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AN INTRODUCTION TO BEAMSTRAHLUNG AND DISRUPTION

PISIN CHEN

. Stanford Linear Aceelerator C;ntcr
Stanford University, Stanford, California 94305

1. INTRODUCTION

" To achieve enough luminosity for high energy physics experiments, it is inevitable to focus the
colliding ete~ beams down to miniscule dimensions at the interaction point in linear colliders.
In the world’s first of such accelerators, the Stanford Linear Collider (SLC), beam size at the

~  interaction point is designed to be 0; = oy = 1.65 um, and 05 = 1 mm (1. For the next generation
of linear colliders at the range of 1 TeV in center-of-mass energy the beam size would be even
smaller. The high density of charged relativistic particles would provide strong electromagnetic
fields viewed by the particles of the oncoming beam, while the particles in the same bunch have
no effect among each other because of the cancellation of Lorentz forces between the electric and
the magnetic components to the accuracy of the order of 1/4. The bending of particle trajectories
under the influence of these EM fields provided by the oncoming beam is called disruption. During
bending particles would radiate, causing an energy loss of the beam; this is called beamstrahlung.

— ° Both effects are important to the design of linear colliders (2, 3]. -

In this lecture we review the current understanding of the beam-beam interaction in e*e~

-— - linear colliders. Strictly speaking, the two effects, disruption and beamstrahlung, during beam-
beam interaction are coupled. This is self-eviden;; because without deflection there would be no
radiation, and with radiation during bending the remaining trajectory of particles would not be
B the same. Fortunately, in a large range of beam parameters the average disruption angles are
- rathef small, and the emission of hard photons are relatively rare. For these reasons the two effects
can be isolated from each other to the first degree of accuracy, and our study of the issue can be

* greatly simplified. This happens also to be the development historically. In sec. 2 we discuss the
effects associated with disruption with negligible beamstrahlung. Here, an important parameter,

the disruption parameter D, is introduced. We then discuss the maximum and rms disruption
angles. The analytic scaling laws for D > 1 and D < 1 are then compared with simulation

-~ -=- results. Next we investigate the enhancement of luminosity due to disruption. Together with the
7_Aa‘{sp::t ratio R = o:/oy, th; two para.meters;fleﬁne a scaling law for luininositjr enhancement, Hp;,

= =~ due to the mutual pinching of the e*e™ bunches where the effective beam size 050y is reduced. In
- . addition to the luminosity enhancement arised from the overall reduction of the beam size, there
is a second source for the enhancement that comes from the extremely high particle density at

_ the focal point inside the oncoming bunch. This second enhancement, Hpj, becomes dominant
over Hp; when D 2 1, and is a function of the initial emittance which is characterized by the

parameter A = 0,/8*, where 8* is the S-function at the interaction point.
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Next we discuss beamstrahlung with negligible disruption in sec. 3. First we review the
‘nature of beamstrahlung by describing the novel features of the problem. These specific features
are then compa.red with the known radiation phenomena with emphasis on their similarities and
differences. We argue that, in certain parameter range, the radiation mechanism of beamstrahlung
is synchrotron radiation in nature. By this we mean the emission of a photon is induced by the
interaction between the radiating particle and a collection of target particles via its macroscopic
EM field. Again, an important parameter, the beamstrahlung parameter T, is introduced. For the
case T < 1, typical energy of the photons is much smaller than the initial energy of the radiating
particle and this is called the classical regime. On the contrary, when T > 1, photons tend to
carry away a substantial fraction of the radiating particle energy; this is the quantum regime. For
intermediate values of T, i.e., 0.1 S T S 100, the radiation is in the transition regime. We first
derive the synchrotron radiation intensities from a semi-uniform field in the classical and quantum
regimes. These expressions reproduce all the well-known formulas for a uniform field. We then
review the concept of radiation formation length £g and argue that the effect of granularity of
the target bunch is not observable in the quantum regime. Next we focus on the fact that in
the problem of beamstrahlung the target field is longitudinally inhomogeneous. To be correct it
is necessary to include the effect due to the variation of the field when F = {g/ox S 1. In the
extreme limit where F > 1, the radiation mechanism would depart from the characteristics of
synchrotron radiation and transform into that of bremsstrahlung.

The average fractional energy loss . (¢) in beamstrahlung is then calculated explicitly. In
the semi-uniform field approximation, one nove! aspect ia that in the noncleassical segime (¢) is
“reduced” from what the classical radiation formula would predict based on the same value of
T. The first beamstrahlung reduction factor Hy; is introduced to describe this relative change.
When the slope effect is included, we see a second beamstrahlung reduction effect, described by
Hy;. The quantum fluctuation due to finite number of radiated photons in various beamstrahlung
quantities are listed as an appendix.

The emphasis of this article is on the fundamental physics of the phenomena during beam-
beam int,eraction. We therefore limit the scope to single e*e™ bunch pairs with head-on collision.
Many important issues, such as kink instability during multi-bunch crossings (4] and collision at
an angle [5], are not discussed. Even within the scope of single bunch pair head-on collision,
we have to regrettably limit ourselves to the approximation of decoupling disruption and beam-

_strahlung. The real issues of beam-beam interaction concerning bea.mstnhlnng with disruption,
" and disruption with beamstrahlung, are not covered in this lecture. The former issue has to do
with finding a more realistic effective T that includes the pinching of the beam area, while the
latter issue relates to the maximum disruption angles from particles that suffer severe radiation
losses. With this grand picture in mind, our discussion in this paper should be regarded only as
an introduction to the subject of linear collider beam-beam interaction which is very rich in new
physics. Throughout this paper we adopt the conventione = A = 1.
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2. DISRUPTION WITH NEGLIGIBLE BEAMSTRAHLUNG

_ Let us recall that the nominal luminosity for head-on collision of two gaussian bunches is

_ N,

4%x030y

Lo (2.1)
"where N is the number of particles per bunch and f, is the bunch collision rate. When including
"~ the disruption effect, the effective beam area is smaller, which in turn enhances the luminosity.

‘This can be parameterized by a pinch enhancement factor Hp
L=HpLy . (2.2)

In this section we review the effects of disruption during beam-beam interaction with negligible

beamstrahlung energy loss.

2.1 FOCUSING EFFECT AND THE DISRUPTION PARAMETER

When an electron bunch collides with a positron bunch, the collective fields from the particles
in one oncoming bunch act like a lens to focus the particles in the other bunch toward the axis.
“The space charge force from the like particles in the same bunch is negligible to the accuracy of
the order of 1/~, where « is the Lorentz factor of the relativistic bunch in the ete~ center-of-mass
frame. On the contrary, the electric and the magnetic components of the Lorentz force provided
" by the oncoming bunch contribute equally, also up to the accuracy of the order of 1/, to the
focusing force that pinches the test bunch.

