index takes the value q ,O 5 q < 1, 

then it contributes 

(-) [ -A + i11(1 -v) I 

to the normal ordering constant. 

(3.8) 

First consider the untwisted sector. In the right-moving sector we must have 

NR = 0 for zero mass. The only oscillators having NR = 0 are the St, or 
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equivalently, the 8i, 91. We denote by IO), the vacuum satisfying Bi IO), = 0, i = 

1 , . . .4. The following are then massless right-moving states: 

lo), , *; lo), , *;*; lo), , e;eje& lo>, , e;ejekeflO), 

The states with an even (odd) number of 0’s are the physical states of the fields 

X (AM) contained in Y(10). 

To perform (later) the projection to Zl-singlet states we will need the Q- 

eigenvalues of the various states. We denote these eigenvalues by AR. Using (3.6) 

the AR = 1 states are 

Ioh 

‘i lo>, 9 ‘2 lo>, 

‘ies lo>, 9 ‘8’4 lo>, 

while we also have states with AR = e? : 

$3 lo>. > eies lo>, 9 e2e$ lo>, 7 ‘ie2’g lo), 

and AR = e* : 

$4 lo>. , eie;i lo>, , esea lo>, ) ‘ie~*~ lo>, 

The AR = 1 states form a six-dimensional vector supermultiplet Y(6), while each 

of the sets of AR = eq states form half of scalar supermultiplet, $(6). The 

two halves of S(6) are related by CPT; they are antiparticles of each other. For 

Z = 2, and only for 1 = 2, AR is the same for both halves. 
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It is worthwhile to express these results in the language of group theory. 

The little group of the ten-dimensional Lorentz group is SOs. This group has an 

SO4 @  SO4 maximal subgroup, with one SO4 being the little group of the six- 

dimensional Lorentz group, and the other corresponding to the structure group of 

the internal space. Both the internal SO4 and external SO4 are locally equivalent 

to SU2 @I SU2. Under the (SUZ)~ subgroup of SOs, the three S-dimensional 

representations transform in the following way: 

8, = (W(W) @  (2,112,1) 

8, = (2,1(W) @  (1,42,1> 

8, = (1,112,2) cl3 (2,211,1) t 

(3-g) 

Here we have separated internal representations (on the right) from the external . 
ones by a vertical bar. The string field S” transforms as 8,, while the fields 

making up the supermultiplet Y(10) transform as the last two: AM as 8, and A 

as 8,. These are the states obtained as the massless right-movers in the untwisted 

sector. 

The last SU2 group of (3.9) tells us how the corresponding fields transform 

under the Zl twist. Splitting the SU2 representations into representations of 

U1 C SU2, we can write 

8, = (2,111)-1 @  (2,111)1 @  (W/2)0 

8, = (l,lj2)-1 CD (1491 @  (Wj1)o 

The value of AR is simply ezp[F] raised to the power of the U1 charge. The 

AR = 1 states are the states of the supermultiplet Y(6). Under the external 

SO4 group the spinor X (+I transforms as 2(1,2) and the vector A, transforms as 
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(2,2). AR = exp(y] picks out 2 ‘S(6). Note that this gives us a precise notion of 

what we mean by fS(6). In the physical theory, two halves of S(6) must combine 

to yield the full supermultiplet, which contains four scalars and a spinor x(-) 

transforming as 2(2,1). 

The left-moving massless modes obey NL + g - 1 = 0, since Cp’ = -1. 

With NL = 1, p = 0, we obtain the states EL1 IO), of the Cartan subalgebra of 

Es @  E8 with Q-eigenvalue XL = 1, and the 8 transverse physical states Eyl 10) L 

of a ten-dimensional vector particle. These latter split into the transverse states 

Efl IO), of a six-dimensional vector, having XL = 1, and four six-dimensional 

scalars with XL # 1. If ?A, i = 1,2 (6, 3 = 1,2), are the oscillators for the 

left-moving complex string coordinates Zi (ZI), the four scalars split into two 

21 lo>, 7 & lo>, 

with XL = e?, and two 

with XL = e*. 

