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ABSTRACT 

We review calculations of the radiative corrections to the Z” resonance, and 

we show that while the radiative corrections are quite large, they can be calcu- 

lated and incorporated into the comparison with experiment so that there will 

be no significant theoretical uncertainties on the measurements of the 2’ mass 

and width at SLC and LEP. We compare calculations based on matrix elements 

and structure function methods, and discuss two Monte Carlo’s based on these 

calculations. We use the new calculations to refit the J/q resonance. 
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The experimental evidence supporting the standard model of electroweak 

interactions is impressive. Perhaps most spectacular of all has been the direct 

observation of the Z”, the heavy gauge boson predicted by the model, at the 

pp collider at CERN. Once one can directly produce Z’s, one is in an excellent 

position to do detailed studies of the electroweak interaction, both by studying 

in Z” decays how the 2’ couples to the matter fields of quarks and leptons, and 

by precision measurements of the resonance itself. 

The Z” resonance, in lowest order, has a Breit-Wigner line shape which 

is characterized by experimentally measurable quantities: the peak position or 

mass, the width, and the peak cross section. From an experimental point of view 

the three parameters, mass, width, and cross section, are independent quantities 

to be determined. Within the context of the standard model, however, they take 

on deeper significance that both motivates their measurement and sets the scale 

of precision at which the measurements may be considered interesting. The mass 

is, related to sin28w; the width depends on the number of particles of mass less 

than half the mass of the Z” which couple to the 2’; and the peak cross section 

is related to the vector and axial vector couplings, and hence sin28w. 

. 

Precision studies of the 2’ resonance have not been forthcoming from the 

Sp$3 where the 2’ was first discovered. The broad spectrum of parton energies 

in pp collisions means that only a small portion of the total luminosity mani- 

fests itself in production of the relatively narrow Z” peak, and the resonance is 

difficult to extract from the much larger nonresonant QCD background. In the 

exclusive leptonic decay modes of the Z”, which have clean signatures and can 

be easily extracted from the background events, the mass of the 2’ can only 

be determined from the invariant mass of the lepton pair, since the initial state 

energy is unknown. 

:. At the SLC and LEP, the situation is quite different. Because the electron 

and positron are pointlike, the center-of-mass energy of the interaction is defined 

by the beam energy. The beam energy spread is small compared to the resonance 
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width, and all the luminosity contributes to the signal. The background is small 

and all visible decay modes of the 2’ can be used. 

Since it is the beam energy which will be used to determine the mass and 

width of the Z”, it is crucial to know the absolute beam energy and energy spread. 

For the Mark II at SLC, a pair of spectrometers”’ located just upstream of the 

beam dumps will measure the central value of the beam energies to f30 MeV, 

and will provide information on the beam energy spread, expected to be about 

100 MeV. Systematic errors on the mass and width of the Z” are expected to be 

around f45 MeV. The measurement of the peak cross section of the resonance 

will be limited by systematic errors in the monitoring of the machine luminosity. 

The luminosity monitors”’ measure the reaction e+e- + k+e- at small angles 

where it is dominated by the QED t-channel scattering. In this steeply falling 

region of the cross section the acceptance determination dominates the systematic 

error, which is not expected to be better than - 2% overall. Long-term stability 

should be much better, and point-to-point variations in an energy scan will be 

low. 

The 2’ resonance is profoundly altered from its zeroth order Breit-Wigner 

shape by radiative corrections. In particular, bremsstrahlung from the annihilat- 

ing e+ and e- alters the effective center-of-mass energy and significantly changes 

any quantity that varies strongly with fi. This results in shifts of hundreds 

of MeV in the peak position and width of the resonance, and lowers the peak 

cross section by tens of percent. This paper will review in detail the physics of 

these corrections, the existing calculations, available Monte Carlos, and the level 

of precision finally expected in radiative corrections to 2’ line shape measure- 

ments. Since we will have excellent energy resolution for the 2’ mass and width 

measurement but cruder luminosity monitoring for the cross section measure- 

ment, radiative corrections which affect the line shape and peak position must 

be quite carefully considered, while corrections to the overall normalization at 

or below the 1% level are less urgent. In particular, the radiative corrections 

to the Z” are overwhelmingly dominated by initial state QED effects. Recent 
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work extending the calculations to second order has given confidence that QED 

radiative corrections are well understood and that the precision achievable in 

these corrections is significantly better than the 45 MeV currently expected to 

limit experimental measurements. For the precision measurements of the mass 

and width of the Z” at SLC and LEP, we demonstrate that all calculations that 

include exponentiation of the soft photons and virtual corrections to at least first 

order are adequate. Detailed calculations of electroweak radiative corrections 

are unnecessary for these measurements since they only modify the relationship 

between the peak cross section and the mass of the Z”, and do so at a level level 

that is unobservable given the experimental uncertainties in the luminosity. 

