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AN INTRODUCTION TO BEAMSTRAHLUNG AND DISRUPTION 

i ,c- PISlN CEEN 

. staitjord Linear Aeetlmatot center 
Stanford Unioertity, Stanford, Cdijomia 04505 

1. INTRODUCTION 

To tihieve enough luminosity for high energy physics experiments, it ir inevitable to focus the 

colliding e+e- beams down to miniiule dimensions at the interaction point in linear colliders. 

In the world’s Crst of such accelerators, the Stanford Linear Collider (SLC), beam size at the 

interaction point is designed to be tr, = ur = 1.65 pm, and us = 1 mm [ 11. For the next generation 

of linear colliders at the range of 1 TeV in centerof-mass energy the beam sise would be even 

smaller. The hi density of charged relativistic particles would provide strong electromagnetic 

fields viewed by the particles of the oncoming beam, while the particles in the same bunch have 

no effect among each other because of the cancellation of Lorentz forces between the electric and 

the magnetic components to the accuracy of the order of l/r. The bending of particle trajectories 

under the influence of these EM fields provided by the oncoming beam is called diiruption. During 

bending particles would radiate, causing an energy loss of the beam; thii is called beamstrahbing. 

~Both effects are important to the design of linear colliders [2, 31. . 

In this lecture we review the current understanding of the beam-beam interaction in e+e’ 

----- . linear colliders. Strictly speaking, the two effects, disruption and beamstrahlung, during beam- L 
beam interaction are coupled. Thii is self-evident because without deflection there would be no 

radiation, and with radiation during bending the remaining trajectory of particles would not be 

the same. Fortunately, in a large range of beam parameters the aveiage disruption angles are -.- 

. 

rathesmall, and the emission of hard photons are relatively rare. For these reasons the two effects 

can be isolated from each other to the 5rst degree of accuracy, and our study of the issue can be 

greatly simplified. This happens also to be the development historically. In sec. 2 we discuss the 

effects associated with disruption with negligible beamstrahlung. Here, an important parameter, 

the disruption parameter D, is introduced. We then discuss the maximum and yna disruption 

angles. The analytic scaliig laws for D > 1 and D < 1 are then compared with simulation 
. 

. e*- results. Next we investigate the enhancement of luminosity due to disruption. Together.with the 
~-.- nt- 

aspect ratio R I us /uv , the two parameters-define a scaling law for lumiiosity enhancement, Her, 

- e due to the mutual pinching of the e+e- bunches where the effective beam size usur is reduced. In 

addition to the luminosity enhancement arised from the overall reduction of the beam size, there 

is a second source for the enhancement that comes from the extremely high particle density at 

c 

_ the focal point inside the oncoming bunch. Thii second enhancement, HD2, becomes dominant 

over HDr when D 2 1, and is a function of the initial emittance which is characterized by the 

parameter A E us/B’, where p’ is the p-function at the interaction point. 
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Next we dkua beam&&lung with negligible dkuption in eec. 3. Pint we review the 

nature of beamstrahlung by describii the novel fat- of the problem. Thm speci& features 
me then compared with the known radiation phcnomaru with amp- on their rimiiaritier and .= 
differences. We argue that, in certain parameter range, the radiation mechanism of beamstrahlung 

. 
is synchrotron radiation in nature. By this we mean the -ion of a photon is induced by the 

interaction between the radiating particle and a collection of target particles via its macroecopic 

EM field. Again, an important parameter, the beamstrahlung parame ter T, b introduced. For the 

case T a 1, typical energy of the photons is much smaller than the initial energy of the radiating 
particle and thii is called the classical regime. On the contrary, when T > 1, photons tend to 

carry away a substantial fraction of the radiating particle energy; this is the quantum regime. For 

intermediate values of T, i.e., 0.1 S T 5 100, the radiation is in the transition regime. We Brat 
derive the synchrotron radiation intensities from a semi-uniform &Id in the cksii and quantum 

regimes. These expressions reproduce all the well-known formulas for a uniform field. We then 

review the concept of radiation formation length CR and argue that the e&t of grantkrity of 

- 
_ 

the target bunch is not obm-vable in the quantum regime. Next we focus on the fact that in 

the problem of beamstrahlung the target field is longitudinally inhomogeneous. To be correct it 

is necessary to include the effect due to the variation of the field when F i CR/U* s 1. In the 

extreme limit where F > 1, the radiation mechanism would depart from the characteristics of 

synchrotron radiation and transform into that of bremsstrahlung. 
- The average fractional energy loss .(c) in beamstrahlung is then calculated explicitly. In 

the semi-uniform field approximation, one nod aspect CI that in the W&me (c) is 
---.-. . “reduced” from what the classical radiation formula would predii based on the same value of - 

T. The fkst beamstrahlung reduction factor HT~ ia intruduced to ducribe thk relative change. 
When the slope effect is included, we see a second beam&&lung reduction effect, described by 

HTZ. The quantum fluctuation due to finite number of radiated photons in various beam&m&lung 

quantities are listed as an appendix. 

. 

-__ 

The emphasis of this article is on the fundamental physics of the phenomena during beam- 

beam interaction. We therefore lit the scope to single e+e- bunch pairs with head-on collision. 

Many important issues, such as kink instability during multi-bunch crossings [4] and collision at 

an angle [S], are not diiussed. Even within the scope of single bunch pair head-on collision, 

we have to regrettably lit ourselves to the approximation of decouplii disruption and beam- d . -1. 
strahlung. The real issues of beam-beam interaction concerning beamstrahlung with disruption, --- ;. 
and disruption with beamstrahlung, are not covered in thii lecture. The former iwue has to do 

- 
with Sndiig a more realistic effective T that includes the pinching of the beam area, while the 

latter issue relates to the maximum disruption angles from particles that suffer severe radiation 

losses. With thii grand picture in mind, our discussion in thii paper should be regarded only ss 

an introduction to the subject of linear collider beam-beam interaction which is very rich in new 

physics. Throughout thii paper we adopt the convention e = h = 1. 

- 
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2. DISRUPTION WITH NEGLIGIBLE BEAMSTRAHLUNG 

Let us recall that the nominal luminosity for head-on colliiion of two gausaian bunches is ,x- -. . 

where N is the number of particles per bunch and f, is the bunch collision rate. When including 

the disruption effect, the effective beam area is smaller, which in turn enhances the luminosity. 

Thii can be parameterized by a pinch enhancement factor HD 

Z=HDSQ . (2.2 j 

In this section we review the effects of disruption during beam-beam interaction with negligible 

beamstrahlung energy loss. 

2.1 FOCUSING EFFECT AND TEE DISRUPTION PARAMETER 

When an electron bunch collides with a positron bunch, the collective fields from the particles 

in one oncoming bunch act lie a lens to focus the particles in the other bunch toward the axis. 

~The space charge force from the lie particles in the same bunch is negligible to the accuracy of 

the order of l/q, where 7 is the Lorentz fa&or of the relativistic bunch in the e+e- center-of-mass 

frame. On the contrary, the electric and the magnetic components of the Lorentz force provided 
---.- . 
L by the oncoming bunch contribute equally, also up to the accuracy of the order of l/r, to the 

focusing force that pinches the test bunch. 

Let the density distribution of a bunch be decoupled for longitudinal and transverse directions: 

- 

where 

45 4 = nL (4 n,(r) , 

$-y-g/* , -oo<z<oo 

1 : 

(round gaussian) 
n&J = 

,z$z ’ 
+b<z<& (unifkm cylinder) , 

L. 
1 

3 
,-md * O<r<oo (round gaussian) 

n,(+) = 0 5 r 5 2u, (uniform cylinder) . 

- 
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The normalization coefacients are choeen such that / n&(z) & = 1 and J+(r) rdr = 1. The 

equatick of motion for the test charge in a bunch at coordinate (t, z) ir [6] 

i ,--- -. . d’r 
g= -v f(r) n,(-2$ - 8) , 

where 

0 

ra = 2.818 x 1O’15 cm is the classical electron radius and t = 0 when the centroidsofthe 

two colhiing bunch- intercept. Figure 1 b a schematic dlagmn that shm deiinition of the 

coordinates. Consider, for example, uniform cyIlnder bunch-. The aboy equation becomea 

- 

The soiution in rimply 

- 
wh&e to im the impact p ammeter of the teat particle upon entering the target bunch and 

-- . .__ .  