Let the density distribution of a bunch be decoupled for longitudinai and transverse directions:

n(r,z) =n,(2) n.(r) , ' (2.3)
where
1 -23/202 - s
.le) = {72-77:: , 0 < 2z < 00 (rouxfd gaussian)
L o . .
A‘m , | V3<z2<+3 (uniform cylinder) ,
" ;13- e~r’/20? 0<r<om™ (round gaussian)
n.(r) = ‘
T : ;},— . 0<r < 20, (uniform cylinder) .
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The normalization coefficients are chosen such that [ n,(2)ds = 1 and [n (r)rdr = 1. The
equation of motion for the test charge in a bunch at coordinate (r, z) is [6]

T ) mm -y (2.4

where
=1 / na(r') rlde’
0

re = 2.818 x 10~!3 cm is the classical electron radius and ¢ = O when the centroids of the
two colliding bunches intercept. Figure 1 is a schematic diagram that shows definition of the
coordinates. Consider, for example, uniform cylinder bunches. The above equation becomes

d?r reN r
—  —— = () 2.5
231020, (25)
The solution is simply
t) = N m 2.6
) =rocos | (520-) Ve (2.0
where ro is the impact parameter of the test particle upon entering the target bunch and
‘ 13
¢= \/schUs /
2v0}
The deflection angle is therefore
dr reN Y3 PN\
—_— — = g | — i ————— ¢t . 2.7
, a-" (2\/- 'w’a.) - [(2\/51030.) +_¢ 1)

t=0
/”--:>'<:-_\\ ~
7/ /7 | .-v——— ~
..(-———-—T lzi*zPT—-——b
JRPee—— \ ) z.__g: \ | /11' /
. \\\ \\ - ——
i
s-87 s:=0 88384

Fig. 1. Schematic diagram that defines the various coordinates of the two bunches
during collision. For a test particle in bunch 1 at z; = z, the relative coordinate
with respect to the center of bunch 2 is 2z, = ~2t — 2.
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For a weak deflecting force, at the end of collision ¢ = /30, we have

’ _ dr reN
s o .. F7y ;;;3-'0 - (2.8)

When the two transverse dimensions have different distribqtions, i.e.,, 03 # oy, this expression
can be generalized to
‘ dz 2r.N
— N — c———— zO ’
dat v0:(0s + oy)

(2.9)
ﬂ ~ ’ 2'¢N

dt -'10,(0,+a,) W

From ray optics the coefficients of egs. (2.8) and (2.9) can be regarded as the inverse of the focal
lengths.

—

We now define a dimensionless, Lorentz invariant parameter, called disruption parameter
D (7], as a measure of the inverse of focal length in the units of bunch length o, in each of the
transverse dimensions. The terminology dervived from the fact that during pinching, the beam

emittances are severely disrupted. Explicitly,

D —- . 2"¢N0'
*7 qoz(os +o0y)
o ’ ‘ (2.10)
_  2r.No,
y v0y(0z + 0y)
Let us further introduce the aspect ratio R = 05 /0y > 1, and call
_ _reNoy 2R

Thus, D; = D/R. For round beams (R = 1)D; = Dy, and in the asymptotic limit for flat beams
(R>» 1)D; =~ 0 and D = 2r,No,/v050y. )

For D « 1, the focusing force is weak enough that each bunch only converges to the axis after
traversing the oncoming bunch; whereas for D > 1, the focal point lies well inside the oncoming

~ bunch. Particles experiencing large values of D would then execute betatron oscillations during
" _the.course of collision.

R To end this discussion we comment that in the regime where D # 1, the pinching of the
bunches would causally affect the disruption for the remainder of the collision. One would there-
fore naturally think that the parameter D loses its meaning in the quantitative sense. It is

fortuitous that actually D as defined does provide simple scaling laws as if the entire bunch has
a well-defined focal length.
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2.2 DISRUPTION ANGLES

One important infgrmtion for linear collider design is the expected disruption angle. Knowl-
edge on the maximum disruption angle is essential to determine the aperture of the last element in
a final focusing system such that it is able to avoid being showered by the debris from beam-beam
collision.

In terms of D, eq. (2.7) can be rewritten as [6]

fes(@)e(@) ] e

For D < 1 and at the time when the test particle exists from the oncoming bunch

% ~ —% (;I?\/-;) e [(2\/§D)1/’ + % (2\/:30)’/3 + ] , D1 . (213

For D >1,at the time of exit from the oncoming bunch a test particle would have executed
more than one cycle of betatron oscillation. Therefore, the sinusoidal function in eq. (2.12) is of
order unity and

_~-;(_)"’ , D>1 . (214

The rms disruption angle 0:’" = \/ud:/dtiz ,and mmwm&:‘“, can
be deduced from the above equations through {/(r3) and r:‘“ , respectively. It is obvious that in

doing it this way the generic functional behavior of 0™ and 87" are the same, i.e.,
D D

0 a+bD ) D1 »
)
6o {7‘:5 ’ D>1 ’ ’ (2.15)

where a, b and ¢ are some numerical coefﬁéients which are different for 0:" ﬁd 0:“’, and g a
reference angle defined as

reN
YOy

6 =

As was discussed earlier, during the collision both beams are continuously deformed due to
the mutual pinching. Thus, for reliable estimations of these coefficients computer simulations are
indispensable. Figure 2 shows 0:‘“ and 0;"“ as functions of D from computer simulations by

Hollebeek and Minten (8, 9] and Yokoya [10]. The two sets of data are in reasonable agreement.
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| * Holiebeek-Minten J
e - o X Yokoyo :
) - = Numerica!l Fit

[N 1} D 883048

Fig. 2. The maximum and rms disruption angles as functions of
D. The solid curves are from egs. (2.16) and (2 17), and the dashed
curve is from eq. (2.18).

From these curves we find

g [008T+187D, D<1
L o~ (2.16)

bo .{7%, D>1

0.78+020D, D<1 , _
L~ (2.17)
6o 0.67
e VD' 7 D»1

These asymptotic behaviors are shown by solid curves in fig. 2. A different numerical fit which

And

emperically matches the 0:'“ data for the entire range of D is given by Palmer [11]:
i 1

o gy, = 1 D \1/?
(35%5pe) + (008 + o)

" This funétipn is plottéd as a dashed curve in the figure.

(2.18)

2.3 LUMINOSITY ENHANCEMENT FACTOR

Since the bottom line of an accelerator design is the luminosity, the most important effect of
_.dispuption is the reduction of the effective cross sectional beam area, which causes enhancement
of luminosity. As discussed above, this effect can be characterized by the luminosity enhancement

- oo

factor Hp = L/ Lo where the luminosity is defined as
L =2N3%f, / dz dy dz dt - n(z,y,2 — t) - n(z,y,—z —t) . (2.19)

n{z,y,z — t) and n(z,y,—z — t) are the local densities of the two beams at position (z,y,z) at

time t.
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To include the disruption effect we return to the equation of motion in eq. (2.4). The solution
to the first order in D is [12}

r(ty3) =ro— T firo) glt,n) (2.20)
where ,
‘ t t ¢
g(t,2) = / dty / dty n, (-2t -3) = [ dt; (t — 1) n (2t - 3)
Thus

ro=r+

Y 16) olers) (2.21)

For our purpose we like to know the radial distribution function n, at (t,2). This can be found
by ' '

ne(tss) = nalro) %’,{{é—}

4r.N

= nelr) [14 42 5,0 1 (1)
(2.22)

dn,. (r) 4r.N 4r.N

[ree) + 16) ot02)] - [1+

afre e (L ine g1 +ar) s

With the above expression we can estimate the luminosity from eq. {2.19), whick can also be
expressed by the bunch coordinates introduced in fig. 1,

a(t,2) ne 1)

R

- L o:/ rdr dz1dz; n,(z1)n,(22) [ne(r)]?

(2.23)

Ry CE-FORES [TONET L) N

where the leading term corresponds to the nominal luminosity Lo. The integration over r can be

carried out, which gives

»

: oo oo
o ) / rdr n? (—l—ﬁ f(r)+n,.). =3 f rdr n} . (2.24)
n, dr
0 . 0

Thus the luminosity enhancement factor for small D is

4';N [i ff ':;3':::] / dzydz; n.(21)n,(23) (g(t,zl) +g(t, ‘2)) . (2.25)

le ~ 14
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Since the two colliding bunches are symmetric, g(t,z1) and g(t,23) contribute equally to Hp,
where

P

L I L

¢ ) ,
9(t’zl) = / dtl(t - t;) n,,(—zt - zl) =

/ rdr n (r+23) . (2.26)
0

f £

A Therefore

reN '_f_'__"ﬂ:-j /dzldzz n,(n1)n.) (23) / rdr n (1 + 23)
0

Hp, =

|
t
+

| [ rdrnl |
(2.27)
o0 o0
rN [ [ rdrnd] ,
=1+ ‘1 j—;—;:i / dz/ rdr n (z) n (1 + 2)
-0 0
Now we introduce normalized coordinates p = r/o, and ¢ = z/0,. Then
L pdpn3] |
papn
Hpy ~ 14D [f pdpn’] / d;/ rdrn, (¢) n,(r+¢) . (2.28)
‘Plugging in distrubution functions from eq. (2.3), we obtain
1+# D+0o(D?) , (round gaussian)
Hpy = D«1 (2.29)
1 2 o .
1+m D+0o(D?) , (uniform cylinder) .