The remaining massless gauge degrees of freedom come from states with 

NL = 0 and Cr(p1)2 = 2, where p E A $ A. For p2 = 2, p will be nonzero in only 

one of the A, but not both. Using the notation of (3.4), the nonzero p in one of the 

A will be 112 vectors of the form pi = (0,. . .O, fl, 0,. . .O, fl, 0,. . .O), and 128 of 

theformpl = (&f,&i,...& i), with an even number of -i components. With 

the shift vector shifting just the first Es root lattice A, all 240 states in the second 

A have XL = 1. For those in the first A, the Q-eigenvalue is XL = ezp[2rip * q]. 
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Of the 240 states on the first A, 126 have XL = 1, while 56 have XL = e?, 56 

have XL = e+, one has XL = e?, and the remaining state has XL = ee. 

The states with XL = 1, along with the 16 states EL1 IO), of the Cartan 

subalgebra, fill out the adjoint representation of the gauge group. We see that 

the gauge group is E7 @  271 @  Eg for Z # 2, and E7 @I SU2 @  Eg for 1 = 2, as 

advertised above. Along with the adjoint representation, we have also found two 

56’s of E7, one with XL = eq, and the other with XL = eq. For Z # 2, we 

also have two singlets, with Q-eigenvalues XL = e? and XL = e?. 

The states that survive to live on the orbifold are those on the torus having 

AL x AR = 1. For Z = 2, these are 

R(6) + T(6) + 
. 

2 Y(6)[(133,1,1)@(1,3,1) @(l&248)] + (3.10) 

S(6)[4(1,1,1) @  (5V,l)] 

where representations of the gauge group E7 8 SU2 @  Eg are given in the round 

brackets. For 1 # 2, the untwisted sector contribution to the massless spectrum 

is 
R(6) + T(6) + 

Y(6)[(133,1) CB (1,l) @ (1,248)] + (3.11) 

s(6)[n(l,l) @ (56,1)1 

Here n = 3 for 1 = 3, n = 2 otherwise, and the numbers in the round brackets 

are representations of E7 8 Eg. We will not indicate the U1 charges. 

We will now work out the massless modes in the twisted sector in the case 

1 = 2. The calculations for the orbifolds K3(Zi), 1 # 2, proceed in a similar 

manner, and the results will be given later. 
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There is just one twisted sector for the case I = 2. The fields satisfy the 

twisted boundary conditions 

Xm(, + v) = Q Xm(o,,) Q-’ = -xm(,,,). (3.12) 

with similar boundary conditions for the right-moving fermionic fields. For the 

right-moving modes the fermionic and bosonic contributions to the normal or- 

dering constant cancel, so that Cg’ = 0. We require NR = 0 again for massless 

states. Looking at (3.6) we see that the fermionic oscillators 63 and 84 will be 

twisted, with q = f. The only oscillators with NR = 0 are 81 and 62. We denote 

the twisted sector vacuum by lO)g’ ; it satisfies 81 lo);) =t 62 lo):’ = 0. The 

NR = 0 states are then 
. 

(3.13) 

These states form iS(6). U n d er the SO1 little group of the six-dimensional 

Lorentz group, the states IO):’ , 6182 lO)g’ transform as (2,1), and the states 

01 IO):’ , 82 10):’ are singlets. 

The physical states must combine into an integral number of scalar super- 

multiplets. This will happen because there are 16 points fixed under Z2. Each 

of the fixed points contributes equally to the spectrum, so the result obtained is 

multiplied by 16. 

Since by (3.12) th ere are 4 fields with q = i, we have Cp’ = -i in the 

twisted sector, using (3.8). So the massless left-movers satisfy NL + $ - i = 0, 

i.e. either NL = 0 and p2 = $, or NL = 3 and p2 = 4. Because X’(a + z,r) = 

QX’(a, T)&-1 = X’(a, T) + rq 1 in the twisted sector, p lies on the shifted lattice 
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(A@A)+q. Using (3.4), we find two solutions to p2 = i, both of the form p = pl+q, 

with ezp[2rrip s q] = -1. There are four oscillators with NL = f, coming from 

the four internal coordinates Xm. We obtain four doublets of SU2 in the form 

o! lYml e2iP’z lO)I;‘, . The Q 
-5 

-eigenvalue for these states is XL = -esp[2rrip. q] = 1. 