L 

- 

Q . 

The deflection angle in therefore 

(2.7) - 

Fig. 1. Schematic diagram that de&m the various coordinates of the two bunches 
during collision. For a test particle in bunch 1 at tl = z, the relative coordinate 
with respect to the center of bunch 2 L 22 = -2t - z. 



I : 

i 

. 

- 

For a weak deflecting force, at the end of collision t = &* we have 

dr reN 
dt --to. - - 7l73 (24 

When the two transverse dimensions have different diitributions, i.e., a, # br, thii expression 

can be- generaliied to 
& 2rcN 
- - -7a,(a, + 01) & zo , 

(2.9) 

From ray optics the coefficients of eqs. (2.8) and (2.9) can be regarded as the inverse of the focal 

l@!llgthS. 

We now de5.ne a dimensionless, Lorents invariant parameter, called disruption parameter . 
D [7], as a measure of the inverse of focal length in the units of bunch length a, ln each of the 

transverse dimensions. The terminology dervived from the fact that during pinching, the beam 

emittances are severely disrupted. Explicitly, 

0s = 2r,Nu, 
747s + UJ 

D,, = 2r, No, 
7uh + +) 

, 

(2.10) 

. 

- . 

Let us further introduce the aspect ratio R w u,/ur 1 1, and call 

- 
(2.11) - 

Thus, D, = D/R. Par round beams (R = l)D, = D,, and in the asymptotic lit for flat beams 

(R > l)D, B 0 and D M 2r,Nus/7uzuv. 

For D a 1, the focusing force is weak enough that each bunch only converges to the axis after 

traversing the oncoming bunch; whereas for D > 1, the focal point lies well inside the oncoming 

. bunch. Particles experiencing-large values of D would then execute betatron oscillations during 
_xz_ 

_ th%course of colliiion. : L. 

- - To end this discussion we comment that in the regime where D # 1, the pinching of the 

bunches would causally affect the disruption for the remainder of the collision. One would there- 

fore naturally think that the parameter D loses its meaning in the quantitative sense. It is 

fortuitous that actually D as defined does provide simple scaling laws as if the entire bunch has _ 
a well-defined focal length. 



2.2 DISRUPTION ANOLES 

,--- One important information for linear collider daign ia the exp&ed dkuption &gle. Knowl- 
edge on the maximum dkuption angle ia -tial to determine the rgsrtara of the last element in 
a~focuaingsyetemsuchthatitisabletoavoidbeingahoweredbythedeb~frombeam-beam 

coilision. 

In terma of D, eq. (2.7) GUI be rewritten u [6] 

%=-~(~)“a*~[(~)1’2~+~] l 

For D a 1 and at the time when the test particle exiW&om the oncoming bunch 

(2.12) 

$--~(+$)“2 [(2ti~)~‘~+$(2ti~)“~+...] , Da1 . (2.13) 

For D > 1, at the time of exit from the oncoming %unch a tu13 particle would haveexecuted 
more than one cycle of betatron oscillation. Therefore, the sinusoidal function in eq. (2.12) is of 

order unity and 

, Dal . (2.14) 

The rma disruption angle OLW = dm, and therrrrrtnupl w angle-&r, cau 

be deduced from the above equations through J-- (3) and rr , respectively. It L obvious that in 

doiig it thii way the generic functional behavior of 6y and SF are the #ame, i.e., 

9 a+bD , Da: , 
0, 
00 & , D,l , (2.15) 

where u, b and c are some numerical coeffieienta which are different for er and 47, and 40 a 

reference angie de&& M 
-- L. 

e. rxN =- . 
7ur 

- 

e 

An WM diiu~ed earlier, during the collision both beams are continuously deformed due to 

the mutual pinching. Thus, for reliable estimations of these coefficients computer simulations are 

indispensable. Figure 2 shows 00”“’ and by M functiona of D from computer simulations by 

Hollebeek and Miten [8, S] and Yokoya [lo]. The two wta of d&t8 are in reasonable agreement. 
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Fig. 2. The maximum and rrru disruption angles aa functions of 
D. The solid curves are from eqs. (2.16) and (2.17), and the dashed 
curve is from eq. (2.18). 

From these curves we tid 

mar 
B,= 

e. 

Dal , 

Dal . 

And 

e- 
0.78 ‘+ 0.20 D , Dal , 

&, 
e. 0.67 

T’ 
Dal . 

- 

(2.16) 

(2.17) 

These asymptotic behaviors are shown by solid curves in fig. 2. A different numerical fit which 

emperically matches the 0: data for the entire range of D is given by Palmer [ll]: 

(2.18) 

This function is plotted as a dashed curve in the figure. 

2.3 Luhmos~m ENHANCEMENT FACTOR 

Since the bottom lime of an accelerator design is the luminosity, the most important effect of 
e 

disrqtion is the reduction of the effective cross sectional beam area, which causes enhancement 

of luminosity. As discussed above, this effect can be characterized by the luminosity enhancement - A 
factor HD = L/L 0 w h ere the luminosity is defined as 

L: = 2N2 jr 
/ 

dzdydzdt.n(z,y,z-t).n(z,y,-t-t) . (2.19) 

n(z, y, z - t) and n(z, y, --E - t) are the local densities of the two beams at position (2, y, z) at 

time t. 



To include the dbruption effect we return to the equation of motion ln eq. (2.4). The solution 
to the iirst order In D b [12] 

i r .- . 
. 

where 

4Nr. r(t,*) ==a-- 7 t(rob(t.4 9 

Thila 

t 
dt2 n,(-2t -s) = dt’ (t-t’) nJ-2t - s) . 

-00 -Qo 

4r,N 
ro At+- 

7 f(r) ffb) l 
(2.21) 

For our purpoee we like to know the radii di&ibution function n,, at (t, s). This can be found 

by 

= n,(ro) 4r,N 
1 + - 

Id 
7 g(t,x) ;yp 

(2.22) 

* = _ 

---.- . 

With the above expression we can estimate the lumino&y fram eq. (2,19),‘whkh can also be 

expressed by the bunch coordinates introduced in Sg. 1, 

-._ 
- .L a 

/ 
rdr &l&2 y,(a)n,(z2) [n,(r)]' 

x b+y ($2 f(r)++) (g(t.~l)+g(t,ll))ll_~. , (2s23) 

where the leading term corresponds to the nominal luminosity Lo. The integration over t can be 

carried out, which gives e 

Thus the luminosity enhancement factor for small D is 

(2.24) 

Ho1 e l+ !$! [w] / &de 444s) g(h) +&d ( ) . (2.25) 
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Since the’ two colliding bunches are symmetric, g(t, 4) and g(t,zl) contribute equally to Ho, 
where 

.-- . . . 

. t a0 

dt.4 = 
/ 

rdr n,(r+a) . (2.26) 
t=* -oo 

dt*(t - t*) n,(-2t - 2') = ; 
/ 0 

Therefore 

Now we introduce norxnalii coordiites p = r/ur and $ = t/us. Then 

(2.27) 

(2.28) 

~Plugging in diitrubution functions from eq. (2.3), we obtain 

---.- . 
L 

D+O(D’) , (round gaussian) , 

D-Cl (2.29) 
D+O(D2) , (uniform cylinder) . 

-.m 

St far the discussion has been liited to round beams. To extend the above expression to 

arbitrary values of R, it is more convenient to rewrite Ho1 as an exponential function: 

Ho1 N c 2D/3+ 
, Dal (round gaussian) . (2.30) 

- 

Recall that for different aspect ratios D stales aa 2R/(l + R) [cf., eq. (2.11)]. so naively one c 
. _F_ would tend to assume that HD~(R) varies as exp [2R/(l+ R)], which i incorrect. 

- ?otice that HD~ essekally comes from-the relative change in b&n spot sizes, i.e., 

(2.30) 

. _ where 47razgY is the effective beam size. For round beams 

(2.31) 
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Thas, for R > 1 we have [cf., eq. (2.11)] 

Combining eqs. (2.32) and (2.30), we have 

Now we replace exp[2D/34 by HOI, then we obtrin 

(2.32) 

^ 
Thii expression was first introduced by Amaldi [3]. 

