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ABSTRACT 

We show that the weak mixing angle 0 w is the same for continuously con- . 
netted classical vacua of the heterotic string which have chiral fermions in their 

massless spectra. We also show that the world-sheet quantum field theory for any 

classical vacuum with spacetime supersymmetry possesses an N=2 superconformal 

invariance. 
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1. Introduction 

The initial indications that the theory of superstrings[” would lead to a unique 

and direct prediction of the low energy particle spectrum have proved to be mis- 

leading. It now appears[*’ that every two-dimensional quantum field theory with 

(0,l) superconformal invariance is a classical vacuum state for the heterotic su- 

perstring!’ The nonperturbative physics that would tell us which of these vacua 

is stable and/or show that superstrings are truly consistent only on a subset of 

them (determined perhaps by some topological invariant of the space of all field 

theories) is at present beyond our comprehension. The possible responses to this 

situation seem to fall into three general categories. The first is to gleefully declare 

that superstrings clearly have nothing to do with experimentally accessible physics, 

and save oneself the bother of plumbing their intricate depths. A second response 

is to assert that contact with experiment can only come after the true structure 
. 

. 
of superstring theory is fully understood; i.e. that it is premature to try to relate 

the real world to the crude semiclassical approximation to a presently nonexistent 

theory. 

The practical consequences of the second attitude are remarkably similar to 

those of the first. Superstring theory will become the province of a small group 

of mathematically sophisticated adepts with little contact with the rest of particle 

physics. We believe that although this is a possible avenue for development of the 

theory and its relationship to the rest of physics, it is not the most desirable one. 

Rather, there is a third response to the situation, which is to retain hope that 

important low energy physics can be extracted from the semiclassical approach, 

and that important clues to the structure of string theory may be gleaned from the 

requirement that some classical vacuum obey the constraints of phenomenology. 

Most of the extant work on string phenomenology uses the low energy effective 

Lagrangian for the string propagating in a flat ten-dimensional background, some- 

times supplemented with a hint from Kaluza-Klein theories (which are never a very 

good approximation to a consistent superstring picture of the real world’41). We 
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have no quarrel with this admirable method but we believe that the time has come 

to try to make a closer connection between phenomenological questions and the 

real formalism of string theory. Desirable phenomenological properties should be 

formulated as constraints on two-dimensional superconformal field theories. The 

advantages of this approach are twofold. First it enables us to answer questions 

about the assumptions that go into the effective Lagrangian method. Do super- 

strings really predict extra low energy gauge structure? Do they naturally predict 

the value of the weak mixing angle? Can one find vacua with discrete symmetries 

which constrain fermion mass matrices and couplings in the manner required by 

experiment? The second desirable feature of the “phenomenology of conformal 

field theory” is a sociological one. The techniques that one must employ to answer 

the sort of questions we wish to pose are not so far removed from the standard 

repertory of gauge theory model builders. An emphasis on this aspect of string 

theory will enable a wider class of physicists to come to grips with the guts of 

string theory. It is clear that this will lead to further progress in the field. 

The present paper is intended as a modest beginning of the program outlined 

above. Indeed it is not even that, for results of the type that we are envisaging have 

already been obtained by Friedan, Qiu and Shenkerr’ by Boucher et al.:’ by Hull 

and Witter$’ and by several other [8-111 authors. We are attempting to continue this 

line of reasoning, which unfortunately has not obtained a very wide audience. More 

specifically, we will prove two general results about heterotic superstring vacua, and 

the properties they must have to approximate the real world. The first has to do 

with the weak mixing angle 8~. For grand unified theories with a unification scale 

of order the Planck mass, the standard GUT prediction for value of 19w at low 

energies generally fails due to excessive running of the coupling constants. On the 

other hand, nonrenormalizable interactions, between the Higgs fields responsible 

for GUT breaking and the gauge bosons, can invalidate the standard prediction 

of 8~ even at the tree level (i.e. at the Planck scale). Witten has argued[“’ that 