. 

In Sec. 1 we will review radiative corrections to first’ order. Results will 

be extended to higher orders in Sec. 2, and we will discuss, quantitatively, the 

necessary accuracy of the calculations. The third section will present the radiative 

corrections from a structure function point of view. The advantages of this 

method will be discussed, and in Sec. 4 we will present a numerical comparison 

of all the available calculations, with the conclusion that the agreements and 

disagreements between the different calculations are well understood, and the 

theoretical uncertainties are well below the anticipated experimental systematic 

errors. Section 5 will discuss currently available MC event generators, and in 

Sec. 6 we will use the new calculations to refit the J/I/J resonance which will 

increase the measured leptonic width of the resonance by one standard deviation 

compared to the current world average. 



1. QED Radiative Corrections to First Order 

In lowest order e+e- - , --+ ff proceeds by photon exchange and by Z” exchange 

as shown in Fig. 1. The total cross section is given in the standard model by 

47rcX2 
00(s) = - 

3s N Q2- [ 

24s - @)P@QVeVf + s2p2Mi(v,2 + az)(vy + at) 

(s-M;)2+sr; (s - A@2 + d-2, 1 (1) 
where 

GF 
P= 

2&o ’ (2) 

and the vector and axial vector coupling strengths for thet electron and for the 

final fermion are 

. v = -l/2 + 2Qsin28w, a=-112 . (3) 

N and Q denote the number of colors and charge of the fermion. At SLC ener- 

gies, the first two terms in Eq. (l), the QED and interference contributions, are 

negligible compared to the third, resonant term. To an excellent approximation 

one writes the lowest order cross section 00(s) as 

(4 

This form illustrates the experimentally accessible parameters, Mz, I’z, and 02, 

and the relativistic Breit-Wigner used to characterize the resonance. The peak 

cross section, 02, is related to the standard model coupling strengths by 

(5) 

In practice, the lowest order line shape defined by Eq. (4) is distorted by 

radiative effects. The set of diagrams contributing to the first order corrections 

are shown in Fig. 2. The diagrams 2a and 2b represent the radiation emitted by 
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the initial state electron. Since this initial state radiation carries energy away, 

leaving the annihilation center-of-mass energy below the nominal value, it is 

principally responsible for the distortions to the resonance line shape. Vertex 

corrections to the initial state and vacuum polarization graphs (Figs. 2c and 

2d) represent the electron form factor and charge screening terms, respectively. 

As they do not change the kinematics, they enter as overall factors to change 

the scale of the cross section. The vacuum polarization diagrams may be easily 

summed to all orders in the leading log approximation, but the vertex corrections 

are complicated and have been only recently calculated to second order!3”1 Final 

state radiation and vertex corrections (Figs. 2e-2g) differ from the corresponding 

initial state diagrams in that they do not alter the centeriof-mass energy, and 

may be summed over inclusively. This summing cancels large logarithmic effects 

like those associated with the initial state!’ leaving a correction of 1 + 3aQ2/4rrr. 

The last set of graphs in Fig. 2 are box diagrams, Figs. 2h-2i. These diagrams, if 

they contain photons only, are known to be odd in cos 8, so that they contribute 

to the forward-backward asymmetry, AFB, but make no change to the total cross 

section. The 7 - 2 pieces have almost the same effect, but in addition contribute 

a small correction to the cross section. Finally, there are the processes involving 

interference between initial state photon emission (Figs. 2a and 2b) and final 

state photon emission (Figs. 2e and 2f). W e will omit the box and interference 

terms in the rest of this paper. We note that a vacuum polarization diagram 

for the Z” is not included because we are using the physical Z” mass in the 

Breit-Wigner. 

There are other first order radiative corrections which, a priori, must be 

considered. Corrections coming from one-loop electroweak effects are of order [‘I 

cx/27r - 0.1%. Since these modify the coupling strengths, but have no effect on 

the kinematics, only the cross section is altered, and that at a level to which exper- 

iments will be insensitive. Electroweak radiative corrections might be observable 

in the comparison of high precision measurements of the 2’ mass with polarized 

electron asymmetries where nonstandard model physics can cause deviations in 
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the measured left-right asymmetry. These would show up as a discrepancy in 

the weak couplings derived from the measurement of the resonance position, and 

the weak couplings derived from the asymmetry measurements. QCD corrections 

arising from final state gluon radiation introduce corrections of cys/~, where un- 

certainty in the value of o8 leaves a residual uncertainty of about 1%. This l%, 

however, is on the normalization. It is clear that for the mass and width mea- 

surement, and measurements of the total cross section, our greatest concerns are 

the QED corrections coming from initial state radiation. 