Note that we have assumed the twisted left-moving vacuum is a Q-singlet. This 

31 need not be the case, and there are ways to find the vacuum phase. The phase 

is 1 for the &-case but in general it is not. 

There remain the states with NL = 0 and p2 = 4. There are 24 solutions to 

p2 = (p2 + qy = Q and 32 solutions to p2 = (~1 + q)2 = 8. All 56 solutions have 

integer p * q, so the corresponding states e 2ip.Z I()$) h ave XL F 1. They form the 

56 representation of the gauge group E7. 

. Combining left-moving and right-moving states into physical states with XL x 

AR = 1 yields the following contribution to the massless spectrum 

8S(6)[4(1,2,1) @ (56,1,1)] 

Note that we have multiplied by 16, the number of points on T4 that are fixed 

under Q. 

The entire massless spectrum is therefore 

R(6) + T(6) + 

Y(6)[(133,1,1) 63 (1,3,1) cl3 (1,1,248)] + (3.14) 

S(6)[4(1,1,1) $ (56,2,1) 69 32(1,2,1) CB 8(56,1,1)] 

It can be verified that this spectrum has no anomaly that cannot be cancelled in 

the Green-Schwarz l3 manner. 
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Our knowledge of the origin of the various harmonic forms of K3 in the 

orbifold limit K3(Z ) 2 can help us understand this spectrum. The low energy 

field theory on K3 produces 2OS(6) in the gravitational sector. As shown in 

section 1.2, these massless particles arise from the 20 harmonic (l,l)-forms on 

K3. But there are only 4S(6) arising in the untwisted sector on K3(&). This 

is because harmonic forms that are localised at fixed points contribute to the 

spectra of the twisted sectors. The only harmonic forms that are not localised at 

fixed points are those inherited from the torus T4, because they are &-invariant. 

But as noted in the previous section, 4 harmonic (l,l)-forms survive from T4, 

explaining the 4S(6) in the untwisted sector. 

We can see similar tendencies in the Yang-Mills sector. Note first a very 

important feature of the spectrum. The number of 56’s of E7 obtained by com- 

pactifying on K3(Z ) 2 is the same as that obtained from K3. This will be true 

of all orbifold limits K3(21) of K3. The number of 56’s is a topological number 

that does not change as we deform the manifold K3 into an orbifold K3(Zl). In 

fact, this number is proportional to the Euler characteristic of K3, as shown in 

section 1.1. This will be useful later. 

The 10 S(6) in the 56 representation of E7 have the same origin on K3 as the 

20 S(6) in the gravitational sector: the 20 harmonic (l,l)-forms. In the orbifold 

limit K3(&), 16 are localised at the fixed points, or equivalently, in the Eguchi- 

Hanson regions that replace the singular fixed points. The remaining four do not 

vanish away from these regions. Our results are consistent with this: 8 of the 

10 S(6) in the 56 come from the twisted sector, while 2 arise in the untwisted 

sector. 

The spectra on K3(Zl), 1 # 2, can be derived in similar fashion. We have 
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already derived the spectra (3.11) in the untwisted sector. For the case I = 3, 

there are two twisted sectors. However, it is always true that the particles found 

in the sector twisted by Q’-” are the antiparticles of the particles found in the 

sector twisted by Q”. So for the spectrum on K3(&), we need only calculate the 

states in the sector twisted by Q. We find $(S) in the representations (56,1) $ 

7&l) of E7caE s ( we omit the Ui charges) at every fixed point of Q on T4. The 

sector twisted by Q2 provides the other half of the S(6) supermultiplet, and since 

there are 9 points fixed under the action of 2s on T4, we obtain the spectrum 

s=o R(6) + T(6) + 

Y(6)[(133,1) CI3 (1,l) Cl3 (1,248)] + 
(3.15) 

S(6)[3(L 1) @  (56, l)] + 
. 

s = 1,3 9S(6)[(56,1) @ 7(1, l)] 

Here s labels the sector twisted by Q”; for example s = 0 indicates the untwisted 

sector. 