Wilson-line symmetry breaking in Kaluza-Klein theories nonetheless makes the 

same prediction of 8~ at the Planck scale as do standard GUTS. The point is 
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essentially that (at least in one gauge) the relationship between the symmetric and 

spontaneously broken vacua is merely through a change of boundary conditions 

for the fields on the internal manifold. The kinetic energy terms for the unbroken 

gauge fields are precisely what they were in the symmetric theory. This observation 

however, is far from answering the question of whether string theory itself makes 

a firm prediction of the mixing angle. First of all, many superstring vacua are not 

related in any obvious way to simple Wilson-line breaking of a model with grand 

unified symmetry. Secondly, even if we have found a vacuum with the right value 

of 19w, we must deal with the problem of flat directions. Many superstring vacua 

are continuously connected to other solutions of the string equations of motion, 

and as we move through one of these families of solutions we can easily imagine 

that although the standard model gauge group remains unbroken, the value of 8~ 

changes continuously. In such a situation one could hardly claim that string theory 

predicts the value of the mixing angle. 

We will formulate a criterion for the two-dimensional field theory, which guar- 

antees that such a theory will incorporate the standard tree-level prediction of 8~; 

i.e. its value just below the ‘compactification’ scale, which we presume to be of or- 

der the Planck scale, following refs. [4]. Th e value of 8~ at, say, the weak scale is of 

course sensitive to the spectrum of light particles via renormalization group effects. 

We further show, for any vacuum which has four-dimensional chiral fermions, that 

the value of the weak mixing angle does not change as we move to continuously 

connected solutions of the equations of motion. Actually, one can show that those 

string vacua for which a ratio of gauge couplings can change continuously, must 

actually have N=2 spacetime SUSY (if they have any at all). Furthermore, these 

vacua can be shown to have N=4 world-sheet SUSY, which is a severe restriction 

on the 2d conformal field theory. The techniques that are used to prove these 

latter results are similar to those we will present here, and the details will appear 
[I31 in another paper. 

The second general result that we will obtain has to do with the two-dimen- 

sional criterion for four-dimensional N=l SUSY. Boucher et aZ.[141 have already 
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argued that a sufficient condition for this is the existence of a chiral world-sheet 

U(1) current which promotes the (0,l) superconformal symmetry of the heterotic 

string to (0,2). In addition one must constrain all physical vertex operators to have 

integer U(1) h g c ar es. We will prove the converse of this result: The existence of 

spacetime SUSY implies the existence of the extra U(1). 

Section 2 of this paper briefly outlines the way to treat gauge bosons in het- 

erotic string theory and recalls some results that have been obtained in other work. 

We then give the proof that the weak mixing angle indeed takes on discrete values 

in interesting vacuum states. In section 3 we prove our result about the relation be- 

tween spacetime and world-sheet SUSY. We conclude with a list of other problems 

that should be attacked with the sort of methods employed in this paper. 

2. The Weak Mixing Angle 

It is by now well known that the vertex operator of a zero momentum gauge 

boson in string theory is obtained by multiplying the right- or left-moving piece of 

the four-momentum density on the world-sheet into a left- or right-moving world- 

sheet current density, which transforms according to the adjoint representation of 

the gauge group. In the heterotic string theory the right-moving sector has N=l 

world-sheet supersymmetry, and in order to generate a physical vertex operator 

the current must belong to a dimension l/2 superfield. The existence of such an 

operator puts strong constraints on the spectrum of massless spacetime fermions. 

In particular, it was shown in reference [ll] that the fermions cannot be chiral. 

Since we will use this result at a later point in our argument, it is worthwhile 

outlining the proof. 

The proof depends crucially on the fact that the superfield to which the current 

belongs obeys a super Kac-Moody algebra. Furthermore, the conformal generators 

of the full theory take the form: 

Lo = L,SKM + L,c, 

6 



where LfKM is the natural conformal generator constructed from bilinears in the 

super Kac-Moody generators, and Lf is an additional generator commuting with 

the super Kac-Moody algebra and having a non-negative spectrum in the Ramond 

sector of the theory. Friedan, Qiu and Shenker151 have shown that whenever the 

super Kac-Moody algebra is nonabelian the spectrum of LzKM is strictly posi- 

tive. This proves that if the model has massless fermions transforming in a chiral 

representation of a nonabelian gauge group, the nonabelian currents must be left- 

moving, i.e. come from the bosonic part of the heterotic string. However, the 

existence of even an abelian super-current algebra is enough to destroy chirality. 