Se far the discussion has been limited to round beams. To extend the above expression to

arbitrary values of R, it is more convenient to rewrite Hp; as an exponential function:
Hp, =~ &P/3VT | D«<1 (round gaussian) . (2.30)

Recall that for different aspect ratios D scales as 2R/(1 + R) [cf., eq. (2.11)]. So naively one
would tend to assume that Hp,;(R) varies as exp [2R/(1 + R)|, which is incorrect.

"Notice that Hp, essentially comes from the relative change in beam spot sizes, i.e.,

030y

Hp = 2.3, ' (2.30)
where 477,37, is the effective beam size. For round beams
VHp: = g =ePIVT | D&l . (2.31)
r
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Thus, for R > 1 we have [cf., eq. (2.11)]

D =PVF ; Z_DIFR | pg1 | (2.32)
gy Os :

Combining eqs. (2.32) and (2.30), we have
Hpi(R) = (+RPAVFR | D g1 . (2.33)
Now we replace exp[2D/3,/x] by Hp;, then we obtain

Hp,(R) = HORIAR (2.34)

This expression was first introduced by Amaldi [3).

Beyond the D « 1 limit, the disruption effect becomes very nonlinear and we lack analytic
tools to derive luminosity enhancement factor rigorously. Computer simulations of Hp with
negligible beamstrahlung have been studied by severst-suthors—Figure 3 shows Hp a= a funetion
of D for round gaussian beams. The solid curve represents the original work of Hollebeek (7],
where the initial beam emittance is zero. The dashed curve is from a recent study by Fawley
and Lee [13] with ¢4 = 6.7 x 10~% m.rad. Notice that the two curves are substantially different.
for D 2 5. While the Hollebeek data saturates at Hp = 6, the Fawley~Lee result does not seem
to saturate. Despite this disagreement, the curves-are reasenebly close to-each other for D < 1,7
where our analytic formula in eq. (2.28) fits quite well.

o . lo LIRS I LI I lll'n

Hollebeek —— J-4
81" Fowley-Lee---

0.1 | 10 100

s-87 D $838A2

Fig. 3. The luminosity enhancement factor Hp as a function of D.
The data are taken from the simulation results of Hollebeek, and
Fawley and Lee.
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2.4 THE EFFECTS DUE TO INITIAL EMITTANCE

Eﬂ'ect on Luminocity Enhancement

In order to have a better assessment of the physical procus that contributes to Hp beyond
the limit of small D, we investigate the time evolution of Hp during beam-beam collision. For
this purpose we single out the time dependence of £ in eq. (2.19) and write

L= / hE) d¢ (2.35)

The function h(t) is thus the “differential” luminosity in time. A normaligzed A(t) (i.e., h(t)/L)
was simulationed by Chen and Yokoya [12]. The histograms for D < 1 are shown in fig. 4.

0.6

0.4

gft)
0.2

o)

D:0.8
. 0.4 Ho® ‘8 I~ Hye2.496

g(t)

g(t)

1 | 1 |

-2 0 2
8-97 t/o, t/op 683840

Fig. 4. Computer simulations by Chen and Yokoya on the time evo-
lution of luminosity for different values of D.
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From the figures we see that when D is very small, e.g., D S 0.5, the histogram follows
essentially as the square of bunch current distribution, which in our case is gaussian. In this region
of D the enha.ncément of luminosity occurs through the overall demagnification of the beam cross
sections, as discussed in the previous section, where H pi in eq. (2.30) agrees reasonably well with
the values shown in the first four diagrams in fig. 4, as it should.

When D ~ 0.5, a second peak appears. This is explained to be caused by particles at certain
radius (not the entire cross section) focused on beam axis within the oncoming bunch. At D = 0.5,
this peak occurs at t = 1.50,. The peak grows as D gets larger, and eventually becomes the
dominant source for the luminosity enhancement by D ~ 1.0. Notice also that the location of the
second peak shifts gradually to the left when D gets larger, where the stronger disruption induces
the phenomena to occur earlier in time. The steepness of this peak suggests that tiny time steps
are required in simulation. ’

Since the second peak is believed to be caused by particles focused on axis, where very higl_:
density would occur within a tiny volume, we need to fine tune the radial mesh sizes in order
to avoid underestimating the luminosity at the focal point. Figure 5 shows Hp as a function
of €n(1/dr), where dr is the radial mesh size in units of o, in each of the computer runs. Tlre
simulation was dage [12] by assuming zero initial emittance for D =1 and 4. It is seen that Hp
~ scales roughly linearly as ¢n(1/dr), which is clearly divergent. This implies that the functional
behavior of Hp with zero beam emittance is very subtle. A-finite value-of Hp could be obtained
by a randomly chosen mesh size (or the number of macroparticles) in a simulation with zero
enﬁttance, but the result would not be numerically stable. -

The symptom for zero emittance beams arises because all particles enter the oncoming bunch
in parallel, thus those with the same impact parameter would be focused to a single point. For

beams with nonzero initial emittance there would be a smearing effect that this singular behavior

- Io L VT T

- D=4

1 s aaart 1 d 1

10 50 100 500

s ’ 1/dr 883844

Fig. 5. Hp as a function of the inverse of the radial mesh size, 1/dr,
in computer simulations for D = 1 and 4. The initial emittance is
zero.
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can never occur. Let us introduce a Lorentz invariant, dimensionless parameter A that manifests
the beam emittance for fixed o; and oy:

RN

% _ e D
g N '
where 8* is the S-function at the interaction point. Figure 6 shows Hp with three different
values of A (A = 0.1, 0.2, and 0.4), the simulations use the computer code ABEL developed by
Yokoya {14]. As expected, smaller A gives larger values of Hp. Furthermore, from the figure we

A (2.36)

" find that

Hp(A = .01) - Hp(A = 0.2) = Hp(A = 0.2) — Hp(A = 0.4) , (2.37)

for a givch value of D, but the separation increases roughly quadratically. This suggests that the
part of the luminosity enhancement arising from the second peaks in ig. 4 scales as

Hpy o [ln (%)]’ . . (2.38)
| From fig. 6 we deduce that '
Hp = M+X [m (%)]’ . D>1 , (2.39)

where A; =~ 1.6 and A3 =~ 0.43.
Putting everything together, the overall luminosity enhancement is now

Hpy =1+33=D , 0<DsSo05 ,
Hp={ Hn+Hpa=1+33-D+043[In(%))’ , 05SDS2 , (2.40)
Hp," +Hpy~16+043[in(R)]* , 25DS100 ,

~~ where A, has been identified to be the saturation of Hp; at D 2 2, at which value the pinching

has induced roughly half a cycle of plasma oscillation [7]. The nonsaturation of Hp's in fig. 6 are
characteristically different from that of Hollebeek in fig. 3, but show similar tendency as that of
Fawley and Lee.

25 13 T'lll”l Ll ﬁTll"‘ LA RAI
A=0.! 4
R .3 a
20 A B* o
- 18
i e s
o
T iof
5 F
0‘ R AT Lol i
O.t | 10 100

’-07 D sa30as

Fig. 6. Luminosity enhancement factor Hp with dif-

ferent values of A simulated by Chen and Yokoya.
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Effects on Disruption Angles

With the drastic impact on luminosity enhancement in mind, it is natural to ask whether
*"the initial emittance also makes large influence on the disruption angles described in sec. 2.2.
$imulations are done by Chen and Yokoya [12] in this respect. Figure 7 shows 67* and 67" in
the units of 0, /0,. Again, A = 0.1,0.2, and 0.4 are used to find the sensitivity of the angles on A.
The data in the figure evidently show that the disrgption angles are asymptotically independent
of A. Thus all the statements in sec. 2.2 remain unchanged.