As in the previous section, the orbifolds K3(24) and K3(Ze) are the most 

interesting. The new feature is that there are points fixed under certain elements 

of 24 or Ze that are not fixed under others. We will work out the consequences 

of this on the massless spectra. 

Consider first the case I = 4. There are 3 twisted sectors, twisted by Q” , s = 

1,2,3. The fields in the s = 1 sector are related to those in the s = 3 sector by 

CPT, while those in the s = 2 sector must describe particles and antiparticles 

both. It can easily be shown that the s = 1 and s = 3 sectors combine to yield 

the spectrum S(6)[(56,1) @  8(1, l)]. H ow many times is this spectrum copied? 

In the 1 = 2 and 3 cases, the degeneracy factors in the twisted sectors were the 
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numbers of fixed points, 16 and 9, respectively. As discussed above, for the twist 

group 24, there are 4 points on T4 fixed under the action of Q. Thus 4 is the 

required degeneracy factor. 

In the Q2-twisted sector, the spectrum is a multiple of iS(6)[(56,1)@4(1, l)]. 

But here the degeneracy factor is not the number of points on T4 fixed under 

Q2. This is because only four of these sixteen fixed points are invariant under 

the full action of 24. The remaining twelve can be grouped into 6 “doublets” 

whose component points are transformed into each other by the action of Q, as 

discussed in the previous section. So to construct a Z4-singlet spectrum from 

states on the torus, we must take the spectrum at each of the%fixed points in each 

of the “doublets” and form the linear combination that has Q-eigenvalue 1. A 

1 physical state will be the sum of the states at the two fixed points. (There is also 

the difference, but since it is not a Q-singlet, it is projected out of the spectrum.) 

Therefore, these doublets make a contribution of 6 to the degeneracy factor. 

Adding the contributions of the 4 Q-singlet points fixed under Q2, the total 

degeneracy factor is 10. We obtain, therefore, the spectrum 5S(6) [ (56,1) @4(1, l)] 

in the sector twisted by Q2. 

Note that we have massless states that are actually non-local on the torus T4. 

They are, however, local on the orbifold, since the two fixed points of a “doublet” 

are identified by modding out the isometry group. 

There is a simple way to determine the degeneracy factor of each twisted 

sector. As noted above, the number of 56’s is proportional to the Euler char- 

acteristic. Knowing the number of 56’s in each sector tells us the degeneracy 

factor for each twisted sector. There is an orbifold formula for the Euler charac- 
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teristic 2’3 which for the 21 groups reduces to 

x = + 2 x(Q8,Qt) (3.16) 
s,t=o 

x(Qs,Qt) is the E u er 1 characteristic of the intersection of the points fixed under 

Q” and the points fixed under Qt. If we fix s, we obtain the contribution x(s) to 

x from the sector twisted by Q”. For 1 = 4 we get x(s = 1) = x(s = 3) = 4, and 

x(s = 2) = 10, in agreement with the degeneracy factors used above. 

In passing we should note that x(s = 0) is always the contribution to x from 

those harmonic forms of T4 that survive because they are Zi-invariant. Thus 

x(s = 0) = 8 for 1 = 2, and x(s = 0) = 6 for 1 # 2. These numbers do not 

translate so easily into the numbers of 56’s in the untwisted sectors. This is 

simply because not all of the harmonic forms surviving from T4 are (l,l)-forms, 

which are those needed to construct the internal wave functions of. the E7 56 

particles. 