The point is that the superpartners of the currents are world-sheet fermions. In 

the Ramond sector they have zero modes and the entire Hilbert space of the theory 

is a tensor product, with one factor being a representation of. the Clifford algebra 

formed by the zero modes of the spacetime fermions plus the zero modes of the 

fermionic SKM currents. Since this representation is larger than that of the four- 

dimensional Dirac algebra, it contains both chiralities of four-dimensional fermions. 

This argument remains valid when restricted to the subspace of states transform- 

ing in a given representation of the left-moving gauge group, so we conclude that 

no such representation can be chiral, as claimed above. 

An immediate consequence of this result is that in any realistic heterotic string 

vacuum, all gauge bosons must arise from currents in the left-moving (bosonic) 

sector of the theory. These currents, denoted by J”(Z) = C, Jla~-~--l, generate a 

Kac-Moody algebra: 

[Ji”, JL] = fk nSabSn,-m + ifabCJi+m . 

The Schwinger term in this algebra obeys a quantization condition for all simple 

nonabelian factors in the gauge group. If we normalize the generators so that 

fabcfdbc = NSad for SU(N), etc., th en the condition is simply that k be an integer; 

k is called the level of the algebra. If we have obtained our gauge group by Wilson- 

line breaking of a simple grand unified group, then the levels of all factors in the 
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current algebra (including the abelian ones) will be the same. If we have no a priori 

connection between our representation and one in which the currents all belong to 

a simple group, then there is no reason for the Schwinger term of the U(1) current 

to be the same as that of the nonabelian factors, nor for it to be quantized. It 

is clear however, that the condition for the weak mixing angle to be the same as 

that predicted by grand unification, is that the U(1) current which is normalized 

to give the correct value for all quark, lepton and Higgs charges must have a 

Schwinger term identical to that of the SU(2) current algebra. This Schwinger 

term determines the coupling of two gauge bosons to a graviton. Requiring it to 

be the same for all gauge bosons completely determines the normalization of the 

U(1) boson’s vertex operator. If this operator has the standard coupling to quarks 

and leptons, then the weak mixing angle takes on its canonical’value (at the Planck 

scale). 

We will not enter here into the question of how to find such a vacuum. Witten 

has shown that Wilson-line symmetry breaking certainly is a sufficient condition, 

but we do not know whether it is the only way to guarantee the result. The 

question we wish to ask here is whether, once we have found such a ground state, 

we can find others nearby which have continuously variable values of 4~. 

Ground states of string theory are superconformally invariant field theories. 

To leading order, we have a one parameter family of such theories for every (1,l) 

operator in the original model which is the highest component of a superfield. 

Actually these are only true flat directions in the potential if the operator is ex- 

actly marginal. We will not, however, have to worry about this extra constraint. 

The question is thus whether, when we add a particular (1,l) operator to the La- 

grangian, we can change the U(1) Schwinger term. In order for this to happen, the 

addition to the Lagrangian must not commute with the U(1) current j(Z). How- 

ever, since j(z) is the derivative of a free chiral scalar field, j(z) = i&q!(Z), we can 

easily determine the j-dependence of all operators in the conformal field theory. 
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They have the form:* 

@(z, 2) = : exp(iafj(Z))P(j(Z)) : %(z, Z), (24 

where P(j ( z)) is a polynomial in j(5) and its derivatives with definite integral 

conformal dimension, say m, and 6 is an operator which commutes with j(z). 

If (Y is different from zero, the operator carries non-zero U(1) charge. Charged 

operators, if they exist, are of no interest for our current inquiry. They represent 

string vacua in which the U(1) symmetry is spontaneously broken. There may 

indeed be flat directions along which this is true. (There certainly are in the low 

energy effective field theory: they correspond to VEV’s for combinations of squark 

and/or slepton fields.) W e are interested in values of the weak mixing angle in 

vacua that preserve the U(1). Thus we may take o = 0. 