The fact that the disruption angles are independent of A can be understood as follows: While
luminosity comes from multiplying local denstities of both colliding bunches, disruption angles
depend only on the integrated density of the oncoming bunch (through Gauss’s law). Under this
light the sharp focus of the like particles on axis would have no effect on disruption. Furthermore,
the Lorentz force provided by the oncoming bunch at any radius r > 0 would be the same around
the focal point independent of whether the focus is sharp or blurry.

T YT T rrrmy T oty

8p (o /2]

X AT RS W T Ty | P

0.1 [ 40 100

0or D se3a12

Fig. 7. Disruption angles with different values of A simulated by
Chen and Yokoya. ,’s are in the units of o, /0.
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3. BEAMSTRAHLUNG WITH NEGLIGIBLE DISRUPTION

"In this section we first review the novel characters of beamstrahlung assuming no bunch
deformations. This serves as an introduction to the more specific discussions following that. To
discuss radiation, we take an iterative approach. First we examine the problem with semi-uniform
field approximation that is suitable for long bunches, from which a beamstrahlung reduction factor
Hy; is obtained. Next we include the fact that the field strength in a bunch is actually varying

along the trajectory of a radiating particle. This results in a second beamstrahlung reduction
- factor Hys when the bunch is short.

With efforts in recent years, the understanding of the subject is rapidly maturing, though
with a wide spectrum of appoaches to the problem. To be self-consistent in our treatment it is
difficult, if not impossible, to review various different calculations in detail. Instead we will only

mention each individual contribution in passing wherever is appropriate.
3.1 THE NATURE OF BEAMSTRAHLUNG

Collective Fields from Discrete Scattering Centers

In the laboratory frame (also the center-of-mass frame in our case) of a linear collider, an
electron encountering a positron with an impact parameter b would have an effective interaction
time At; ~ b/v due to the fact that the fields associated with relativistic particles span about
an opening angle A ~ 1/4. In turn, the corresponding effective distance of traverse through the
ﬁelds of the oncoming particle is

b
=ty ~— . 3.1
1=t~ (3.1)

Consider an electron encountering the entire flux of the oncoming positron bunch. The flux

is roughly -
. .
% ~ (3.2)

N
O3

where £; is the mean longitudinal separation of target particles. The target beam is considered
to be dense if £; » £3. Taking a typical value of impact parameters to be one standard deviation

in the transverse direction, i.e., b ~ o,, the condition for a dense beam translates into

Sk e > . Naf
‘102

>1 . ‘ ‘ (3.3) .

In this case the background field provided by the particles in the oncoming bunch is con-
tinuous. (See fig. 8.) For example, the Stanford Linear Collider (SLC) beam parameters are
- -4 = 1 x 10°, number of particles per bunch N =5x10° 0, ~1 mm, 0, ~ 1 um at the
interaction point. Thus No, /40, ~ 500 > 1, and the beam is dense.
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Fig. 8. A schematic diagram for a “dense” beam.

A beam is said to be dilute if £3 <« £;, or

No,
0s

<1 . (3.4)

- In this case the background field becomes discrete and the test particle would see the granularity
of the tafget bunch. (See fig. 9.) For example, in the conceptual accelerator of 5§ TeV+5TeV
discussed by Richter [15], and refined by Himel and Siegrest {16}, ¥ = 1 x 107, N = 1.2 x 108,
0s = 0.4 um and o, = 2.5 A, we have No,/v6; ~ 0.0075 < 1. The beam is therefore quite dilute.

In one version of the CLIC parameters [17], where v = 2 x 108, N = 5.4 x 10°, o; = 0.5 mm
and o, = 65 mm, we find No,/v0s; ~ 0.35 S 1. In th s case the beam is only marginally dilute.

N !2 [o——
TS eXa|
o 1 1

L L

Yy 1®

\ \ oy

e - - - — -——
8745A2 | ~ Op ~1 4-87

Fig. 9. A schematic diagram for a “dilute” beam.
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The length scales ¢, and £; introduced above arise from kinematic origins. Now we introduce
one more length scale, the radiation formation length £z, which arises from dynamic origin.
The radiation formation length is the length which an electron (or a positron) must travel for a
photon to be emitted within an open cone with angle ~ 1 /'1 (More detailed discussion on {g
is given in sec. 3.2.2.) Together with the bunch length oy, the four lengthl scales comprise eight
possiblé situations, where &, £3 < o, by definition. Among the eight arrangements, the cases
lr<f<fb<oslp< Y <l <0y and § < lp < {3 < o, assume a chain of close encounters
between the test electron and the positrons where each deflection causes a bending angle of more

than ~ 1/, which is very unlikely. The remaining five cases can be categorized into the following:

a. L3 < Lp < &1 < 05: The bunch is so dense that the test particle would be
bent severely and quickly lose all its energy. This is a situation where the
accelerator designers would definitely want to avoid.

b. &3 < &3 < Lg < 05 (dense beam) and £; < & < g < 0, (dilute beam): In
this regime the test electron interacts with the macroscopic fields collected
from positrons within the range of £z. For dense beams, the collective fields
within £ are smooth. The radiation in this case is similar to the familiar
“synchrotron radiation.”

For dilute beams, the interaction with the test particle is still collective,
but the discrete fields would act somewhat like “undulators” with mean
periodicity ~ £3. These “undulators” would then induce ripples onto a
smooth trajectory associated with the mean charge distribution of the target.
This would potentially introduce extra radiation. We will discuss this point
in more details later.

It occurs that almost all linear collider beam parameters that people dis-
cussed are in this category. So the rest of this section will be devoted pri-

marily to this case.

c. 4 <y <oy <lpand l; <& < oy < lr: This corresponds to the condition
where the bunch is ultrashort. In this regime the whole target bunch acts
like a “positron nucleus,” and the radiation of the test particle is more like

that in bremsstrahlung. =

It has been recently pointed out [18] that this is a desirable beam parameter
regime where beamstrahlung would be greatly suppressed. But it is unclear
whether such beam parameters are technically attainable and whether they
will conflict with other stringent physical requirements in a linear collider.

We therefore view it as an interesting option which requires further studies.
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Presence of Both Electric and Magnetic Fields

Unlike a permanent magnet, in beamstrahlung the target bunch presents both electric and

a magnetic fields in the e*e™ center-of-mass frame, whereas in the rest frame of the target bunch

there is only E-field. In fact, in our case (|E|* — | B|?)/|E}? ~ 1/4? R 0, and one can never find a
frame where there is only B-field.

Facing this fact, two different approaches have been taken. One can either work in the rest
frame of the target bunch, which is what Blankenbecler and Drell [19] and Jacob and Wu [20] did,
or work in the center-of-mass frame and assume the Lorents force due to E and B to be equal.
This second approach has been taken by Himel and Siegrest [16], Noble [21], Yokoya 14, 22] and
Chen [23].

Quantum mechanically, in principle, an electron interacts with E and B very differently. For
example, while an electron would execute a circular orbit in a transverse uniform magnetic field, it
would instead have an open orbit when traversing a transverse uniform electric field. (See fig. 10.)
This difference is the genesis of the well-known historical issue called Klein paradox [24] where

spontaneous ete™ pair creation is possible when the electron is accelerated in a strong E-field.