Beyond the D a 1 lit, the disruption effect becomes very nonlinear and we lsck analytic - 
tools to derive luminosity enhancement factor rigorously. Computer rimulations of HD with 

negligible b eamstr&hmg have been studied by e . igure-3-showa.Hn artfun&h 
of D for round gausaian beama. The solid curve repre8ents’the original work of Hollebeek [7], 

where the initial beam emittance is zero. The dashed curve ia from a recent study by Fawley 

and Lee [13] with c,, = 6.7 x lo-” m.rad. Notice that the tato aarwu ue snhaU&Uy diGrent. ‘- - 

for D 2.5. While the Hollebeek data saturates at HD H 6, the Fawley-Lee result does not seem 

---.- . to saturate. Despite this dis8greemen t, the cuma3te r43omd& -ehue-~~D<l;~ 
. 

where our analytic formula in eq. (2.28) fib quite well. 

Fig. 3. The luminosity enhancement factor HD 8s a function of D. 
The data are taken from the simulation results of Hollebeek, and 
Fawley and Lee. 
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2.4 THE EFFECTS DUE TO INITIAL EMITTANCE 

‘ Effst on Lumimeity Enhancement -. . . 

. In order to have a better maeminent of the phyoicai procem that contributea to HD beyond 

the limit of mnaii D, we krvartigate the time evolution of Ho during beam-beam coliiiion. For 

thii pwjmee we ringle out the time dependence of t in eq. (2.19) md write 

00 
4 = / h(t) & . cw -0 

The fimction h(t) t thus the “differential” luminoeity in time. A normaiised h(t) (i.e., h(t)/J) 

- WRU simulationed by Chen and Yokoya [12]. The histogrsmr for D s 1 are shown in fig. 4. 

0.6 

0 
0.6 

-2 0 2 
t/q 

- 

Fig. 4. Computer simulationa by Chen and Yokoya on the time evo- 
lution of luminosity for different values of D. 
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From the m we ICC that when D k very small, e.g., D S 0.8, the hi&gram followa 

eaaentially aa the square of bunchxurrent distribution, which in our case is ga-iau. In this region 
,x- of fi the enhancement of luminmity occura through the overall demagnification of the beam crow 

. sections, as diiusard in the prcVioua o&ion, where Ho, in eq. (2.30) agreea reasonably well with 

the values shown in the ht four diagrama in &. 4, aa it ‘should. 

When D - 0.5, a Mend peak appears. Thir ia explained to be caused by particlea at certain 

radius (not the entire cross section) focused on beam axim within the oncoming bunch. At D = 0.5, 

this peah occur8 at t = 1.5~7,. The peak growa ae D geta larger, and eventually becomes the 

dominant source for the luminmity enhaucement by D - 1.0. Notice abo that the location of the 

tiond peak rhifb gradually to the left when D getn larger, where the rtronger dkuption induces 

the phenomena to occur earlier in time. The steepn- of this peak ntggests that tiny time steps 

are required in simulation. 

Since the second peak is believed to be caused by particlea focused on ax& where very high 

- 

- 

---.- . 
- 

den&y would occur within a tiny volume, we need to tie tune the radial mesh rizea in order 

to avoid udderestimating the luminosity at the focal point. Figure 5 shows HD aa .a function 

of Cn(l/dt), where dr is the radial mesh size in units of cr in each of the xxmpukr runs: The 

simulation was dope [ 121 by assuming zero initial emittance for D = 1 and 4. It is seen that HD 
scales roughly liiearly aa Cn(l/dt), which ia clearly divergent. Thir impli- that the functional 

behavior of HD with wo beam emittance in very sub& h-We could be obtained 

by a randomly chosen mesh size (or the number of macroparticlsr) in a rimulation with zero 

emittance, but the result would not be numerkally~ - 

The symptom for zero emittance beams arises because all particlcs enter the oncoming bunch 

in parallel, thus those with the same impact parameter would be focused to a single point. For 

beams with nonzero initial emittance there would be a smearing effect that thii singular behavior 
- 

. 

c 

Fig. 5. HD aa a function of the inverse of the radial mesh size, l/dr, 
in computer simulations for D = 1 and 4. The initial emittance ia 
zero. 



can never occur. Let us introduce a Lorents invariant, diiensionl~ parameter A that manifests 

- the. beam emittance for Axed ur and or: 
i .-- 

(2.36) 
. 

where fl’ is the B-function at the interaction point. Figure 6 shows HD with three different 

valua3 of A (A = 0.1, 0.2, and 0.4), the simulations use the computer code ABEL developed by 

Yokoya [l4]. An expected, smaller A giveo larger value of HD. Furthermore, from the figure we 

find that. 

HD(A = .Ol) - HD(A = 0.2) e HD(A s O-2) - HD(A = O-4) 9 (2.37) 

for a given value of D, but the separation in- roughly quadratically. Thir suggesta that the 

- part of the luminosity enhancement arising from the second peaks in 3g. 4 scales as 

(2.38) 

From fig. 6 we deduce that 

(2.39) 

where X1 u 1.6 and XI s 0.43. 

Putting everything together, the overall luminosity enhan&ment is now 

1 

H~l=l+ 6- *D , O<DsO.S , 

--_.- . 
- Ho= HDr+Hm-l+$;D+O.43[ht(q)]r , O.SsDs2 , (2.40) 

HDy + Hm CY 1.6 + 0.43 [ln (3) ]’ , 25D5100 , 

--- where X1 has been identified to be the saturation of HD, at D iZ 2, at which value the pinching - 
has induced roughly half a cycle of plasma oscillation [7). The nonsaturation of HD’II in fig. 6 are 
characteristically different from that of Hollebeek in fig. 3, but show similar tendency as that of 

Fawley and Lee. 
25s 
20 A.5 

A=O.l i 

B@ 

Fig. 6. Luminosity enhancement factor HD with dii- 
ferent values of A simulated by Chen and Yokoya. 
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Eff&cts on Disruption Ax&s 

With the drastic impact on iuminoeity enhancement in mind, it k natural to aek whether 
* ,--the initial emitt8nce alao maka lerge in&mnce on the djeruption mgla demcribed in sec. 2.2. 

. &nulationa are done by Chen &d Yokoya [12] in thie respect. Fii 7 Howe 8y and Sy in 

the units of or/a.. Again, A = 0.1.0.2, and 0.4 am ueed to tid the sensitivity of the angles on A. 
The data in the figure evidently rhow that the disruption angles are asymptotically independent 

of A. Thus all the rrtatementa in sec. 2.2 remain UMh8Ilgd. 

The fact that the disruption angles are independent of A can be understood aa follows: While 

luminmity cornea from multiplying local demtitiea of both colliding bunches, dinruption angles 

depend only on the integrated density of the oncoming bunch (through Gattse’s law). Under this 

light the rharp focus of the like particles on N&I would have no e&et on disruption. Furthermore, 
the Lorentz force provided by the oncoming bunch at any radius t > 0 would be the rame around 

the focal point independent of whether the focus is rharp or blurry. 

- 

--..__ . 
- 

Fig. 7. Disruption angles with different valuea of A &dated by 
Chen and Yokoya. Qp ‘s are in the units of q/u*. 

- 

c 
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3. BEAMSTRAHLUNG WITH NEGLIGIBLE DISRUPTION 

-In th@ section we firat review the novel charactera of beam&&lung assuming no bunch 

de&nations. Thiibervea aa an introduction to the more sptiific diicussions following that. To 
. discuss radiation, we take an iterative approach. First we examine the problem with semi-uniform 

field approximation-that is suitable for long bunches, from which a beamstrahlung reduction factor 

HT~ is obtained. Next we include the fact that the field strength in a bunch is actually varying 

along the trajectory of a radiating particle. Thii results in a second beamstrahlung reduction 

factor HTZ when the bunch ia short. 

With efforts in recent yean, the understanding of the subject is rapidly maturing, though 

with a wide spectrum of appoaches to the problem. To be self-consistent in our treatment it is 

- difIicult, if not impossible, to review various different calculations in detail. In&ead we will only 

mention each individual contribution in passing wherever is appropriate. 