Since bremsstrahlung from the initial state electrons means that the actual 

center-of-mass energy available for the annihilation is reduced from the nominal 

,./ii = 2E set by the b earn energies, one is sampling all energies below ,/Z ac- 

cording to a sampling function determined by the physics of bremsstrahlung. For 

photons of energy lc, the actual center-of-mass is dm) and the observed 

cross section is given by a convolution, 

%3(S) = J f(k/E, S)~o(S(l - k/E))dk (6) 

where the function f(k/E, ) s must be computed from the QED diagrams. With 

f(lc/E,s) in hand, one may use Eq. (6) t o extract the three parameters of the 

underlying Breit-Wigner. 

The amplitude for the annihilation with one accompanying bremstrahlung 

photon in the initial state, as in Figs. 2a and 2b, is related to the amplitude for 

the lowest order process, Ao, by a kinematic factor: 

The momenta p-, p+, and k refer to the electron, positron, and photon, re- 

spectively. Summing over photon polarizations (E) and integrating over photon 

angular variables, one finds ,the change in the cross section due to initial state 

radiation is: 
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do-uo(s)[~ (log$l)$] , (8) 
where we have assumed the emitted photon energy, k, is small compared to the 

beam energy in going from Eq. (7) to Eq. (8). It is customary to define an 

effective coupling constant for bremsstrahlung: ,0 - % 
( 

log --$ - 1 . This factor 
> 

is associated with every bremsstrahlung vertex and is large (p = .109 at SLC 

energies) due to the large phase space for an electron to split into an electron 

and a nearly collinear photon. A large effective coupling constant is the first of 

two major reasons that QED corrections are so large at the Z”. 

Integrating Eq. (8) over a range of bremsstrahlung energies from kmin to k,,, 

and adding in the zeroth order cross section, one finds the total cross section 

including single photon emission from the initial state is: 

01(s) = ~o(S)(l + Ph.3 k 
km,,) . 

(9) 
min 

The infrared divergence as kmin + 0 is removed with the inclusion of the vertex 

correction Fig. 2c, leaving 

4s) = ao(s)(l + 61 + p1og Ey) , (10) 

where 61 = ap + % is sometimes called the first order electron form 

factor. In order to evaluate Eq. (lo), we need to know what km,, is. In general, 

photon energies may extend up to the kinematic limit, just shy of the beam energy 

E, but a resonant cross section will cut off contributions from hard photons. This 

means that in the vicinity of the peak, (2E = M), th e resonance imposes an 

effective upper limit at km,, - I/2, so that 

ul(s) - 00(s) (1+ 61 + p1ogrpq - (11) 

The correction 61 arises from the effect of the virtual photon cloud, and has a 

magnitude at the 2’ of 61 = +8.7%, while the logarithmic term ,0 logI’/M is 
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due to real radiation!” and has a magnitude at the 2’ of about ,f3logI’/M N 

-38%. In the absence of a resonance, there would be no natural cut-off to 

k maz 9 and the correction term ,BlogI’/M would disappear. In general, the size 

of the correction depends on the fractional width of the resonance, I/M. This 

correction is particularly large for a narrow resonance, such as the J/$, and is 

still quite significant at the 2’ where I/M - 3%. Hence the second reason why 

the QED corrections are large: the narrow resonance simply cuts off contributions 

from all but the softest radiative events which, in turn, constitute only a fraction 

of the total cross section. More physically, the harder radiation simply moves the 

center-of-mass energy off the resonance into a region of low cross section. 

Eq. (10) may be rewritten as 

f-44 = ao(s)(l + Sl)(l + p log !y) , 

provided we agree to drop terms that are higher than first order. This form of 

the cross section will become more useful as we progress to higher order versions. 

For the time being we note simply that Eq. (12) se arates the virtual corrections p 

(1 + 61) from the real (1 + p log *). 

To this point, we have only considered changes to the cross section due to 

soft photon (k 5 k ma= << E) emission. In this region one may safely ignore the 

variations of the cross section, and a0 can be treated as a constant in Eq. (10). 