5838A13

Fig. 10. Closed and open trajectories of an electron under Band E
fields, respectively. For |B| = |E| the two trajectories largely overlap
around the turning point. )

How&er, it is shown by Chen and Noble [25] that beamstrahlung actually occurs within a
very short distance ~ o; around the turning point, where there is no essential distinction between
the two possible trajectories. (See the overlapping section in fig. 10 indicated by o,.) More
specifically, when the electron momentum which is transverse to E is much larger than the rest
mass, i.e., p; > m, and when ¢|E|/m < 1, the radiation rates are the same from £ and B given

equivalent strengths. We will base the rest of our discussion of beamstrahlung on this argument.
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Finite Ext { the Field

Unlike the bona fide synchrotron radiation where the entire closed orbit of an electron is em-
bedded in a uniform magnetic field, in beamstrahlung the field has finite extents. The strength
:)f the EM field m proportional to the bunch current, whicﬁ typically varies as a gaussian func-
tion. Very often an equivalent uniform distribution with total length L = 2/30, are invoked
[cf., eq. (2.3)] for the sake of mathematical simplicity. A schematic drawing is shown in fig. 11.

- In the transverse direction, the local field strength also varies.

Longitudinal:

y y
/ﬁ\\ L=vi2 oz
o Caa L2 L2
Gaussion Uniform Cylinder
Transverse:

y y
x X
\\VZ or \ _/20‘
"Round” Bunch “Flot" Bunch
8-87 5838A14

Fig. 11. Schematic diagrams of charge distributions in longitudinal
and transverse directions.

For a round beam (i.e., R = 1) with a bi-gaussian charge distribution

R - 1 ~r3 (202 ~52[203
- . Npo,(ry 2) -————(2“_)3 Figto, e e (3.5)
the corresponding field strength is
Flpos = Blrey = —N_ 1) _-rpas?] . ~sf20 |
1Bt = |Blrey = =] [1—eri] e : (29)

—,‘_v!hm E is in the radial direction and B is in the azimuthal direction. In the more general case
of a flat beam (i.e., R < 1) with a tri-gaussian charge distribution

P

LT (z’ Y, z) = V 1 —?’/203¢-v’/2o,’,c—x’/za:

(27)3/20,0y0,4 ¢ (3.7)

the E-field is generally not pointing to the radial direction. The field strength is (26]
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T+1y 2 z/R+ iRy
l (it ) - - [+ ]} o (i)

where w(¢)’s are complex error functions.

“|Elr>r = lB |R>1 =——

* From eqs. (3.6) and (3.8) it is clear that the fields in a bunch extend only within a finite space
with strengths varying from point to point. We like to stress, however, that their longitudinal
variation follows exactly the distribution of the bunch charge.

3.2 SYNCHROTRON RADIATION IN A SEMI-UNIFORM FIELD

Baier—Katkov Approach

Our starting point is the Baier-Katkov method of radiation calculation [27]. A similar method
had been used earlier by Schwinger [28]. The method is based on the realisation that when the
radiating particle is ultrarelativistic, its radiation in a magnetic field is a quasi-classical problem.
By that we mean the motion of an electron becomes more and more “classical” as its energy
increases that it makes sense to describe the particle by its trajectory. The radiation is therefore
viewed as induced by the bending of the trajectory. The only role that quantum physics plays
is the noncommutativity between the electron field and the photon field, and the conservation of
initial and final energies in a discrete manner. The general expression of radiation intensity (in
the Coulomb gauge) is

f=e (%‘EGI / d‘l/ dts SO () M) (39)

where a = 1/137 is the fine structure constant, (w, k) the four-momentum of the photon, (5], {f]
the initial and final states of electron, respectively, and M the tra.n_sition matrix. To the accuracy
of the order of 1/4, Baier and Katkov show that the phase factor from M*M

. arg— ¥ . —

(EA1t) A8 - ,xp{ [wr +y (- (1) - ﬂtl))‘-wr)]} : (3.10)

where 7 = t2 — ¢; and ¢t = ¢; + t3, commutes with both the Hamiltonian ¥ and the electron
momentum . After summing over the spins of the final electron and polarizations of the photon,

and averaging over the initial electron spins, the radiation intensity can be written as
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(3.11)
where £ and €' are the initial and final energies of the electron and

G(7(t),7(t2) = -}[(H &Y 6 -se -y

{ (5) (a(t,) ) -1+ ;;‘l,)]

From now on we will simplify the notations by designating ©; and @3 for #(¢t1) and ©(tz), respec-
tively. Similar notations apply for 7(t). It is observed that the dominant contribution of the

(3.12)

_ 7 integration in eq. (3.11) comes from the value at vr ~ 1/4. This corresponds to the situa-

tion where the electron position vector has swept through an angle 1/'7, or correspondingly the
outcoming photon lies within an open cone of angle 1/4. We shall call this period of time the
radiation formation time 7, and the corresponding distance of travel by the electron the radiation

formation length, £g. Since 1/4 < 1 we can Taylor expand ¢2 and 73 in terms of ¥; and #:

-
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(3.13)

In their paper [27] Baier and Katkov truncated the expansion at 7173, thus the assumption was

- (1/6)[v1r®

/2l (814

. Since B x ¢ in a magnetic field, and #? = constant, we have ¥ - ¢ = 0. Taking time derivatives

-

successively, we have

.
-

=—v¥ , T-9==-30-7 , etc. ' (3.15)

ey

\6,.

Usmg these relations the assumption can be tra.nslated into Br/B < 1. Now we define a dimen-
sionless, Lorentz invariant parameter T:
B

T = o ' (3.16)
g '

_ where B, = m3c3/eh ~ 4.4 x 10!2 Gauss is the Schwinger critical field strength [28]. The radiation

intensity for electrons in a semi-uniform field satisfying Br /B < 1 can then be obtained in terms
of T:
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Br3)em?(3T) P +... | T>1

In the above equation the expression for T « 1 is the well-known formula for classical
synchrotron radiation, including the leading quantum correction first derived by Schwinger (28],
and independently by Sokolov, Klepikov and Ternov [29], and higher terms in T. The expression

for T > 1 corresponds to the synchrotron radiation in the extreme quantum limit studied by

many people, but in this article we will simply call it Sokolov-Ternov formula [30]. The fact that
Baier and Katkov reproduce these formulas in a straightforward manner and generalize them
from strictly uniform fields to semi-uniform fields suggests the power of this method.

Formation Length and Granularity

Let us now digress from the above results. The radiation intensity in eq. (3.17) is the total
intensity from all possible frequencies. If we look for the power.spectrum P(w), defined as

4

= / Plw) dw , (3.18)

ar
dt

it is known that in the classical limit it scales like

P Wt wEo. 3.19
(w) ~ @ el | w2, (3.19)
The critical frequency w, is defined such that the total radiation intensity contributed from w < w,
is equal to that from w > w.. Notice, however, that higher frequency photons weighted more in
terms of intensity. Therefore, the spectrum beyond w, does not cover as large an area as that
below we. In fact P(w) diminishes exponentially beyond w.. For a uniform magnetic field, an
electron would execute a closed orbit with radius p. The critical frequency is related to p by
34

We = ¢ 7 ’ . ’ (3.20)

~

o __where two powers of 4 comes from Doppler shift due to the fact that the relativistic radiating

particle co-moves with the emitted photon. The rms opening angle of emitted photons at this

frequency is ~ 1/4. For frequencies above or below w,, the opening angle varies as

(3.21)
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We .shall therefore call the corresponding distance of travel of the electron the radiation formation
length Lp(w)

. - 2 (w)l/3 y, wSwe ,
tr(w) = {ZE&;"’ wéw (3.22)
7 W ’ 4

 The parameter T defined in eq. (3.16) can now be related to w. (and therefore {z). From
Lorentz force |F| = ¢ |B| = ym/p, we have

- B _ ‘7’*¢ —2“’5 ’
T""E-T_i?’ (3.23)

where X, = i/mc =~ 3.8 x 10~!! cm is the Compton wavelength. When T <« 1, we find w, < £.
In this limit the typical energy of photons is much smaller than the electron energy and the entire
power spectrum of eq. (3.19) is observable. On the other hand, when T 3 1, or £ < w,, the
spectrum beyond w = £ is kinematically forbidden. So in the quantum limit, only the infrared
region of the assumed classical spectrum is observable, which scales as P(w) ~ w!/® uptow =~ ¢
and w, is certainly not to be seen.