- 
3.1 THE NATURE OF BEAMSTRAELUNG 

Collective Fields from Discrete Scattering Centers 

In the laboratory frame (also the center-of-mass frame in our case) of a linear collider, an. 

electron -encountering a positron with an impact parameter 6 would have an effective interaction 

- time At1 m b/r due to the fact that the fielda rssoeiated with relativistic particles rpan about -_ 

an opening angle A6 - l/r. In turn, the corresponding effective distance of traverse through the 

fields of the oncoming particle is --..._ . 
- 6 

L1 = t1 - ;; - (3.1) 

Consider an electron encountering the entire fiux of the oncoming poeitron bunch. The flux 
-.&,,&. 

in roughly 

(3.2) 

where C2 is the mean longitudinal separation of target particles. The target beam ia considered 

to be dense if Lr > 4. Takiig a typical value of impact parameters to be one standard deviation 

in the transverse direction, i.e., -6 m ur, the condition for a dense beam translates into 

N*>l 
yo, l 

In this case the background field provided by the particles in the oncoming bunch is con- 

tinuous. (See fig. 8.) For example, the Stanford Linear Collider (SLC) beam parameters are 

‘7 = 1 x 105, number of particles per bunch N’ = 5 x lOlo, o, - 1 mm, o, - 1 pm at the 

interaxtion point. Thus Ncr,/yo, - 500 > 1, and the beam is dense. 

e 

(34 
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Fig. 8. A schematic diagram for a ‘densem beam. 
- 

In thii case the background field becomes discrete and the test particle would see the granularity 

of the target bunch. (See fig. 9.) For example, in the conceptual ucelerator of 5 TeV+STeV - - 

discussed by Richter [lS], and refined by Bit1 and Siegrest [10], 7 = 1 x lo’, N = 1.2 x 10s, 

us = 0.4 pm and or = 2.5 A, we have No;/7e, - 0.0075 < 1. The beam is therefore quite dilute. ----- . 
- 

In one version of the CLIC parameters (171, whele 7 = 2 x lOa, N = 5.4 x 10Q, u, = 0.5 mm 

andu,= 65 mm, we find Nu,/7u= - 0.35 5 1. In th s case the beam is only marginally dilute. 

- 

Fig. 9. A schematic diagram for a ‘dilute” beam. 
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The length scalea Li and Cr introduced above arise from kinematic origins. Now we introduce 

one more length scale, the radiation formation length LR, which arises from dynamic origin. 
l Th3 radiation formation length is the length which an electron (or a positron) must travel for a 

. photon to be emitted within an open cone with angle - l/r. (More detailed discussion on & 

is given in sec. 3.2.2.) Together with the bunch length cr., the four length sales comprise eight 

.possible situations, where 4, L2 < uS by de6nition. Among the eight arrangements, the cases 

~~R<~~<~2<U~,~R<~2<C~<U~~dC1<~R<~2<U~~trmcaehrinOfCl~e~CO~t~ 
betweenthe test electron and the positrons where each deflection causes a bending angle of more 

than - l/r, which is very unlikely. The remainiig five cases can be categorized into the following: 

a. 6 < fR < fl < 0,: The bunch is so dense that the test particle would be 

bent severely and quickly lose all ita energy. Thii ~II a situation where the 

accelerator designers would definitely want to avoid. 

6. L2 < fl < fR C u, (dense beam) and Cl < 4 < fR < us (dilute beam): In 

thii regime the test electron interacts with the macroscopic fields collected 

from positrons within the range of CR. For dense beams, the collective fields 

within & are smooth. The radiation in this caee is rimilar to the familiar . 
%ynchrotron radiation.A 

- 

--..._ . 
- 

-.u 

For dilute beams, the interaction with the test particle is rtill collective, 

but the discrete fields would act somewhat like 5mdulators” with mean 

periodicity - 4. These “undulators” would then induce ripples onto a 

smooth trajectory associated with the mean charge distribution of the target. 

Thii would potentially introduce extra radiation. We will discuss thii point 

in more details later. 
- 

It occurs that almost all liiear collider beam parameters that people dii 

cussed are in this category. So the rest of this section will be devoted pri- 

marily to thii case. 

. _e_ 

- ic 

c. & < & C u, < CR and l2 < 41 < us < LR: Thii corresponds to the condition 

where the bunch is ultrashort. In this regime the whole target bun&h acts 

lie a ‘Lpositron nucleus,m and the radiation of the test particle is more lie 

that in bremkrtrahlung. L- 

It haa been recently pointed ou! [18] that thii is a desirable beam parameter 

regime where beamstrahlung would be greatly suppressed. But it is unclear 

whether such beam parameters are technically attainable and whether they 

will conflict with other stringent physical requirements in a linear collider. 

We therefore view it as an interesting option which requires further studies. 

d 
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Preseuc,e of Both Electric and Magnetic Fields 

unlike a permanent magnet, in beamstrahlung the target bunch presents both electric and 
6 

‘- magnetic Eel& in the e+e- center-of-mass frame, where?& in the rest frame of the target bunch 
. there is only E-field. In fact, in our case (]I?]’ - ]g]2)/@]! - l/7’ 2 0, and one can never find a 

frame where there is only B-field. 

Facing this fact, two diff&rent approacha have been taken. One can either work in the rest 

frame of the target bunch, which ia what Blankenbecler and Drell [IS] and Jacob and Wu [20] did, 

or work in the center-of-- frame and assume the Lorents force due to E’ md B’ to be equal. 

Thin second approach has been taken by Himel and Siegrest [Ml, Noble [21], Yokoya [14,22] and 

Chen 1231. 

Quantum mechanically, in principle, an electron interacts with I? and-B’ very differently. For 

example, while an electron would execute a circular orbit in a transverse uniform magnetic field, it 

would instead have an open orbit when tramming a traumeme uniform electric field. (See fig. 10.) 

Thii difference is the genesis of the well-known hiitorical issue called Klein paradox [24] where 

spontaneous e+e- pair creation is possible when the electron is accelerated in a strong E-field. 

- 

e’ 

Fig. 10. Closed and open trajectories of an electron under B’ and E’ 
fields, respe+ively. For ]a( = IdI the two trajectories largely overlan 

_T_ around the turning point. 
-- - L 

- - However, it is shown by Chen and Noble [25] that beamstrahlung actually occurs within a 

very short distance - ux around the turning point, where there isno essential distinction between 

the two possible trajectories. (See the overlapping section in fig. 10 indicated by u..) More 

specifically, when the electron momentum which is transverse to I? is much larger than the rest 
. 

mass, i.e., pl> m, and when e/El/m < 1, the radiation rates are the same from E and B given 

equivalent strengths. We will base the rest of our discussion of beamstrahlung on this argument. 
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L  

. 

. xta ts o f th e  J&J&  

Unl ike th e  b o n 6  fid e  synchro t ron rad ia tio n  w h e r e  th e  e n tire c lased orbi t  o f a n  e lec t ron is e m -  

b e d d e d  in  a  un i fo rm m a g n e tic fie ld,  in  b e a m & & l u n g  th e  fie ld  h a s  fin i te extents. T h e  s t rength 

o f th e  E M  fie fd  i6  p r o p o r tio n a l  to  th e  b u n c h  current ,  wh ich  typical ly var ies 6 6  a  gauss ian  func -  

tio n . Ve ry  o fte n  a n  equ i va len t un i fo rm distr ibut ion with to ta l  l e n g th  L  =  2 4 ~ 7 ~  a r e  invoked  

[cf., e q . (2 .3 ) ] fo rk  th e  sake  o f m a th e m a tica l  sim p licity. A  s c h e m a tic d r a w i n g  i6  s h o w n  in  fig . 1 1 . 

In  th e  t ran6veme  direct ion,  th e  local  fie ld  s t rength a l 6 o  var ies.  

Long i tud ina l :  

G a u s s i o n  Un i fo rm Cy l inder  

T ransverse  : 

“R o u n d ” B u n c h  
8 . 0 7  

“Flat” B u n c h  
SIJIAl4 

Fig. 1 1 . S c h e m a tic d i a g r a m s  o f c h a r g e  distr ibut ions in  long i tud ina l  
a n d  t ransverse direct ions.  