The contributions from photons radiated with k ma= < k < E must be included, 

however, and the variation of the cross section with fi taken into account. The 

bulk of this so-called hard photon contribution could be handled by writing a0 = 

ao(s’) where s’ = s(1 - k/E) is the center-of-mass energy remaining for the 

annihilation after the photon is radiated, and by allowing km,, ---f E in the 

integration of Eq. (8). Th ere are, however, bremsstrahlung terms which go not 

as k-l, but as k” and k l. These terms were lost in the approximation between 

Eqs. (7) and (8), and must be reinstated. The full differential cross section is 

, (13) 
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where now K is the scaled photon energy previously denoted k/E. Denoting 

k,,,/E by ~0, we write the complete cross section to first order as follows: 

ulb) =~o(s)(l+6r+plogKo)+ / 

’ da1 
-dn , 

no dtc 
(14 

. 

with da1 /dn being given by Eq. (13). The division of the cross section in 

Eq. (14) is driven by the need to combine bremsstrahlung and vertex diagrams 

analytically as n -+ 0, but leads to the unfortunate presence of an unphysical 

parameter, ~0. For analytic calculations, the value chosen for ICO is of no conse- 

quence, but in Monte Carlo work, where the “soft” cross section [the first term 

of Eq. (14)] and the “hard” cross section [the second term in Eq. (14)] may be 

treated separately, difficulties can arise. The desire to set rcc as low as possible is 

hampered by the fact that the first order soft cross section becomes negative. At 

the same time, values of ICO comparable to, or larger than, I’2 are prohibited!81 

These problems all evaporate when higher orders are included. 

2. Higher Order QED Corrections 

Several recent publications have extended calculations of the QED radiative 

corrections to the 2’ resonance to second order!31[e-111 For tee << 1 Ref. 9 gives 

44 = ao(s)(l + 61 + 62 + Plogno + 61p logrcc + $32log2&)) ) (15) 

where the photon energy variable, ~0, is understood to refer to the total radiated 

energy due to both photons. The second order virtual correction 62 is given by[“] 

b2=(f)‘( [;-2d2)]log’$- 

+ 
[ 
-g + ; ((2) + 35(3) log s 1 me2 (16) 

- ; [s(2)12 - ; ~(3) - 6$(2) log 2 + f c(2) + ; 
> 

where ~(2) = $, and ((3) = 1.202. 
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As was done for the first order case, this result may be written in product 

form, again assuming one drops the cross terms that exceed second order: 

od4 =~o(s)(l+b +62)(1+PlognO+$3210g21Cg) . (17) 

The terms take the following values on resonance, (using rco = r/M): 61 = 

+8.7%, 6, = -0.5%, bl ogne = -38%, and i/I” log2 ICO = +7.5%. The virtual 

corrections (61, 62,...) are falling rapidly, and already the second order virtual 

correction, at -0.5%, is below the level of our experimental sensitivity. This is 

fortunate, because these terms can be gotten only throug4 direct calculation, a 

daunting task in third order. The real corrections, on the other hand, are larger 

and falling more slowly, so one reasonably expects the next order to be significant. 

For these terms, however, a technique exists to deal with all orders. 

Before proceeding to higher orders, we note first that, as with the first order 

calculation, it is necessary to include the contribution from cases where the total 

radiated energy, IC, lies in the range ICO < K < 1. To second order, the differential 

cross section analogous to the first order result in Eq. (13) is given in Ref. 9: 

y=uo(s’) [p&1+;) (1+61+plogn) 

+(;I2 1 + (1 - /c)2 
n A(n) + (2 - +(s) + (1 - M4)] , 

where s’ = s(1 - K), and the functions A(n), B(n), and C(n) are included for 

convenience in the Appendix. The purely second order (z)2 pieces augment the 

total cross section slightly at values of @ > Mz, but their impact is small. At 

values of fi up to 5 GeV above the resonance, the net effect is less than 0.4%. 

Exactly as was done in first order, Eq. (14), one may write the total cross section 

to second order as the sum of the soft part, Eq. (15), and the integral over the 

hard part, Eq. (18). 
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The real corrections may now be treated to all orders. The separation of 

virtual and real corrections achieved by the factorized forms of the cross section, 

Eqs. (12) and (17), is useful here. By comparing these equations, one sees that 

the real correction contributed at nth order takes the general form 

(f)“(log -f& - lyylog Icoy . 
e 

Such terms include the well-known leading logs which dominate the contribution 

from each order. Nonleading terms of the form 

@log -$ - l)m 
e 

with m < n appear in the virtual correction, and other nonleading terms show 

up in the cross terms that arise in the product of real and virtual corrections. 