Panofsky [31] argued that in a dilute beam, the possible ripples that superposed to the smooth
trajectory would induce additional radiation analogous to the undulator effect. This radiation

introduces a broad spike with mean frequency associated with the mean particle separation 3,
wg = — 1 . (3.24)

Since w, ~ 27v%/{g, and {g > {3, we have wyg > w,. It is thus clear that this possible granularity
effect is observable only when T <« 1. Beyond the classical regime wq, as well as w,, is kine-
matically forbidden. This means that even though the fields are physically discrete in a dilute

beam, the radiating particle only responds to the mean of the field variation. This argument has

- been explicitly confirmed by Blankenbecler and Drell [19]. In their calculation, the electrostatic

g

potential of each individual target particle (in the rest frame) was summed up and the fluctuation

is shown to be logarithmically unimportant.

There is, however, an additional radiation effect due to the corpuscular nature of the tar-
get which is independent of whether the beam is dilute or dense. This corresponds to the
Mgfegstrahlung from the i;ldividual scafteriig between the test electron and the positrons (and
vice versa) recently calculated by Baier, Katkov and Strakhovenko {32]. The difference between
this effect and the normal bremsstrahlung is that the former is strongly influenced by the macro-

scopic background field that we have been discussing so far. This subject, however, lies beyond

- the scope of our article, which deals with the radiation from a particle interacting with the bulk

part of the target field only.
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3.3 SYNCHROTRON RADIATION IN A VARYING FIELD

Head-Tail Symmetry and Gaussian Correction

Consider a magnetic field that points to the direction transverse to the axis where an electron
enters, and its strength that varies along the axis. Let ¢ = O when the electron passes the
geometric center of the field. We are interested in the case where the field variation is such that
B(t) is an even function in ¢, which is also called head-tail symmetric. Since from Lorentz force
v & B(t), we see that # « B(t) is an odd function in ¢. Therefore, in the study of radiation from
a head-tail symmetric inhomogeneous magnetic field, the terms linear in ¥ would vanish when
integrating over t. This means the leading correction term is of the order 3. We should thus
retain the Taylor expansion in the integrand G up to the term @} ¢v'17¢ where the recurrence
relation

-45-7 (3.25)

<
(-TU

-0 =30

which is obtained from one more derivative on eq. (3.15), links the term with ¥- ¥ and ¥+ ¢ where
both are even functions in time.

ll

Asforthephm,ntahingtermuptot::'-v have

exp { [wr + % (k (Fa — 1) —wr } =exp{—-i (%o + %)} , . (3.26)

whgre

[ ]
Qr‘

Qo—ué'r[l nv--it TrH+=-FF ] .

and u = w/€', A = k/w, is the phase angle that gives rise to eq. (3.17) in the previous section,
and

o & =ulr [1 LA (3-".'—" + 4.'!,'_'1) 64_,.4]
' 8 v v )

is the gdditional ﬁhase that we retain. Notice that in $; and the last term in {I’o we had made
the approximation of replacing # by ¢.

We further assume tha.t &, <« 1, which is usually satisfied if only u 1, or the final energy of
the electron £/ » m. Thm does not introduce extra assumption since the Baier-Katkov method
- ..~has already assumed relativistic electron before and after emitting the photon. Therefore we

make the following approximation:

exp {—1 (%o + 1)} = (1 — i®1) exp {-iDo} . (3.27)

Retaining terms to the same order in the integrand G, and combining with eq. (3.27), we find the
integrand to be
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G=Go+G1+Gs , (3.28)

where

=1 1 v 5,

Go = ;;(1+u) 2 (1+u+?)v T

7 is the part that reproduces the Sokolov—-Ternov formula, G; x Br /B is an odd function in time
- and would give zero contribution for head-tail symmetric fields, and G; is

u’ 133 IE .4 4
Gz——(1+u+-2—) (gf"'i--éi—s)vr
.ué' l14+u .B’ é .5 5

.u€ u’ B’ B .7 7
+t-i—25 (1+u+7) (Q'B_s+2'37)" T

In the above expression the vector products #-% and - ¢ have been replaced by BB and BB.
This is because the only components that 7 and ¥ contribute are proportional to #x B and #'x B,
respectively.

Following the mathematical techniques used by Baier and Katkov [27], we introduce angles §
" "and ¢, where 8 is the angle between the unit vector # of photon propagation and the plane (7,
5’), and ¢ the angle between the projection of # on (7, 17) and v, i.e.,

A-T=vcospcosd , A-U=ovsinpcosd . (3.30)

Taking into account the fact that up to terms of highest order in 1/4? the prihcipal contribution
comes from small § and ¢, and by shifting the origin of 7 to r + ¢/, the phase can be written as

®o =ué [(1—&-6‘)7—%7’:’-37’+%5}f’]
s y (3.31)
T _ulp’? 1 4
" where
usl—v’cou’ﬂ:—l;+0’ ,
- and
z= 1 ¢ and y= 1 or
v/ VB



With the definition of T in eq. (3.16) the coefficients in the phase can be symbolized by

3/

- - . = §. = i 3

The radiation intensity associated with head-tail lymmefric inhomogeneous field is then

i%= (;:)z/kzdkdsinogZddeyGﬂxp{-ib(z+-;-z’+y+;—y’)} . (3.32) |

Recall that ¥ = w/&' = w/(€ — w), and k?dk = widw, we find that

(3.33)

“The intergrations over z and y give Bessel functions of fractional order K, 3(n) and Ky/3(n). For

the evaluation of the integral over u it is convenient to introduce the representation [32]
1 1 "Fr(=a)r(m + )
~s)I(m+8) ,
T - ‘ma[ Tm) & (8.34)

where 1 — m < A < 0. After this transformation the integration over u turns the Bessel finctions
into gamma functions, multiplied by a factor (y34)~3(*+*)/2 among other things. We can then
carry out .integration over sin @ = @ by the following formula: '

A /(,1, w)-3e+n)2ap = / (1 + 420%) "2+ 34dp = ﬁr(sg{:.;-z(i“s:/?)/z) - B

All integrations in eq. (3.32) are straightforward, though tedious. The result before carrying
out the final integration over s is
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where —1 < A < 0. The above expression includes only contributions from thé 9474 and 9777 terms

in eq. (3.29) because it can be shown that the contribution from the 557% term is significantly
smaller, and thus negligible.

The integral over s can be evaluated by closing the contour of integration either to the right
for T < 1, or to the left for T 3 1. For T < 1, we have

dl; :
? =0 , T<«<1 , (3.37)
identically. For T 3 1 we have, to the leading order in T,
dl; _ o (2 1141 (618 13 B ~2/3
-dT— ﬁl‘(s)l‘(c)“(wﬁ (GT) y T>»1.. (3.38)

This result is valid for any head-tail symmetnc inhomogeneous magnetxc ﬁeld which satisfies the
" assumptions given prev:ously

Now we apply eq. (3.38) to the field from a relativistic gaussian bunch with standard deviation
Oy

B(t) = Boe /o | (3.39)

where the time of flight of the test electron traversing the oncoming bunch is t = 2/2. Then we
get
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where F = Lg/0, is the formation length parameter ulociated with £p(w) in the quantum limit
for photon frequency w = £:

1/s
talw =)= 32 (-“g)"' - (;) -,11.;7"5- . (3.42)
Combining egs. (3.37) and (3.40) with eq. (3.17), we obtain
32 1 vee ’ Y ’
a_ a0 _ Qam‘r'(1+!§f£§‘r+48‘r+ ) <1
@ A | 3210/3) i (ayye {1- Lol pa [12997 (&)*- 1304]} , T>1
(3.42)

Short Magnets and Radiation Reduction

Our result can be appreciated by the following physical arguments: Consider a long uniform
magnet with length L* » ¢r. The differential radiation intensity P(w) is given by eq. (3.19)
and shown by the solid curve in fig. 12. As is introduced in eq. (3.23), classical limit T « 1
corresponds to the situation w, < £, meaning the typical frequency of radiated photons is much
less than the kinetic energy of the radiating particles. Thus the entire spectrum of eq. (3.19) is
observable. On the contrary, the extreme quantum limit T > 1 corresponds to £ « w, therefore
the spectrum beyond the electron energy is kinematically forbidden, and the observable spectrum
scales roughly as w?/3 as discussed earlier. This cut-off is shown by the vertical dashed lire in the
figure.