Fo r  a  r o u n d  b e a m  (i.e., R  =  1 )  wi th a  b i -gauss ian  c h a r g e  distr ibut ion 

-  n * = h  4  =  (2x)‘xofu*~ 
-? /2e?c-8’/~  9  

- 

(3 -5)  

th e  co r respond ing  fie ld  s t rength is 

- w h m  E ’ is in  th e  rad ia l  d i rect ion a n d  B ’ is in  th e  az imu tha l  d irect ion.  In  th e  m o r e  geners l  c 6 6 e  

o f a  fla t b e a m  (i.e., R  <  1 )  wi th a  t r i -gauss ian c h a r g e  distr ibut ion 
_  -  

th e  g - fie ld  is genera l l y  n o t p o i n tin g  to  th e  rad ia l  d irect ion.  T h e  fie ld  s t rength is ( 2 6 1  

2 0  



where w(c)‘8 are complex error functions. 

From eqs. (3.6) and (3.8) it is clear that the fields in a bunch extend only within a finite space 

with rrtrengths varying fkom point to point. We like to rtress, however, that their longitudinal 

variation follows exactly the distribution of the bunch charge. 

3.2 SYNCHROTRON RADIATION IN A SEMI-UNIFORM FIELD 
- 

Baier-Katkov Approach 

- 

---_- . 
- 

Our starting point is the Baier-Katkov method of radiation calculation (271. A rimilar method 

had been used earlier by Schwinger [28]. The method L based on the rcalitation that when the 

radiating particle is ultrarelativistic, its radiation in a magnetic field b a qu&-clwical’problu. 

By that we mean the motion of an, electron becomes more and more 41assical” aa its energy 

increases that it makes sense to describe the particle by ita trajectory. The radiation is therefore 

viewed as induced by the bending of the trajm. The only role that quantum physics plan 

is the noncommutativity between the electron field and the photon field, and the co- tion of 

initial and final energies in a discrete manner. The general expreesion of radiation intensity (in 

the Coulomb gauge) ia 

- 

where Q = l/137 is the 6ne structure constant, (w,z) the four-momentum of the photon, (il, (jl 

the initial and fisal staten of electron, respectively, and M the transition mat&. To the accuracy i 

of the order of l/r, Baier and Katkov show that the phase factor from M’M 

,iI~?(t~),iZqt,) 

I[ 

w 
=exp i wr+H-w 

( 
k'* (fltz) - *It*)) - or 

)I> 
, 

where r E t2 - tl and t = tl + t2, commutes with both the Hamiltonian I/ and the electron 
._ momentum 6 After summing over the spins of the 6nal electron and polarizations-of the photon, 

and averaging over the initial electron spins, the radiation intensity can be written as 
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c .-dl - a z = (2~)3 / g’k /” dr G (z(h) Aft)) exp {i [wr + +, (6 (r7t2) - qtl)) - wr)] } , 
. --Qo 

(3.11) 
where E- and E ’ are the initial and 6nai energies of the electron and 

G (G(tl) ,u’(tz)) = f 
a 

(v’(t2) l g(h) - 1) 

(3.12) 

+ (fJ’ (S(h) l q11 - 1+ $)] 
l 

From now on we will simpiii the notations by designating C’r and G for v’(tl) and ir’((tz), rcspec- 

tively. Similar notations apply for +‘(t). It is observed that the dominant contribution of the 

z integration in eq. (3.11) comes from the value at irr - 1;~. This corresponds to the situa- 

tion where the electron position vector has swept through an angle 117, or correspondingly the 

outcoming photon lies within an open cone of angle l/r. We shall ‘call thii period of time the 

radiation formation time r, and the corresponding distance of travel by the electron the radiation 

- 

formation length, CR. Since l/r < 1 we can Taylor expand Ci’2 and 7% in terma of Cl and ?I: 

. 1 ~~-u’t=v’r~ f71+i71r+-31z2+ [ 
1 ‘1 

2 
s v1r3+... 

3 
, 

(3.13) 
_--._ . 

~.(r~-F+~. cl++f&r2+; [ i$r=+... . 1 
In their paper [27] Baier and Katkov truncated the expansion at &zzc thus the assumption was 

.uL- . . . - (l/6) 1 V’I 1~’ 
(l/2) I9 lr3 

<l . (3.14) 

Since B oc 3 in a magnetic field, and 9 = constant, we have v’. v’ = 0. Takiig time derivatives 

successively, we have 

;.a= 
. . . . . . -v’.v’ , v’.v’= -33.3 , etc. (3.15) 

. 
-p.-Using these relations the ysumption can be translated into &r/B < 1. Now we define a diien- -- L. 

sionless, Lorentz invariant parameter T: 
- - 

-- 

(3.16) 

where B, = m2c3/etr rr 4.4 x 1013 Gauss is the Schwinger critical field strength [28]. The radiation 

intensity for electrons in a semi-uniform field satisfying h/B < 1 can then be obtained in terms 

of T: 
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1  

. 

-  

----- . 

d Io  fa 2 T 2  1  (  - + T + 4 8 T 2 + ...) , Te l  . 
- =  
d t 

(3 .1 7 )  
# $  (8 )  a m 2  ( 3 T ) 2 P  +  . . . i 'TM . 

In  th e  a b o v e  e q u a tio n  th e  express ion  fo r  T  <  1  ia  th e  w e l l & n o w n  fo r m u l a  fo r  classical 

s 3 & & .rotron rad ia tio n , inc lud ing  th e . l ead ing  q u a n tu m  correct ion tit der i ved  by  S c h w i n g e r  ( 2 8 1 , 

a n d  i n d e p e n d e n tly by  Soko lov ,  K lep ikov a n d  T e m o v  [2 9 ], a n d  h i g h e r  te rms  in  T. T h e  express ion  

fo r  .T >  1  co r responds  to  th e  synchro t ron rad ia tio n  in  th e  ex t reme q u a n tu m  lim it stu d i e d  by  

m a n y  p e o p l e , b u t in  th is  a r ticle w e  wil l  sim p ly cal l  it Soko lov -Temov fo r m u l a  [3 0 ]. T h e  fact th a t 

B a ier  a n d  K a tkov  r e p r o d u c e  th e e e  fo r m u l a e  in  a  st ra ight forward m a n n e r  a n d  genera l i ze  th e m  

f rom strictly un i fo rm fie lds  to  semi -un i fo rm fie l d a  r u g g e r b  th e  p o w e r  o f th is  m e th o d . 

F o r m a tio n  L e n g th  a n d  G ranular i ty  

L e t us  n o w  d i g r e e e  f rom th e  a b o v e  results. T h e  rad ia tio n  intensity in  e q . (3 .1 7 )  is th e  t&J  

intensity f rom al l  poss ib le  f requenc ies .  If w e  look  fo r  th e  p o w e r . rpect rum P ( W ) , d e & &  as  

t 
d I -=  
d t / P (w) 

0  

it is k n o w n  th a t in  th e  classical lim it it sca lee  l ike 

- 

d w  . (3 .1 8 )  

w s w e  , 
, w ;L w c  . (3 .1 9 )  

- ._ 

T h e  crit ical f requency  w e  is d e & r e d  such  th a t th e  to ta l  rad ia tio n  intensity c o n tr ibuted f rom w  5  w e  

is e q u a l  to  th a t f rom w  1  w e . N o tice , h o w e v e r , th a t h i g h e r  f requency  p h o to n s  w e i g h te d  m o r e  in  

t& n s ’o f intensity. T h e r e fo r e , th e  spec t rum b e y o n d  w e  d o e s  n o t cover  a a  l a rge  a n  a r e a  as  th a t 

b e l o w  w e . In  fact P (w)  d imin ishes  e x p o n e n tial ly b e y o n d  w e . Fo r  a  un i fo rm m a g n e tic fie ld,  a n  

e lec t ron w o u l d  execu te  a  c loeed  orbi t  wi th rad ius  p . T h e  crit ical f requency  ia  re la ted  to  p  by  

3 Y  w e = - -  (  
2  P  

(3 .2 0 )  
e  

_  
_ P _  

w h e r e  two p o w e r s  o f 7  c o m e s  f rom D o p p l e r  shi i  d u e  to  th e  fact that .  th e  relativistic rad ia tin g  

p a r ticle c o - m o v e a  with th e  e m itte d  p h o to n . T h e  rms  o p e n i n g  a n g l e  o f e m itte d  p h o to n s  a t thi i  
-  -  

f requency  is N  l/y. Fo r  f requenc ies  a b o v e  o r  b e l o w  w e , th e  o p e n i n g  a n g l e  var ies a a  

e  rod  - 
1  

+  (#‘” , w  5  W C  , 

3  (% )“’ ) w  2  W C  . 
(3 .21)  
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We shall therefore call the corresponding distance of travel of the electron the radiation formation 

1~gth 42(w) 
1 

,-- .  .  .  