The fact that the leading logs may be summed to all orders’13’ allows one to 

extend Eq. (17) with the formalism known as exponentiation: 

4s) = ao(s)(l + 61 + 62) 

( 1+~logno+;8210g2K0+~p310g3rg+... . . > 
(21) 

= 00 (s) (1 + 61 + 62) exp (p log ~0) 

= uo(s)(l + 61 + 62) (h# . 

For the extraction of the 2’ line shape, this is a particularly powerful result, 

because it takes precisely those terms responsible for the line shape distortions, 

and sums them to all orders. This bodes well for the extraction of Mz and I’z. 

Virtual corrections are computed only to second order, but they affect mostly 

the overall normalization, and at a level already below experimental systematic 

errors. It is worth noting that through the product with 61 and 62, the next-to- 

leading and next-to-next-to-leading terms are also included. 
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For a complete treatment, exponentiation must also be included in the hard 

part of the cross section, the part given in first order by Eq. (13), and in second 

order by Eq. (18). Th e correct prescription for doing so may be inferred by 

comparing the derivative of Eq. (21), doezp /drc, with the IC + 0 limit of Eq. (18) or 

Eq. (13). From Eq. (21) one obtains 

da 
--jy = /+0(s) [(l + 61 + 6,)&P] . (22) 

Expanding the quantity in brackets as a series in p, and retaining only terms up 

to p2, one finds 

dgezp 
- = P~oo(s)(l +6r +Plogn) 

dtc 
.I (23) 

. This form correctly reproduces the K + 0 limit of the second order hard cross 

section, Eq. (18), and one sees easily that the same limit of the first order hard 

cross section, Eq. (13), is reproduced if only terms up to p1 are retained in 

E’q. (23). One concludes therefore that exponentiation is properly included in 

the first order and second order hard cross sections by writing 

dulezp 
dtc 

= oe(s’)p(/P(l + 61) - 1+ ;, 

and 

du2ezp 
yjy = ho [P (d-1(1 + 61 + 62) - 1+ 5) 

+Q2 1+ (1 - K)2 
tc 

A(n) + (2 - +(n) + (1 - K)+))] . 

(25) 

We note that with the leading log summation of infrared photons, the familiar s-1 

spectrum of single bremsstrahlung has become &ml (1 + 61 + . . .). The presence 

of the p in the exponent indicates a softer spectrum than expected from single 

photon bremsstrahlung, and this softening will be seen later to have a significant 

impact on the Z” line shape. 
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For a complete result with all corrections to second order, and leading logs 

summed to all orders, we have 

%bs(S) = oo(s)(l + 61 + 62) K{ + / ’ da& 
IGO d’c ’ 

(26) 

with da/dtc taken from Eq. (25). Th e no problem that arose in the first order 

calculation is no longer present in Eq. (26) b ecause the soft term vanishes in a 

well-behaved fashion as ICO --+ 0. This allows one to set ICO arbitrarily small. In 

fact, under the (good) approximation that A(n) = B(n) = C(K) = 0, one may 

set no to zero and the integral can be solved analytically. This has been done by 

Cahn:14’ with the additional but not necessary approximation that 62 = 0. The 

result is an analytic exp~ression for o&s(s) that is suitable for fitting acceptance- 

corrected data. For the reader’s convenience, it is reproduced in the Appendix. 

At this point it is instructive to review what has been accomplished by the 

inclusion of higher order corrections, and ask whether the primary goal of bet- 

tering the experimental systematic errors on Mz, I’z, and a~ has been achieved. 

Following Ref. 9, we illustrate in Fig. 3 the expected line shape for p-pair fi- 

nal states, u:;(s), under four levels of radiative correction: (1) pure first order, 

(2) first order with exponentiation, (3) pure second order, and (4) second order 

with exponentiation. For clarity, the full expressions for o&s(s) are given in the 

Appendix. The underlying Breit-Wigner in these calculations has Mz = 93.0 

GeV/c2, l?z = 2.5 GeV, and a~ = 1.86 nb. 

The peak of the first order calculation is shifted to 93.180 GeV/c2, and peak 

cross section lowered to 1.313 nb, a 29% drop relative to the cross section of the 

underlying resonance. These numbers are consistent with expectations. When 

exponentiation is included with the first order calculation, the peak position 

moves back to 93.108 GeV/c2, and the peak height to 1.382 nb. The line shape 

with exponentiation more closely resembles the underlying shape because ex- 

ponentiation weights the soft radiation more heavily than the pure first order 

calculation. The first order calculation properly represents hard radiation, but 
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badly underrepresents the soft components. In first order, for instance, approx- 

imately 50% of the cross section occurs below /cc = 0.01, while the inclusion of 

exponentiation changes this to 90%. Thus the first order correction shifts the 

peak position too much to the high side and smears the narrow profile into a 

lower, broader one. 