The full massless spectrum on the orbifold K3(24) is 

s=o R(6) + T(6) + 

Y(6)[(133,1) ~3 (1,l) CB (1,248)] + 

S(6)[2(1,1) @  (5% l)] + 

s=1,3 4S(6)[(56,1> @  8(1, l)] + 

s=2 5S(6)[(56,1) @  40, l)] 

(3.17) 

We can understand this spectrum in terms of the cohomology of the blown- 

up orbifold K3(24). To blow up the orbifold K3( 24)) one must insert 4 E( 24) 

regions, each having 3 harmonic (l,l)-forms, and 6 E(&) regions with 1 harmonic 
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(l,l)-form each. These 18 harmonic forms determine the internal wave functions 

of the 9 56’s of the twisted sectors. To divide these forms up into the sectors 

twisted by Q (and Q-r) and Q2, ‘t 1 is important to note that a fixed point replaced 

by an E(Z4) will support states that are only closed after identification by Q2, 

as well as those closed only after identification by Q (and Q-l). So along with 

the 6 harmonic (l,l)-forms localised in the E(&), we must include 4 harmonic 

(l,l)-forms localised in the 4 E(Z4). Th is explains the 5 56’s obtained as states 

that are closed by the identification under the action of Q2. The 4 56’s of the 

sectors twisted by Q and Q-l have the remaining harmonic (l,l)-forms localised 

in the E(Z4)‘s as their internal wave functions. 

We now briefly discuss the final example, K3(2e). The spectrum can be 

worked out to be 
. 

s=o R(6) + T(6) + 

Y(6)[(133,1) ~3 (1,l) 63 (1,248)] + 

S(6)[2(1,1) @  (56, l)] + 

s=1,5 S(6)[(56,1) @  w, 111 + 

s = 2,4 5S(6)[(56,1) @  4(1, l)] + 

s=3 3S(6)[(56,1) @  4(1, l)] 

(3.18) 

The interesting numbers are the degeneracy factors in each of the twisted sectors. 

The degeneracy factor for the sector twisted by Q (Q-l) is one, since there is 

only one point on T4 fixed under Q (Q-l). A s d iscussed in the previous section, 

there are 9 points fixed under Q *2. Only one is a Q-singlet; the rest form 4 

Q-doublets. A &invariant state is formed as the sum of a state at the fixed 

point that is one component of a doublet with a state at the other fixed point 
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in the doublet. The degeneracy factor for the s=2 sector is therefore 5, as in 

(3.18). In the Q3-t wisted sector, the 16 fixed points break up into one singlet 

and 5 “triplets” under the action of Q. Q-singlet states are obtained from these 

triplets as the sum of states at each of the fixed points that are components of 

the triplets. The degeneracy factor is therefore 6, again as in (3.18). 

The orbifold formula for the Euler characteristic reproduces these factors: 

X(S = 1) = X(S = 5) = 1, x(s = 2) = x(s = 4) = 5, and x(s = 3) = 6. 

Also, the cohomology of the inserted regions verifies the factors. There is 

one E(Ze), 4 E(Zs)‘s, and 5 E(Z ) 2 ‘s inserted. The 5 harmonic (l,l)-forms of 

the E(Ze) region correspond to 1 state that is closed after identification under 

Q (“Q-closed”), 1 that is Q5-closed, 1 that is Q2-closed and another that is Q4- 

closed, and finally, 1 that is Q3-closed. The two harmonic (l,l)-forms of E(Zs) 

correspond to a Q2-closed state and a Q4-closed state. Finally, each of the five 

E(Z2)‘s has 1 harmonic (l,l)-form, yielding a Q3-closed state. So we have 1 

Q(Q5)-closed state, 5 Q2(Q4)-closed states, and 6 Q2-closed states, reproducing 

the degeneracy factors of (3.18). 

To close this chapter we note that it is easy to use the orbifold Euler char- 

acteristic formula (3.16) to find the numbers and types of spaces E(Zl) required 

in the blowing up of an orbifold K3(Zl). Th is circumvents the more tedious 

procedure, used above, of finding the points fixed under the various elements of 

21, and their transformation properties under the other elements. Perhaps that 

procedure can in this way be avoided in more general circumstances. 
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4. CONCLUSION 

We have studied the Es 8 Es heterotic string on the manifold K3 and its 

orbifold limits K3(Zl)=T4/Zl. The topology (specifically, the cohomology) of 

K3 determines the six-dimensional massless spectrum obtained when K3 is the 

internal space, and also determines some terms in the effective six-dimensional 

Lagrangian. It was shown how to construct the orbifolds K3(Zl)=T4/Z~. The 

massless spectra obtained with the K3(Z ) 1 as the internal spaces were calculated. 