The neutral operators in (2.1) have dimension (m + hi, hi) if 5 has dimension 

(hi, hi). We are in a model with positive metric, and Q should not commute 

with j, so the dimension can only be (1,l) if m = 1, hL = 0, hR = 1. Thus 

g(z,Z) must in fact be a (0,l) operator, i.e. a right-moving chiral current, say 

O(z). In order for the new Lagrangian to preserve superconformal invariance, O(Z) 

must be the highest component of a superfield. We have already argued however, 

that the existence of such an operator precludes the existence of chiral spacetime 

fermions. Thus, we arrive at the result announced in the introduction: In any 

vacuum with chiral fermions, there are no superconformally invariant perturbations 

which preserve a U(1) gauge symmetry but change its Schwinger term. The weak 

mixing angle cannot be changed continuously. Note that if we allow perturbations 

by (1,l) operators of the form j(Z)o(z), th en we can indeed change the angle. The 

operator j@)O( ) ’ l’k z is 1 e an abelian Thirring coupling and is exactly marginal. It 

will of course shift the Schwinger term in the j(~)j(ti) operator product. Thus j(5) 

* These operators are not all conformal fields, i.e. they are not all primary with respect to the 
Virasoro algebra, but they can be chosen so that they all have definite conformal dimension 
(Lo eigenvalue), as well as definite charge (jo eigenvalue). 
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must be renormalized in order to be a proper gauge boson vertex operator. This 

will change its coupling to charged states and will shift the weak mixing angle. 

Thus the discreteness of the weak mixing angle in superstring vacua is directly 

connected to the chirality of spacetime fermions. In fact, all vacua, which contain 

such a U( 1) super Kac-Moody algebra, have N=2 spacetime SUSY if they have any 

at all. This is simply because, given a massless gravitino state, one can construct 

a second gravitino by applying the zero modes $,” $0 to the state. Here @‘(z) is 

the usual Neveu-Schwarz-Ramond field with four-dimensional Minkowski index p, 

and +(z) is the dimension l/2 world-sheet superpartner of O(z); the pair v,P‘ $J has 

even total fermion number. We will show in a future paper [13’ that the above vacua 

actually have N=4 SUSY on the world sheet, which is a significant step towards a 

complete classification of t hem!15’ 

3. Spacetime and World-Sheet Supersymmetry 

The importance of preserving spacetime supersymmetry in a classical super- 

string ground state has been stressed by many authors. It seems to be the only 

hope of solving the hierarchy problem in a weakly coupled theory. It is clearly 

of interest to have a simple criterion for checking whether a two-dimensional field 

theory has this property. A necessary and sufficient criterion is the existence of an 

N=2 supersymmetry current algebra on the world sheet, plus a charge quantization 

condition on the U(1) current contained in this algebra. 

Witten and Hull”’ showed that in any spacetime supersymmetric classical vac- 

uum of the heterotic string which is described by a nonlinear sigma model, the 

local N=l superconformal invariance’16’ of the two-dimensional (world-sheet) field 

theory extends to a global N=2 superconformal invariancev7] Boucher et aZ!141 

found quite generally that (0,2) world-sheet SUSY ensures the existence of N=l 

spacetime SUSY. If the two-dimensional field theory has (0,2) world-sheet SUSY, 

then it contains a right-moving U(1) current J(z) which transforms the two su- 

persymmetry charges into each other. Note that the two world-sheet supercharges 
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are conceptually very different from each other. The first is the remnant of a local 

gauge symmetry of string theory, while the second is an accidental global symme- 

try of a particular string vacuum. The U(1) current, which transforms the two 

into each other (and therefore does not commute with the gauge SUSY generator) 

is not a physical operator. It does not commute with the BRST charge and is not 

the highest component of an N=l superfield. It has no free fermionic superpartner 

and the arguments of the previous section do not apply. Boucher et al. showed 

how to construct the spacetime SUSY generators from this U(1) current. We will 

review this construction below. 