(3.22) 

The parameter T de6ned in eq. (3.16) can now be related to we (and therefore CR). From 

Lorents force IPI = c @I= 7m/p, we have 

T 
B 72Xc 2w, = 7z=P=5T 9 (3.23) 

where X, = h/me = 3.8 x 10-l’ cm is the Compton wavelength. When Y < 1, we -find we a l. 

In this limit the typical energy of photons is much smaller than the electron energy and the entire 

power spectrum of eq. (3.19) is observable. On the other hand, when T > 1, or E a we, the 

spectrum beyond w = E is kinematically forbidden. So in the quantum limit, only the infrcrrcd 

region of the assumed classical spectrum is observable, which seal- as P(w) u wl/s up to w u E 

and wc is certainly not to be seen. 

Panofsky [31] argued that in a dilute beam, the possible ripples that superposed to the smooth 

trajectory would induce additional radiation analogous to the undulator effect. This radiation 
- introduces a broad spike with mean frequency associated with the mean particle separation 4, 

2x 
Wd N - 7’ . 

42 

Since we - 2%r2/&, and CR > &, we have wd > we. It is thus clear that this poesible granularity 

effect is observable only when T a 1. Beyond the classical regime &, as well as we, is kiie- 

--Dr matically forbidden. Thii means that even though the fields are physically discrete in a dilute 

beam, the radiating particle only responds to the mean of the field variation. This argument has 

been explicitly confirmed by Blankenbecler and Drell [19]. In their calculation, the electrostatic 

potential of each individual target particle (ii the rest frame) was summed up and the fluctuation 

is shown to be logarithmically unimportant. 

There is, however, an additional radiation effect due to the corpuscular nature of the tar- e 

ez. get which is independent of whether the beam is dilute or dense. Thii corresponds to the 

~-brec*mrahlung from the individual scattering between the test electron and the positrons (and 

e vice versa) recently calculated by Baier, Katkov and Strakhovenko [32]. The difference between 

. this effect and the normal bremsstrahlung is that the former is strongly influenced by the macro- 

scopic background field that we have been discussing so far. This subject, however, lies beyond 
_. the scope of our article, which deals with the radiation from a particle interacting with the bulk 

part of the target field only. 
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3.3 SYNCHROTRON RADSATION XN A VARYXNG FIELD 

Head-Tail Symmetry and Gaussian Correction 
; 

Consider B magnetic field that points to the diiion transverse to the axis where an electron 

enters, and its strength that varies along the axis. Let t = 0 when the electron passes the 
geometric center of the field. We are interested in the case where the field variation is such that 

B(t) is an even function in t, which is also called head-tail symmetric. Siice from Lorentz force 

ir a B(f), we see that ii a B(t) is an odd function in t. Therefore, in the study of radiation from 

a head-tail symmetric inhomogeneous magnetic field, the terms linear in ii would vanish when 

integrating over t. Thii means the leadiig correction term is of the order 8’. We should thus 

retain the Taylor expansion in the integraud G up to the term 4 l ‘$rr4 where the recurrence 

relation 

a.‘$ = -3&a- 48.2 ) (3.25) 
- 

which is obtained from one more derivative on eq. (3.15), links the term with ?* 2 and ** ;’ where 

both are even functions in time. 

=P{++$,~+r6)-w~)]}==P{-i(*o+4~)) , . (3.26) 

where 

anduEw/&‘,ri= g/w, is the phase angle that givar rise to eq. (3.17) in the previous section, 

and 

is the additional phase that we retain. Notice that in @I and the last term in (PO we had made 

the approximation of replacing ii by v’. 

We further assume that a1 a 1, which is usually satisfied if only u ;Ibl, or the 6na.l energy of e 
the electron E f > m. Thii does not introduce extra sssumption since the Baiez-Katkov method ” 

~- - -=&as already assumed relativistic electron before and after emitting the photon. Therefore we 

make the following approximation: - - 

exp (-i,(*o + @I)} e (1 - iO1) exp {-i*o} . (3.27) 

Retaining terms to the same order in the integrand G, and combining with eq. (3.27), we find the 

integrand to be 
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G=Go+Gl+Gt , 
c ,-- . . . . 

. where 

Go = -+(l+u)-f(l+u+~)b’r’ 

(3.28) 

is the part that reproduces the Sokolov-Temov formula, Gr a h/B is an odd function in time 

and would give sero contribution for head-tail symmetric fields, and Gs is 

G2=-(l+u+f) (;$+;;)64r4 

+ig(l+u+9 (9$+2+W . 

In the above expression the vector products $a 3 and 3 * 3 have been replaced by Bh and BB. 
This is because the only components that 3 and ;’ contribute are proportional to v’x B’ and v’x 3, 

- respectively. 

Following the mathematical techniques used by Baier and Katkov [27], we introduce angles 6 

v;-‘- ‘and p,.where 8 is the angle between the unit vector A of photon propagation and the plane (C’, 

?), and (p the angle between the projection of ii on (C, ii and v’, i.e., 

- 

A.v’=vc08(pc088 , A.if=thin~mse . (3.30) - .__ - 

Takiig into account the fact that up to terms of highest order in l/r2 the principal contribution 

comes from small 0 and (p, and by shiftiig the origii of r to r + (p/C, the phase can be written as 

(3.31) ; 

and . 

‘p and y 1 . 
==JIs 

=-VT . 
fi 
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With the defiinition of T in eq. (3.16) the coefficients in the phase cau be symbolised by 

,;- . . . b= 
3 
P = & (7%)“‘: . 

The radiation intensity associated with head-tail symmetric inhomogkous field is then 

l (3.32) 

Recall that u = w/E’ = w/(E -w), and k’dk = w2dw, we land that 

- 

)‘a = bsddu 
(1-k u)J l 

(3.33) 

The intergrations over z and y ‘#ve Bessel functions of fkactional order K+(q) and Ifs/s(q). For 

the evaluation of the integral over u it is convenient to &sodu~ tha w (321 

A+-r(-r)r(m + Q& 
&==ki* / w4 9 W) 

- 

where 1 - m < X < 0. After this transformation the integration over u turns the Bessel fmctions 

into gamma functions, multiplied by a factor (72~)-a(r+r)/2 among other w. We can then 

carry out .integration over sin B k 6 by the following form& 

00 00 
.- (7?r)-‘(~+3/?7@ = (1 + 7’82)-2(a+‘)/27& = fir@@ + (an - W2) 

T(342 + 3n/2) 
. (3.35) - 

-00 --a0 

All integrations in eq. (3.32) are straightforward, though tedious. The result before carrying 

out the &~a integration over d is 
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c 

. 

_ 

- 

----- . 

- 

-_ 

,-- 

X 

a72 f A+iao 
rs/t2ri* I r(3s/2 + 1) 

1 
I-p + 4) 

h2'(sT)'r(38/2+3/2) r(l)+ 
l-(8 + 2) 1 l-(-a) 

r(2) r(8+3) 

((:;6$ ~(~+~)r(~+~)r(i+~)r(i+a) 

ir(8+3) 
- Zr(8+2) r(i+~)r(t+~)r(~+~)r(~+%) 

(3.36) 

where - 1 < X < 0. The above expression includes only contributions from  the 6’s’ and 6’r7 terms 

in eq. (3.29) because it can be shown that the contribution from  the tisrs term  is significantly 

smaller, and thus negligible. 