8-87 & we w

Fig. 12. Radiation spectrum in the two asymptotic limits. For long
magnets, L* > {p, we have the well-known spectrum in the solid
- curve. In the opposite limit L* « £p, the spectrum approaches a
constant. In quantum limit we observe only the low frequency regime.
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. In the case of nonuniform fields the spectrum differs from that of uniform fields. For the clas-
sical limit the problem has been studied by Coisson (33|, and independently by Bagrov, Fedosov
-and Ternov [34]. It is found that for a short magnet which is comparable in length with £g, the
radiation spectrum is modified in such a way that the low-frequency regime is suppressed in favor
of high frequencies beyond w,.. The total intensity, however, remains the same. The prediction
was confirmed by Bossart et al. [35] with observations in SPS at CERN. We can extrapolate this
fact by suggesting that when the magnet length L* < ¢z, the spectrum would be a constant
independent of w up to a maximum frequency w* ~ we(€r/L*) (see the horizontal dashed curve
in fig. 12). Our result for the classical limit shows that the total intensity dI /dt is the same for
uniform and gaussian fields. This is a confirmation of the previous studies.

The situation for short magnets is different in the quantum limit. Again, spectrum beyond
¢ is energetically forbidden. But now that the low frequency regime is suppressed, the overall
intensity is reduced. This explains why our dI3/dt is opposité in sign from dIo/dt. From eq. (3.42)
it can be seen that when {p < oy, or when the bunch is very long, dIz/dt — 0, and we have
vanishing correction to the Sokolov-Ternov formula. A pronounced effect occurs when £z is not

much smaller than o,.

3.4_ REDUCTION OF QUANTUM BEAMSTRAHLING

7 First Beamstrahlung Reduction Factor

With the radiation intensities derived in previous sections, we are now ready to estimate the
average energy loss during beam-beam collision. Individual e*e™ scatterings are neglected, and
the target bunch acts only to provide a macroscopic field. For the sake of arguments, we will in
this section assume a hybrid “cylindrical gaussian” bunch, i.e.,

- . n,,=74-—e"”/"2 y —00<2z<o00
2”0‘3

(3.43)
n,= , 0<r< 20
o=k :
It is straightforward to show that the local field strength in this case is
|E|p=y = —-e—ly-——r /% 0<r<2g, . (3.44)

I 2v2x0}o,
The above expression is identical to eq. (3.6) when the approximation of r « o, is taken. We

now introduce normalized coordinates as in sec. 2.3,

= =2 (3.45)
p_ a' ? ‘_ a' 9 .

then we can define a local beamstrahlung parameter
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T(p,8) = Tope™/? (3.46)

where
To= reX.I'N
\/270'70:
is the reference beamstrahlung parameter corresponding to twice the field strength at (p,¢) =
(1,0) in the target bunch. |
Let us first calculate the average energy loss in a semi-uniform field spproximation, i.e., do/dt
in eq. (3.17). The validity of this assumption for a gaussian current distribution is that the bunch
is very long; hence, the field strength changes mildly, i.e., Br/B < 1. Equivalently, if a uniform
cylinder bunch is invoked, this implies that the end effects are neglected.

Let

(3.47)

be the fractional energy loss of an electron having impact parameter p. Then the average fractional
energy loss of the entire bunch is

<€> = ff(dlo/dt)pdpdt

Tods (3.48)

Replacing dt by (05/2)/d¢, since both bunches move toward each other with the speed of light
T (¢ = 1), and define

= X
To= o (3.49)
. we find for the classical limit
2a 2 1 2 7 _‘l
<Eo) = E'IT;TO 5“): * e d§ ’TO <1 ’ (3.50)
where the classical mean radius is
2 l/z
o . . b d, -
T V ) <p>c E [fozps p} = ﬁ -
: fo pdp .
T On the other hand, for the quantum limit
- 00
(e0) = 33_'2%(33/1)%(3%)2/3 . [-21-(;:)3/ 3. / e""‘/ad;] , To>1 , (3.51)
—00

where the quantum mean radius is
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Notice that the geometric form factors in the two limits are surpmmgly close:

Lon- [ evarmviadott. [ eePa 1037 (5.2

Assuming from now on the same geometric form factor \/x in both limits, we then have extremely
simple scaling laws for the average fractional energy loss in beamstrahlung:

NTers , - To<1 |,
(e0) = ' (3.53)

2@%&@1&(310)2/3 , To>1

If one would naively calculate (¢) with a given T by using the classical formula for the quantum
regime, he would obtain meaninglessly large results before using the correct quantum formula. A
beamstrahlung “reduction” factor Hy, is thus introduced to account for the change, which is the
ratio of the bottom expression to the top expression in eq. (3.53):

Jim_H1(To) = 1er(z/ 16T(2/3) yo4ss . 0,556 742
Q=

~ while (3.54)
Jm Hry(To) =1

It is remarkable that this beamstrahlung reduction factor is exactly what one would get by
taking the ratio of synchrotron radiation “intensities” in eq. (3.17) for mildly inhomogeneous
fields, wifh To as an eﬁ'ective beamstrahlung parameter representing the entire bunch. This is
the case only because the geometric-form factor does not vary too much in the two limits. It can
be shown that this is true even for the transition regime 0.1 S Ty S 100, where we lack a simple

analytic scaling law. A numerical plot for the entire range of T given by Wilson [2] is shown in

In the literature [21, 2] there is an effective beamstrahlung parameter T defined based on
computer simulation with gaussian bunches,

(3.55)

T; 5 reXeyN (2\/72')

12 o040y \1+R
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Fig. 13. The beamstrahlung reduction factor Ht; and the product

THy; as a function of the scaling parameter T, plotted by P. B.
Wilson.

where in the round beam case (R = 1), it coﬁxelverycloaeto our Ty for a cylindrical gaussian

bunch,
, T _ 512
o T;-l/\/z_r._l. . (3.56)

Our analysis in this subsection therefore serves as a theoretical explanation for the previously

T known facts. Notice, however, that our expressions in eq. (3.53) have conceptually simplified the
description: No effective radiation time [2].is necessary, and I is defined in a straightforward
way without extra numerical factors [21].

Second Beamstrahlung Reduction Factor

As discussed in the earlier sections, the Sokolov-Ternov formula does not include the effect
due to the fast variation of the field strength along the particle’s trajectory. The correction term
derived in sec. 3.3 [cf., eq. (3.42)] indicates that there is an additional beamstrahlung reduction.