It is interesting to compare second order with exponentiation to first order 

with exponentiation. Figure 3 shows there is no difference in the peak position, 

which also occurs at 93.108, but there is a drop in the peak height from 1.382 

to 1.372 nb. This latter effect can be traced almost entirely to the inclusion of 

the second order virtual correction 62. The important conclusion here is that 

the leading logs dominate all line shape distortions. The explicit presence of 

nonleading terms to second order has little effect on the position of the peak. 

Finally a comparison of the pure second order with the exponentiated second 

order rounds out the picture. The second order line shape shows a peak at 

93.092, with a peak height of 1.374 nb. This peak position is lower than the 

93.108 found for the exponentiated case, indicating that the second order real 

term has overcompensated the excesses of first order. The peak height is almost 

identical with that of exponentiated second order, as one would expect since they 

share identical nonleading terms. 

Little can be said about the effect of the various correction schemes on the 

width, rz, without a more quantitative approach. To meet this need, a set 

of “fake data” was generated using an exponentiated second order version of 

o&(s) (see the Appendix) to represent the “true” resonance shape. The relative 

accuracy of a particular correction scheme can then be determined by fitting 

this “data”. The fitting procedure consists of the minimization of a x2 function 

with respect to the underlying resonance parameters Mz, I’z, and a~ of Eq. (4). 

Table 1 summarizes the results, given in terms of the differences between the 

values of the parameters found in the fit and those used to generate the “data”. 

The results were found not to depend in any significant way on the choice of scan 
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strategy, i.e., the particular set of center-of-mass energies and their statistical 

weights. Nor do they depend on details of the x2 minimization procedure. The 

results therefore represent a reasonable comparison of the intrinsic accuracy of the 

correction schemes. This procedure is used here (Table 1) to compare general 

levels of approximation relative to the most complete level presently available 

(Ref. 9). It is also invoked later to compare the results of various authors. 

Table 1 indicates that a first order calculation is clearly inadequate, as it 

misses the true mass by 121 MeV/c2, almost three times the expected experi- 

mental systematic error, and misses the width by 152 MeV, which is equivalent to 

almost one light neutrino generation (176 MeV). By contrast, both the exponen- 

tiated first order and pure second order perform acceptably well, the former being 

somewhat better, but both being within the limits of experimental systematics. 

From these observations we draw the following conclusions. First, the virtual 

corrections affect mostly normalization, so accounting for them to second order is 

quite adequate given the known systematic errors on luminosity measurements. 

Second, the real terms account for the distortion of the line shape, and must be 

summed to all orders. Once this summation is done, the mass and width can 

be properly extracted with an accuracy of a few MeV. Third, the nonleading 

terms at second order have been shown explicitly to play no significant role in 

the extraction of mass and width. 

To this point we have dealt only with the corrections arising from initial state 

radiative effects, on the justifiable grounds that the other contributions, from final 

state radiation, box diagrams, and so forth are small even in first order. The 

ability to factorize the initial state effects from the remainder of the cross section 

is a powerful tool. One may carry this notion further to assign these radiative 

effects to a structure of the initial state. In this view, the sampling function, 

f(k/E,s) in Eq. (6), arises from the product of electron structure functions, 

J 
dhDe(&,s)De( ,“,,“;,,s) = f(k/E,s) 9 (27) 

16 



which describe the probability to find the electron having radiated off an amount 

of energy kl or k - kl. Without changing the results, this alteration of one’s 

point of view introduces a very useful technique long familiar in hadron physics, 

but only recently applied to e+e- physics. 

3. The Structure Function Approach 

An electron radiating a photon of energy k is left with a fraction x = 1 - k/E 

of its original energy. This electron may go on to participate in the annihilation, 

e+e- + Z”,7, or may split off more photons. The photons themselves may 

split into e+e- pairs, members of which may participate in the annihilation. 

Either way, the electron finally annihilating carries only some fraction x of the 

nominal beam energy E. The cascading of electrons and photons is illustrated 

in Fig. 4. In the standard notation, the probability distribution for finding an 

electron of momentum fraction x in an interaction with center-of-mass energy ,/Z 

is’ written De(x, s). For an electron and positron of momentum fractions x1 and 

x2, respectively, the total center-of-mass energy is ,/m, and the cross section 

is De(x1, s)uo(xlx2s)De(x2,s). The total observed cross section is then 

. 