The integral over s can be evaluated by closing the contour of integration either to the right 

for T  a 1, or to the left for T  > 1. For T  a 1, we have 
- 

dI2 o -= &  , Ta:1 , (3.37) 

identically, For T  > 1’ we have, to the leading order in Y, 

d& -=-$I’(;)I’(;)$=&;;)(6T)-2i3 , T>l-. (3.38) c 
dt 

. 
_T. 

_ - 

Thii result is valid for any head-tail symmetric inhomogeneous magnetic field which satisfies the 

&EiGptions given previously. 
:. 

Now we apply eq. (3.38) to the field from  a relativistic gaussian bunch with standard deviation 

0,: 

B(t) = Bo~-+~ , (3.39) 

where the time of flight of the test electron traversing the oncoming bunch is t = s/2. Then we 

get 

- 
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where F P 4x/u, im the formation length parameter anociated with CR(O) in the quantum limit 
for photon fkquency w = E: 

Combining w. (3.37) and (3.40) with eq. (3.17), we obtain 

Ta1 ( 
dI dIo dIa 

(3.42) 

- Short Magneta and Radiation Reduction 

Our result can be appreciated by the following physical argumenta: Coniider a long uniform 
_-_.- . magnet with length L’ > C R. The diibrential radiation Men&y P(w) is given by eq. (3.19) 
- 

and rhown by the rrolid curve in fig. 12. Aa ir introduced in eq. (3.23), clwical limit T < 1 
corresponda to the situation we a E, meaning the typical fkequency of radiated photona b much 
leer than the kinetic energy of the radiating par&km. Thor the entire rpectrum of eq. (3.19) ir 
okrvable. On the contrary, the extreme quantum limit T > 1 corresponda to E < we, &&ore 
the spectrum beyond the electron energy ~,kinematically forbidden, and the observable rpectrum 
rcalea roughly M wl/* aa discussed earlier. Thii cut-off L rhown by the vertical dashed lirs in the 
figure. 

. 
_I. 

ncp_ 

I 
P(w) 

L I I \ ’ - ho 
S-S? E w w* 
5745A3 

Fig. 12; Radiation spectrum in the two asymptotic liiti. For long 
magnets, L’ > tR, we have the well-known spectrum in the solid 

. curve. In the opposite limit L* a CR, the spectrum approach- a 
constant. In quantum limit we observe only the low frequency regime. 

e 
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In the c~dc of nonuniform fielda the spectrum diffem from that of uniform fields. For the clas- 

.&al lit the problem has been studied by Co’isbon [33], and independently by Bagrov, Fedoeov 
4 .-and T&nov WI.. It ia found that for a short magnet which is comparable in length with &, the 

. radiation spectrum is modi&d in such a way that the low-frequency regime ia suppressed in favor 

of high frequencies beyond we. The total intensity, however, remaina the same. The prediction 
wan ConfIrmed by Bomart et al. [3~] with obaervationa in SPS at CER.N. We cau extrapolate thii 

fact by suggesting that when the magnet length L’ < tRs the spectrum would be a constaut 

independent of w up to a maximum frequency w* - W&R/L’) ( = the horizontal dashed curve 

in fig. 12). Our result for the classical limit shows that the total intensity dI/& t the same for 

uniform and gausaian fields. This ia 8 con&mation of the previous studies. 

The situation for short magnetr b different in the quantum limit. Again, spectrum beyond 
& is energetically forbidden. But now that the low frequency regime in suppressed, the overall 

intensity is reduced. This explainn why our &/dt ia opposite in sign from dIo/dt. From eq. (3.42) 
it can be axn that when CR < a,, ‘or when the bunch is very long, d&/dt -* 0, and we have 
vanishing correction to the Sokolov-Temov formula. A pronounced effect occurs when CR is not 

much smaller than 0,. 

3.4 REDUCTION OF QUANTUM BEAMSTRAHLING 

- First Beamstrahlung Reduction Factor 

With the radiation intensities derived in previous Bections, we are now ready to estimate the 
----- . 
- average energy lam during beam-beam colliiion. Individual e+e’ rcattering are neglected, and 

the target bunch acts only to provide a macroecopic field. For the sake of arguments, we will in 

this section assume a hybrid “cyliidrical gaumian” bunch, i.e., 

i 

n, = 
$-- 2lrro; 

p=/* . -oo<r<oo 

?a, = 4 2% ’ 
0<?<2u, . - 

It is straightforward to show that the local field strength in thii me ia 

(3.43) 

- _ The above expression hi identical to eq. (3.6) when the approximation of t a a, L taken. We 

- _ now introduce normaliied coordinates aa in MC 2.3, . 

t 
P =- , t is 9 =- 

UT 

then we can define a local beamstrahlung parameter 

so 



(3.40) 

is the reference beam&ahlung, parameter correepondii to twice the field strength at (p,~) = 

(1,0) in the target bunch. 

Let ua first calculate the average energy I- in a semi-uniform field approximation, i.e., dlo/dt 
.in eq. (3.17). The validity of this assumption for a gaussian current dttribution b that the bunch 
ia very long; hence, the field strength changes mildly, i.e., &/I3 < 1. Equivalently, if a uniform 

cylinder bunch is invoked, thii implies that the end effecta are neglected. 

Let 

be the fractional energy loss of an electron having impact parameter p. Then the average fractional 

energy loas of the entire bunch is 

- 

_.-.- . 
- 

Replacing dt by 

(c = l), and define 

- 

(3.48) 

(us /2)/dC, since both bunches move toward each other with the speed of light 

-_- we find for the classical lit 
- 

where the classical mean radius is 

(3.50) 

On the other hand, for the quantum lit 

((to) = 32 * W3) a 
W 

243 
~(3To)~/’ . f(p,$ . J 1 c-y/s& , Toal , (3.51) - 

-w 

where the quantum mean radius is 
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. Notice that the geometric form factor6 in the two limits sre surprisiily close: 

. (3.52) 
-w -w 

Assuming from now on the same geometric form fsctor fi in both limits, we then have extremely 

simple scaling laws for the average fractional energy loss in beamstrahlung: 

, * Toa1 , (4 = 
#3Tops , To > 1 . 

(3.53) 
- 

If one would naively calculate (c) with a given T by using the classical formula for the quantum 

regime, he would obtain meauinglessly large results before using the correct quantum formula. A 

beamstrshlung Reduction” factor 8~1 ia thus introduced to account for the change, which is the 

- ratio of the bottom expression to the top expruJsion in eq. (3.53): -_ 

_-..- . 
while 

prlw HT1 (To) = ly3) Ty3 I! 0.556r;4’* , 

(3 w 

!im,&l(TO) = 1 . 
0 

.__ 
It i6 remarkable that thii besmstrahlung reduction factor is exactly what one would get by 

taking the ratio of synchrotron radiation ‘intensities” in eq. (3.17) for mildly inhomogeneous 

fields, with -To as an effective beamstrahlung parameter representing the entire bunch. This is 

the case only because the geometric-form factor does not vary too much in the two l&its. It can 

be shown that this is true even for the transition regime 0.1 s To s 100, where we lack a simple 

analytic scaliig law. A numerical plot for the entire range of T given by Wilson [2] is shown in ; 
_. 

--‘*g.g ;. 

- - In the literature [21, 2] there is an effective beamstrahlung parameter i defined based on 

computer simulation with gaussian bunches, 

(3.55) - 
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10-2 IO” IO0 IO’ IO2 I03 

I-87 T 6772A2 

Fig. 13. The beamstrahlung reduction ftitor &a and the product 
T&r as a function of the scaling parau&er T, plotted by P. B. 
Win. 

- 

where in the round beam case (R = l),itC~varJc~fooarro~a~dricrl~rn 

bunch, 

T S/12 -=-%1.04 . 
- TO 116 

(3.56) I, - 

Our analysis in this subsectian therefore 6erve8 88 a theoretical expl8xmtb tot th8 Qrevioudy 
_-_.- . 
- known facts. Notice, however, that our expressions in eq. (3.53) have conceptually simplified the 

description: No effective radiation time (21 is necessary, and l’s is d&uedin a straightforward . 

way without extra numerical factor6 [Zl). 