To include the correction term we should realize that our perturbation breaks down before

. dlo/dt and dIz/dt becomes equal in magnitude at some point ¢ = ¢. from the centroid of the

“~~Hunch, beyond which the total intensity would turn negative and be ceitia.nly unphysical. Since

- e we lack the knowledge on the behavior of higher order terms, we can only estimate the upper

bound of the reduction effect by extending dI3/dt all the way to ¢, and assuming total suppression
beyond that point, as shown schematically in fig. 14. From eq. (3.42) this threshold occurs at

r(1/6)

- 2
360 ﬁng 4/3¢2%:/3 (12007¢2 — 1804) =1 , (3.57)
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Fig. 14. Radiation intensities as function of longitudinal target bunch coordinate ¢.
The dash-dot curve is the Sokolov—Ternov radiation. The dash curve is the negative
of our gaussian slope correction. The net intensity is represented by the solid curve.
Beyond the point ¢ where dlp/dt and - dI;/dt meet, we assume a total suppression.

where
LRo (3)‘/’ X
o=—=|= e (3.58)
o \ 1
is the reference radiation formation length parameter associated with To, and is related to F by

F(p,¢) = Fop~33e8°8 (3.59)

From eq. (3.57) it is obvious that the cut-off ¢ is radial dependent. For the sake of simplicity in
our discussion, we make a further approximation by evaluating ¢. at the mean impact parameter

(p)q = 1.30. Thus the mean radiation loss is suppressed to

(‘)fc = (‘0){- + (52){. ’ (3'60)
where
. ‘. )
R (e, = :-"3—51;—(:,’%@ =—(3T0)/® [l(p)”’ / e“’/’dc] o
_ LA
- and

Se
(). = - & gy [%%gij—}ré 07" [ P azsorg - 1804)«1;]

e
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Let us define the second beamstrahlung reduction factor Hr; as the ratio of eq. (3.60) to the
quantum formula in eq. (3.51):

Se

= pry (%) - B g [ puzmnnes -
Ttlglco Hx3(Yo,Fo) = Erf (\/§> 14407 Fg [ ¢ (12997{’ 1804)d¢ , (3.61)
=% -
where Erf is the error function and
Tl:x_go Hx3(Yo, Fo) ."—' Il:?io Hr3(Yo,Fo) =1 . (3.62)

With this lengthy expression, it is hard to appreciate the importance of the reduction. As a
numerical example, let us take the beam parameters discussed by Himel and Siegrest [16], namely,
the Lorentz factor for 5 TeV beams v = 1 x 107, number of particles per bunch N = 1.2 x 108,
bunch size g, = 0.4um and o, = 2.5 A. With these parameters we find

To= T2 5001 (3.63)

V2x0,04

and the reference formation length parameter

(3)1/3 Xy 0.015 um
Fo= -

2) T, = Amm =0.0375 . (3.64)

The cut-off ¢; at the mean impact parameter (p)q = 1.30 turns out to be

=149 . (3.65)
Plugging in numbers we get
- (€0)s, = 0.78(€0) oo ='11.8% _ (3.66)
and - _
(€3), = —0.11{€0)00 = —1.6% . (3.67)

Thus the corrected quantum beamstrahlung average fractional energy loss is

T ()R (), =102% . - (3.68)

This is substantially different from the previous results. The second reduction factor in this case
is

Hra= 2 ~o671 | (3.69)

{€0)

or reduced from the semi-uniform field approximation by a factor of ~ 2/3.
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Although our discussion on Hy; has been limited to the extreme quantum limit, it is reason-
able to assume that this reduction effect occurs to the transition regime as well. Based on the
arguments given in sec. 3.3.2, the effect of a short bunch is to suppress the spectrum below w,
and stretch it to frequencies beyond w,. By definition T = 2w, /3¢, 80 for T as small as ~ 1 the
kinetic energy already lies below w. and we should expect to lee the second reduction.

To conclude, we showed that the average fractional energy loss can be related to the classical
synchrotron radiation formula with the reference beamstrahlung parameter To as an effective

- parameter and

2% a
(C) = -{—r—org «Hyy-Hyy . (3.70)



APPENDIX
QUANTUM FLUCTUATIONS IN BEAMSTRAHLUNG

In this-Appendix we list various beamstrahlung quantities of interest to high energy physics
and accelerator design. The ﬂui:tuation in these quantities arises from the fact that typical number
of ra.diated photons per electron during beam-beam interaction is small in the quantum regime,
and not very large (of order several) even in the classical regime like the case of SLC.

Analytic formulas have been derived by Yokoya [22] on the average number of photons radi-
ated per electron (N,), the average fractional energy loes (¢) defined in eq. (3.48), the standard

deviation of e:
o= () - (e} . (A1)

the average fractional reduction of the center-of-mass energy W = S¥/3 = 2(£,&)!/2 of two
particles in beam 1 and beam 2 at some space-time point:

w = (2 (42)
and the standard deviation of w:
oo = (w?) = (w)? . (A4.3)

Following the same spirit, Noble [21] has investigated, in addition to the above qﬁa.ntities, also
the average fractional center-of-mass energy squared reduction:

() = (225 (4.4

and its standard deviation:

= () - () , (4.5)

in computer simulations. Furthermore the average photon energy is intfoduced as
w .
Q) = <F) i (A.6)

Table 1 lists the formulas obtained by the two authors, where

areN o r3N34 Cw N"yz B2

- = oio; ’ acdo, A’ (4.7)
and
_ atreN3o,

The functions h(T) and g(T) are listed in Table 2 for various values of T, and the coefficients a;,
az, b, dy, dz, ds for (€) S 0.1 are listed in Table 3. In all cases no disruption is assumed.
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Table 1

Formulas for quantum fluctuation on various physical quantities derived by Yokoya
: malytxcally, and deduced by Noble through computer simulation.

Representative values of the function ¢(T) and A(Y) in
the range 10°3 < T < 10’

T o(T) h(T)
103 9.94 x 10~7 9.99 x 10—+
1032 9.45 x 10~5 9.91 x 10~3
10~1 6.55 x 1073 9.30 x 1032

1 1.82 x 107! 7.16 x 101 .

10 1.84 4.24
10% 1.11 x 10! 2.13 x 10!
108 5.56 x 10! 1.01 x 10%

Table 8

Behavior of the energy loss coefficients a;, b and d; as
a function of the béam radiation parameter T when

(¢) So0.1.

? ay a'z b dy ds 1 ds
<1072 | 041 | 30 | 042 | 032 | 10 | 10
10! 038 | 30 | 043 | 031 | 10 | 10

1 031 | 33 | 044 | 027 | 14 | 10

10 025 | 43 1 045 | 024 | 18 | 11

10% 022 | 53 1] 046 | 022 | 22 | 12

2 10° 020 | 63 | 047 | 021 | 26 | 13
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Yokoya Noble
T<1 T>1 All T
(N+) 1.05974 1.554Q1/3 5 f F = 4(T)
() 2 (D)
5y/3 h(T)
(&) 0.2164B 0.395Q1/3 ; %g(’f)
31.30 1/3 64.80 1/2 ” 1/3
o¢ (0.4048(¢) {1+ ™ 0. 193(:) (1 + — A ) a1 (€) (1 + m)
(w) 0.4094(¢) i 0.458() o1+ (@)
oo |0.3146(¢) (1 + 1(‘-!’%‘;) 0.205(¢) (1 + 1(%% di{e) (1 + (’:733)
(s) 2b(¢) "
1
O, 2d, (€) (1 + va%)-)
Table 3




T is defined in eq. (3.55) as

Y___i fc*e'YN(

12 0,0

2‘/17) =~ To

1+R

The symbol T is related to our T [eq. (3.49)] by

T'=

9
16

X

¢ 1
— O ez T
P —~ 0

i.e., the geometric form factor /7 has been absorbed into I'.

(4.9)

(4.10)

More recently, Amaldi [36] introduces simple scaling laws that reasonably reproduce the

formulas in Table 1:

3 ~4/3
(€) = (43) 2 2T (1+"r"”+%¥) .

0

(N,) = 2(¢) (1 +T 4 ﬁ?)/“i‘ ,

Q) = %T(l +T/ 4+ VA T)

a.nd-

Ow = % (€) (2 + e";i/s) [1 +
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10 + v/3 In(10T + 1)

(N)

"

(A.11)
(A.12)

(A.13)

(A.14)
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