1 1 

u&s (s) = 
J / 

dxl dx2De(xl,s)uo(xlx2s)De(x2,s) ; (28) 

P CL 

the lower integration limit depends on the mass of the final state particles. The 

D(x, s) satisfy the normalization and momentum conservation equations: 

J De(x,s)dx = 1 7 

c / xDi(x,s)dx = 1 . 
i 

(29) 

The first integral includes ,a11 electron components (i.e., valence and sea elec- 

trons), while the sum in the second formula runs over all the available partons, 
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photons included. It is safe to neglect all other components, because real heavy 

fermion pairs are strongly suppressed, and one more pair of electrons can be 

produced only in fourth order. 

The concept of the structure function has been borrowed from QCD where its 

application in the description of hadrons has proven fruitful. Evolution equations 

were written for a vectorial theory in the early 1970s[‘5-‘8’ and were first applied 

to QCD in Ref. 18. More recently, they have been used to calculate QED radiative 

corrections in Ref. 3; subsequently, other calculations have been done [lOI 1111 for 

specific application to the 2’ energy region. By including a complete second 

order evolution of the initial state, including the graphs of Fig. 5, the structure 

function is 

. 
De(x,s) = Dey(x,S) + Deee(x,S) - (30) 

Dey(x, s) refers to the probability of finding an electron of momentum fraction 

x plus an arbitrary number of photons, while Deee(Z, s) refers to the probability 

of finding an electron of momentum fraction x, plus an electron-positron pair, 

plus an arbitrary number of photons. Reference 3 yields the following result for 

Dey(x, S) and Deee(x, s): 

P 
De7(x,s) = +l - x)+‘(l + ;p - $(;L + 7r2 - z)) - $3(1+ x) 

1 
+ $?2(4(1+ x) log - - 

1+ 3x2 
l-x 1-x 1%x----), (31) 

Deee(x,S) = e(l - x - %)(E)2 [&” - x ; Tm:IE)P12 (L1 - ;,z 
7r 

(1+ x2 + &Lr - ;,, + iL$(l iX3) + 9 + (1+ x) logx)] , 

where L = log(s/mf), p h as b een defined above, Lr = L + 2 log( 1 - x) and 0 is 

the Heavyside function. Substituted into Eq. (28), one may derive the form of 

f&/.&s) in Eq. (6), as given in the Appendix. 
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These calculations of De(x,s) in QED assume collinear radiation, so the 

(small) effect of photons emitted at large angles is not included. The collinear 

and nearly-collinear radiation dominate the center-of-mass energy shifts and the 

p-pair acollinearities, but the p-pair aplanarity is determined by photons of 

large transverse momentum. For a full treatment of the kinematics, this trans- 

verse momentum must be accounted for. This can be done in two different ways: 

1. The first is to assume the photon pi distribution is properly simulated by 

first order calculations. Since the only photons that will have significant 

kinematic impact are those with large pi, this is a very good approximation. 

One may then include the matrix element for hard photon emissioni”’ in 

the uc of Eq. (28). 

2. The second is to compute directly the structure function De(x, pi, s) as has 

been done in the QCD case!“’ 

In either case, the nonfactorizable pieces, such as box and interference terms, 

may be added by hand. These will then modify the uo of Eq. (28). 

The removal of energy by bremsstrahlung photons changes not only the 

center-of-mass energy, fi, but also the center-of-mass momentum. In general, 

the annihilation center-of-mass is no longer at rest with respect to the reference 

frame of the detector. For p-pair final states, the resulting acollinearities and 

aplanarities are detectable kinematic effects which provide the only experimental 

check one has on the radiative correction calculations. Since collinear radiation 

of energy nE results in a p-pair acollinearity $ R R, an acollinearity resolution 

of 10 mr allows one to check the corrections directly for 0.01 < IC < 1. The bulk 

of the corrections arise from infrared radiation, K 5 0.01, but the normalization 

constraints such as those of Eq. (29) im p ose a relationship between the hard and 

soft pieces so that the kinematic effects may remain useful checks on the entire 

calculation. A bremsstrahlung photon ,of transverse momentum KTE results in 

an aplanarity 7 M fCT, and thus offers a similar check on the transverse elements 