Second Beamstrahlung Reduction Factor 

As discussed in the earlier sections, the Sokolov-Temov formula does not include the effect 

due to the fast variation of the field strength along the particle’s trajectory. The correction term 

derived in sec. 3.3 [cf., eq. (3.42)] indicatea that there is an additional beamstrahlung reduction. 

To include the correction term we should realiie that our perturbation break6 down before 
. _T. dlo/dt and d&/dt become6 equal in magnitude at some point c = cC from the centroid of the 

~- - %iinch, beyond which the total intensity-would turn negative and be certianly unphysical. Since 

_ # we lack the knowledge on the behavior of higher order terms, we can only estimate the upper 

bound of the reduction effect by extending dls/dt all the way to cc and assuming total suppression 

beyond that point, ss shown schematically in fig. 14. From eq. (3.42) this threshold occurs at 

(3.57) 
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r 
dt 

0.6 

- dI/dt 

Fig. 14. Radiation intensities 66 function of longitudinal target bunch coordinate c. 
The dash-dot curve is the Sokolov-Temovradiation. The dash curve is the negative 
of our gaussian slope correction. The net intensity is represented by the solid curve. 
Beyond the point t where dIo/dt and - dIz/dt meet, we assume a total suppression. 

where 

hi0 3 
*O=.= 0 

lJ3 xc1 
5 T’h 0 s 

is the reference radiation formation length parameter associated with To, and is related to F by _ 

---.- . 
- 

F(p,c) = Fop-‘lSe?IS . (3.59) 

From eq. (3.57) it is obvious that the cut-off cc is radial dependent. For the sake of simplicity in 
- our discussion, we make a further approximation by evaluating cc at the mean impact parameter 

(Ph = 1.30. Thus the mean radiation loss is suppressed to 

where e 

k2h. = - 32;;‘3) $3fo)2/3 f SF;(p);‘” ] ~“/6(12997$~ - 1804)dc . 

-L 1 
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Let us defme the second beamstrahlung reduction factor HT~ as the ratio of eq. (3.60) to the 

quantum formula in eq. (3.51): 

,c- fir (l/‘) F; ’ 4im.~ &2(To, Fo) = Er-f - 
. 1440% J c92997r’ - 1801)d$ , (3.61) 

-co 

where Erf is the error hnction and 

T&H~t(To,Fo) = ,lim,H~t(To,&) = 1 . 
0 

(3.62) 
0 

With this lengthy expression, it is hard to appreciate the importance of the reduction. As a 
numerical example, let us take the beam p ammeters dkuased by Himel and Siegrest [16], namely, 

the Lorentz factor for 5 TeV beams 7 = 1 x lo’, number of particles per bunch N = 1.2 x lo”, 

bunch size us = O&m and u, = 2.5 A. With these parameters we find 

ra XC7N To= - 
- t/2ru,u, 

and the reference formation length parameter 

=5094>1 , 

3 Fo= z 0 u3 x,7 o-o15 
yq= s 

pm 
= 0 0.4 pm 0 ’ 0375 l 

- 

The cut-off cc at the mean impact parameter (& = 1.30 turns out to be 

_-_._ . 
- 6 = 1.49 . 

Plugging in numbers we get 

.__ - (4s. = 0.78(~)w = 11.8% 

and 

h2)c. = -O.ll(~)~ = -1.6% . 

(3.63) 

(W 

(3.65) 

WW 

(3.67) 

Thus the corrected quantum beamstrahlung average fractional energy loss is 
. . _T_ 

(a)2 (C)$. = 10.2% . - (3-W 

e 

This is substantially different from the previous results. The second reduction factor in thii caSe 

is 

(4 HT2 = m N 0.67 , (3.69) 

or reduced from the semi-uniform field approximation by a factor of H 2/3. 
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Although our discussion on HT~ has been limited to the extreme quantum limit, it is resson- 

able to assume that this reduction effect occur6 to the transition regime 66 well. Based on the 

arguments given in sec. 3.3.2, the effect of a short bud is to suppress the spectrum below wC 

aud str&ch it to frequencies beyond we. By dcflnition T = 2q/3E, so for T as small 6s N 1 the 
. kinetic energy alresdy lies below we- and we should expect to see the second reduction. 

To conclude, we showed that the average hctional energy loss can be related to the clsssical 

synchrotron radiation formula with the reference beamstrshlung parameter To 66 an effective 

parameter and 

(t) 2fi = 2 
= aFYo l HT~ l Hr2 . 

0 
(3.70) 

-- .-- . 
- 
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APPENDIX 
QUANTUM FLUCTUATIONS IN BEAMSTRAHLUNG 

,-- In thii-~Appendix we list various beamstrahlung qua@titim of interest to high energy physics 

and accelerator design. The fluctuation in these quantitiar arises from the fact that typical number 

of radiated photon6 per electron during -beam interaction is small in the quantum regime, 

snd not very large (of order several) even in the classical regime lihe the case of SLC. 

Analytic formals6 have been derived by Yokoya [22] on the average number of photon8 radi- 

ated per electron (N,), the average fractional energy loss (L) de&red in eq. (3.48), the standard 

deviation of 6: 

ue = (2) - (# . (A4 

.  .  
,  _T_ 

- 

the average fractional reduction of the cm-f-mass energy W = S1i2 = 2(ErEs)1/2 of two 

particle6 in beam 1 and beam 2 at some space-time point: 

and the standard deviation of w: 

0, = (w’) - (w)2 . (A4 

Following the same spirit, Noble (211 has investigated, in addition to the above quantities, also 

the average fractional center-of-mass energy squared reduction: 

- 

and its standard deviation: 

a, = (2) - (b)? ( (A.5) - - 

in computer simulations. Furthermore the average photon energy is introduced as 

m = (i) - 
Table 1 liits the for+as obtained by the two authors, where _ 

(A4 

:A+!, BI= c rfN*q’ B2 w-w- 
au+ A ’ (A-7) 

and 

The function6 h(;F) and g(‘9) are listed in Table 2 for various values off, and the coefficient6 41, 

~2, 6, dl, d2, ds for (c) s 0.1 are listed in Table 3. In all cases no disruption is assumed. 
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Table 1 
Formulaa for quantum ductuatim on various physical quantitim derived by Yokoya 
analytically, and deducedby Noble through computmrimulation. 

.----- . - 

.__ 

I -. . . 
Vnknvs : I Nnhlr m-w.., - I l .wY*” 

T<l TWl All T 

P4 1.0597A 1.54wp b%(F) 
2J3r 

Table 3 

Representative values of the fimction.g@) and hrj23 in 
the range loss Ifs lot. 

f om 
10-s 9.94 x10" 
10-2 9.45 x 10-s 
10" 6.55 x 10-3 

1 1.82 x10-1 
10 1.84 
10" 1.11 x lo1 

h(‘F) 
9.99 x 10" 
9.91 x 10-a 
9.30 x 1o-1 
7.16 x 10" 

4.24 
2.13 x 10' 

103 I 5.56 x 10' I 1.01 x 10' 

Table 3 
Behavior of the energy l#r, coefficients q, 6 and 4 aa 
a function of the b&am radiation parameter T when 
(L) 5 0.1. 

T 
I 

-.- a1 ai b 4 d2 da 
SlO" 0.41 30 0.42 0.32 10 10 

10" 0.38 30 0.43 0.31 10 10 
1 0.31 33 0.44 0.27 14 10 

10 0.25 43 0.45 0.24 18 11 
102 0.22 53 0.46 0.22 22 12 

z103 0.20 63 0.47 0.21 26 13 I 
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I 

. 

- 

T L detied in eq. (3.56) aa 

w9 

The symbol r is related to our I’0 [eq. (3.49)] by 

r= --2r0, 9 %I 
16~s fi 

(A.10) 

i.e., the geometric form factor fi haa been abeorbed into I’. 

More recently, Amaldi [36] introduces simple scaling lawa that reasonably reproduce the 

formulas in Table 1: 

(N,) 2 2(c) (1 +F”’ + ,/irT))/f , 

P> 

and 

- 

(A.11) - 

(A.12) 

(A.13) 

e 
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