Our purpose here is to show in a general context that spacetime SUSY implies 

N=2 superconformal invariance on the worldsheet. The starting point is to write 

the spacetime supersymmetry current in the -l/2 picture:[181t 

. 
.( 

VLl,,(z) = em412 S, C(z), 

VLl,,(z) = ev412 Sd, C+(Z), 
(3-l) 

where e-4/’ is a spin field for the (P,r) su p erconformal ghost system, S, and 

Sb’ are spin fields for the (free) world-sheet fermions q!+ with four-dimensional 

Minkowski indices, and C and Ct are fields in the Ramond sector of the inter- 

nal N=l superconformal field theory. The supersymmetry charges are given by 

Qol = $ dz I/_a,,,(z), Qh = $ dz Vj’,,(z). All the fields here have conformal dimen- 

sion zero with respect to the antiholomorphic stress-energy tensor T(Z), so their 

correlation functions have no antiholomorphic dependence; hence ‘dimension’ will 

always refer to the holomorphic conformal dimension. 

The relevant operator product expansions (OPE’s) for the spin fields are 

ePld(z)eQd(w) N (z - w)-qlq2 e(ql+q2)4(w) + . . . , 

Sa(z)S&o) - (z - w>O ok& + * * -, (3.2) 

Sa(z)Sp(w) - (z - w)-1’2 T&?I + * - * , 

where I is the identity operator. If four-dimensional spacetime is taken to have 

a Minkowski signature, then VTl,, and Vjl,, are hermitian conjugates of each 
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other. The powers of z - w appearing in the S,,S,+ OPE’s (3.2) are more easily 

derived, however, by using an Euclidean signature and representing[“’ the spin 

fields as exponentials of two free bosons H112( z): S, = eia’H, Sb = eitu.H, where 

cl = (hf,&$), d: = (*f, ri). Note that the dimension of en4 is -Q(Q + 2)/2 and 

that of S, and Sb is l/4. Since the currents VTiF2(z) have dimension 1, the fields 

C and Ct must have dimension 3/8. The supersymmetry algebra 

{&a, Qjl = ,,",p,, {Qa, QP) = 0 

leads to the following OPE’s for C, Ct: 

c(z)c+(w) - (z - w)-3’41+ * * - , 
. 

L. C(z)C(w) - (z - w)3’40(w) + * * - ) (3.3) 

C+(Z)C+(w) N (z - W)3’4cJ+(w) + * * * ) 

where 0 is some dimension 3/2 operator (whose coefficient could be zero a priori) 

and locality requires the subleading terms in (3.3) to be less singular by integer 

powers of z -w. The first of these relations follows from the fact that the OPE for 

the supersymmetry currents of opposite spacetime chirality must have a pole with 

residue equal to the momentum current. The other two follow from the requirement 

that two SUSY currents of the same chirality have no singularity in their OPE. 

Note that the translation current appears in the -1 picture here, as e-4$,, in place 

of the more familiar 0 picture current ax,. 

In any classical vacuum for the heterotic string which incorporates four-dimensional 

Minkowski space, the six internal supercoordinates Xi + &+!J~ are replaced by an 

‘internal’ superconformal field theory!’ The associated N=l superconformal alge- 

bra[16’ for the ‘internal’ stress tensor T(z) and its superpartner TF(z) (the world- 
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sheet supersymmetry current) is 

. 

;TF(w) 
%)ww) - cz- w>2 + &TF(w) + “‘7 z-w 

TF(+F(‘w) - (z _ w>3 + gw + -. - 7 z-w 

(3.4) 

with central charge E = 6. A conformal superfield Q(z, 0) = @o(z) + 0% (z) of 

dimension h is primary with respect to this algebra; it satisfies 

;@l(w) 
TF(z)@o(w) N z _ w + - e - , 

h@o(w) 
w4%4 - (z _ w)2 + 

;&@o(w) + . . . 7 z-w 

h@o(w) 
v4@Jw - (z _ w)2 + 

&@o(w> + 
"'7 z-w 

(3.5) 

wPlw N 
(h + $w) + ~w%(w) +. -. . 