We showed how to blow up the orbifolds K3(21) into K3, and this knowledge 

made possible a fruitful comparison of the spectra on K3(21) with the spectrum 

on K3. 

This comparison shows that, in some sense, the string “knows” about how the 

orbifold should be blown up into a Calabi-Yau manifold. There is a correspon- 

dence between massless string states on the orbifold and harmonic forms on the 

manifold obtained by blowing up the orbifold. Furthermore, one can understand 

the distinct twisted sectors of the string massless spectrum given the number and 

cohomology of the spaces inserted to replace the singular points of the orbifold. 

Knowing how to blow up the orbifold is enough to (almost) determine the mass- 

less spectrum of string states on that orbifold, including the separate twisted 

sectors. 

Conversely, knowledge of the string massless modes on the orbifold can yield 

information about the blowing-up procedure required. This has recently been 

demonstrated in Ref. 34, where it is noted that the existence of certain massless 

scalar fields (in the twisted sectors) whose potential is flat (to all orders in string 

perturbation theory) signals that the corresponding singularity can be blown up. 

Essentially the massless field can acquire a nonzero vacuum expectation value 
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related to the nonzero size of the space inserted to repair the relevant singular- 

ity. In addition, for these blown-up Calabi-Yau manifolds, the mass spectrum, 

Yukawa couplings, and the other parameters of the effective Lagrangian can be 

calculated using the string amplitudes on the orbifold.34 

Of great help in our analysis was the orbifold Euler characteristic formula 

(equation (3.16)) of R e erences f 2 and 3. This formula could tell us the numbers 

and types of spaces to be inserted in the repair of the orbifold singularities, at 

least for the class of orbifolds we considered. This is another example of string 

formulae on orbifolds “knowing” about the underlying Calabi-Yau manifold. It 

would be interesting to see if the orbifold Euler characteristic formula can be 

used in more general cases as a tool for finding the correct blowing up procedure. 

. Our study of K3 and its orbifold limits illustrates general features of Calabi- 

Yau manifolds and the corresponding orbifolds. There can exist many orbifold 

limits of a single Calabi-Yau manifold. Furthermore, there are many possible 

compactifications of a single such orbifold limit, resulting from different choices 

of shift vectors (in the Abelian case), or equivalently, different gauge group break- 

ings. For example, for K3(&) th ere are 2 possible gauge group breakings, and 

for K3(&), K3(&), and K3(Zc) there are 5,10, and 30 possibilities, respectively. 

And we have not allowed the inclusion of Wilson lines on the non-trivial closed 

paths of the torus from which the orbifold is constructed.3’35 One sees that the 

number of distinct orbifold compactifications for a single Calabi-Yau manifold is 

rather large. 

Questions remain that could possibly be answered in the simple four- 

dimensional system we have studied. The orbifolds Td/G, where G C SUd, 

like Calabi-Yau manifolds, are guaranteed to preserve supersymmetry when used 
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in compactifications with the background gauge connection set equal to the spin 

connection. Are all such orbifolds limits of Calabi-Yau manifolds? Conversely, 

can all orbifold limits of a Calabi-Yau manifold be written as Td/G for some 

values of their moduli? We have not touched non-Abelian orbifolds; are there 

further complications in the blowing-up procedures required for orbifolds with G 

non-Abelian? The phenomena of further gauge group breaking and Wilson lines 

on the non-trivial closed paths of the torus could also be studied in the simple 

four-dimensional system. 

Of course any such study, like the one presented here, provides no direct help 

in the most important question-how does the string select its ground state? 

However, it is hoped that such analyses will provide some indirect help in the 

solution of this difficult problem. 
. 
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