(z _ w)2 
z-w 

On the other hand, the fields C and Ct are nonlocal with respect to TF, because 

they make states in the Ramond sector of the theory: 

C(Z)TF(W) - (z - w)-li2, C+(Z)TF(W) - (z - 20)~~‘~. (3.6) 

The absence of more singular terms in (3.6) (also the square root branch cut) 

follows from dimensional analysis plus BRST invariance of the gravitino vertex 

operator: The OPE (e-4/‘SaX)(z) . (e%” F w must have no single pole term. )( ) 
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The N=2 superconformal algebra we wish to construct contains in addition to 

T and TF a dimension 1 U(1) current J(z), conventionally normalized by 

J(z) JW - cz _ w>2 + . . . . (3.7) 

The N=l supersymmetry current TF splits into two terms, 

TF = &(T,+ + T;), (3.8) 

which have charge fl under J, 

J(z)TFf(w) N A% + .a-, , P-9) 

and also satisfy 
. 

T,+(z)T,+(w) - T;(z)G(w) - o(l), 

$z f J(w) g+4 + aaulJcw> + . . . ; 
(3.10) 

Gc4Ta4 - (z _ w)3 + (z _ w)2 + 
z-w 

these additional OPE’s complete the N=2 superalgebra. We will first construct J 

from the fields C and Ct, then derive (3.8), (3.9) and (3.10). 

Consider the four-point function 

f(Z;) = (~(zl)~+(z2)~(z3)c+(z4)) * 

Using SLz(C) invarianceL201 it can be written as 

314 

.f( 9 = ( 
213224 

& 
> 

(3.11) 
z12z34z14223 

where Z;j = Z; - Zj and X - zr2z&rsz2~. The singularities of this function as 

pairs of z; approach each other are determined by the OPE’s (3.3). Using these 
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constraints one finds that y( x is an analytic function and F(x) + constant as ) 

x --+ 0, 1, co; hence F is a constant, in fact 7 = 1 using the normalization (I) = 1. 

Now expand (3.11) as zr -+ ~2: 

(3.12) 

The second term in the expansion indicates the presence of a dimension 1 field in 

the CC+ channel, which we identify as J(z). Given the normalization (3.7) of J’s 

two-point function for Z= 6, (3.12) h s ows that its three-point function with C and 

C+ is 

(C(zl)~+(z2)J(z3)) = ;Z;;4Z-1Z-1 13 23’ (3.13) 

(The overall sign of (3.13) is conventional, as it can be changed by redefining 

. J + -J.) Equation (3.13) is equivalent (given (3.3) and (3.7)) to the OPE’s 

C(z)C+(w) - (z - w)-~/~ I + (z - w)li4 $J(w) + . . . , 

;%4 J(z)+) - z--w +..a, (3.14) 

++(w) 
J(z)C+(w) - z-w +.... 

At this stage we will use the fact that the U(1) current J(z) can be decoupled 
[14,10,21] from the other fields in the theory. First write J(z) = i&&H(z), where 

H(z) is a canonically normalized free scalar field, H(z)H(w) = - ln(z - w). Then 

any operator Ca(z,~) with U(1) charge Q, i.e. such that 

J(z)@(w, w) N 4w4 @> + “‘, z-w 
(3.15) 

can be written as <p = : exp[i(q/&)H]P(J) : 5, where 5 commutes with H, and 

P(J) is a polynomial in J(z) and its derivatives, cf. eq. (2.1). 
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In particular, (3.14) pl im ies that C has charge $, and so C = ez 2 '&Hg B tE . u 

has dimension 3/8 - $(&/2)2 = 0, so it must be the identity operator. Similarly 
4, 

one finds that Ct = e+ 2 . These relations and eq. (3.1) express the spacetime 

supersymmetry currents Vz;‘f2 in terms of the U(1) current J(z)!14’1o’211 

Similarly one can decouple J from the world-sheet supersymmetry generator 

TF(z), which does not have a definite charge but can be decomposed as TF = 

C, exp&/fi)Hl~$. 1 nserting these representations of C, Ct, and TF into (3.6) 

and contracting the H exponentials, one finds that only the charges Q = fl can 

be present in the above expansion of TF, thus reproducing (3.8), (3.9). 

Also because of (3.6), the operator product of J(z) with TF(w) can be no more 

singular than (z - w)-r , that is 

J(z)TF(w) - E +. . . , (3.16) 

where Tb = &(T$- F). T- According to eq. (3.5), the dimension 3/2 field -2Tb(z) 

defined by (3.16) is the upper component of a dimension 1 N=l superfield whose 

lower component is J(z), and consequently one obtains the OPE 

f JW 
TF(+$++ -(z-w)2 - 

$&J(w) + 
a.*. 

z-w 

Note also that 

J(z)T;(w) - g + . . . . 

(3.17) 

(3.18) 

Finally we will show that 

G4m4w> - -TF(z)TF(w) + o(l). (3.19) 

When combined with (3.17) and the third line of (3.4), this equation yields the 

remaining OPE’s (3.10) of the N=2 superalgebra. Equation (3.19) is most easily de- 

rived using the Laurent expansions TF(z) = f C, GT~-T-3/2, T;(z) = $ C, G:z-‘-~/~, 
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and J(Z) = C, J,z+-‘. In terms of modes, the OPE’s (3.7), (3.16), (3.18) and 

(3.17) read respectively [Jm, Jn] = $mS,+,,s , [J,, GT] = GA+, , [J,, G:] = G,+, 

and {GT, G’,} = -(r - s)JT+$. Therefore 

{G’,, G’,} = {[Jo, ($1, G’,} = -{G, [Jo, ($.I) + [Jo, Kk G’,)l 
= -{GT, G,} - (r - s&Jo, .L+s] = -{G, G,}, 

which yields (3.19) when translated back into OPE’s. 

4. Conclusion 

(3.20) 

The methods that we have used to demonstrate that string theory gives discrete 

predictions for the weak mixing angle and that N=l spacetime SUSY implies (0,2) 

superconformal invariance depended crucially on the existence of certain holomor- 

phic fields in the vacuum conformal field theory. We should emphasize strongly 

that this in no way implies that the entire theory splits into holomorphic and 

antiholomorphic sectors. Rather, spacetime gauge symmetries are connected with 

holomorphic fields, and these will always exist if the vacuum state preserves the rel- 

evant gauge symmetry. We expect that more results of the type we have described 

can be obtained by using stronger hypotheses about the spacetime symmetries of 

the required vacuum state. 

For example, two of us (T.B. and L.D.) have recently shown[‘31 that N=2 

spacetime SUSY of a heterotic string vacuum implies N=4 SUSY on the world- 

sheet. Indeed, the constraint is even stronger than this. The right-moving degrees 

of freedom of the “internal” superconformal field theory can be broken up into 

the product of two free N=l superfields, each with 2 = 1, and a representation 

of the N=4 superconformal algebra with Z = 4. If one assumes N=4 spacetime 

SUSY, then the right-moving modes are just six free superfields. It therefore 

may be possible to show that all N=4 supersymmetric heterotic string vacua are 

generalized t oroidal compact ifications !‘I Of course, this class of vacua is probably 

not too relevant to the real world, but it indicates the power of the type of analysis 

we have proposed. 
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There are several problems of more phenomenological relevance that can prob- 

ably be attacked by these methods. One might hope for example that one could 

rule out the possibility of a string vacuum with only the supersymmetric stan- 

dard model in its low energy spectrum. Alternatively, one might hope to classify 

such vacua completely. One can study the general criteria for charge quantization 

and its connection with the existence of magnetic monopoles. One can study gen- 

eral constraints on the operator product coefficients of quark and lepton vertex 

operators and attempt to find mechanisms for suppressing baryon number viola- 

tion, flavor changing neutral currents and the like. We believe that we have just 

scratched the surface of what can be done. 
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