of the calculation. 
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I 

One may hope to exploit these kinematic manifestations to measure the struc- 

ture function De(x, s). If such a measurement is performed on PEP/PETRA 

data, the resulting structure functions may be evolved to SLC energies and used 

as input to an SLC Monte Carlo. Amplifying on these ideas, one notes that the 

center-of-mass energy is given by ,/ZiF&‘Z, and additionally, the Lorentz boost, p, 

of the center-of-mass is given by p = (x1 -x2)/(x1 +x2). With the Lorentz dilata- 

tion given by 7 = (x1 + 22)/2c 51x2, one can directly write down the acollinearity 

of a p-pair final state arising from the annihilation of an electron and positron 

of momentum fractions x1 and x2, respectively, as 

$=I 
2p7 sin 8’ 

1 + p27z sin2 8’ ’ ’ (32) 

where 8’ is the emission angle of the p+ in the p-pair rest frame. The moments 

of the acollinearity distribution of a p-pair sample will then be given by 

f”(<,s) = J dxldz2dO’~~De(x~,s)De(x2,s)~n . (33) 

In the PEP/PETRA region, and in other energy regions where a good amount of 

data on the continuum has been collected, the underlying Born cross section is 

known much better than l%, and with a suitable Monte Carlo, the acollinearity 

distribution for p pairs gives a direct measurement of the electron structure 

function, using Eq. (33). In th e same way, the measurement of the pi dependence 

of the structure functions can be measured from aplanarity distributions, where 

the aplanarity 7 is defined as 

In the SPEAR region, the abundance of resonant states and the large o8 

imply that there are nonperturbative and theoretically unpredictable QCD effects 

affecting the total hadronic cross section. Most of the results published used 
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Ref. 21 to extract the QED effects, where the lack of proper form factors can 

affect the normalization at the 10% level, and missing hard pieces have the side 

effect of changing the total cross section when hard radiation can take s’ down to 

the region of a large resonance. Besides the interest of reviewing old data using 

new calculations, there is a small change on the correction Ar”” to cY(Mi) 

obtained with a dispersion relation fit of the low energy data. 

4. Comparison of Existing Calculations 

We have cited several works (Refs. 3, 9, 10, 11 and 14) in which QED cor- 

rections beyond first order have been calculated. Broad differences of approach 

(matrix element, structure function) have been noted, but differences of detail 

: 
. and discrepancies in results have been reserved for this section. Since the treat- 

ment of real pairs differs among authors~121 we have adopted the following con- 

vention for the sake of consistency in these comparisons: real pairs are ignored in 

Ref. 3, and the electron form factor of Ref. 11 was set equal to the 62 of Ref. 9. 

Hence these results all include virtual pairs, but not real pairs. We have not 

attempted here to include all existing calculations. In particular, evaluation of 

the results displayed in Refs. 10 and 23 are expected to be numerically similar to 

the aforementioned papers. To complete the review and establish a familiar ref- 

erence point, we include the classic work of Jackson and Scharre, Ref. 21, where 

we have modified the virtual correction to exclude the (small) photon vacuum 

polarization, which is not relevant at the 2’. 

Two types of comparison are made. The first is done by choosing three pa- 

rameters, Mz = 93.0 GeV/c2, Iz = 2.5 GeV, and sin2Bw = 0.230 and generating 

the profile (TObs according to the corrections given in each of these references. For 

the p+p- final states, Table 2 gives the cross sections at several values of fi 

in terms of a deviation in percent from the prediction of Ref. 9. The very close 

agreement between Ref. 9 and Refs. 11 and 3 is quite striking in view of the fact 

that the former is strict matrix element calculation plus exponentiation, and the 
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latter are structure function results. The large disagreement between Ref. 9 and 

Ref. 21 may be attributed to incomplete treatment of virtual terms, as discussed 

below. 

The “fake data” test used earlier to compare levels of radiative correction 

may be applied here to compare the agreement on Mz, I’z, and a~ that use of 

various authors’ works would yield. Table 3 shows the results. Again we see the 

close agreement between Refs. 9, 3 and 11. The shape of the resonance is also 

well described by Ref. 14. This result has the advantage of a compact, analytic 

formulation. We have used the sum of the “hard” and “soft” photon results from 

Ref. 14 for this comparison. 

We see that the result of Ref. 21 has substantial discrepancy compared to ’ 

the more recent calculations, for which the overriding cause is as follows. The 

corrected cross section with exponentiation of soft photons to all orders, and with 

virtual and hard photon corrections to first order can be taken from Eqs. (25) and 

(26)[dropping the 62 and (a/~)~ terms, and letting no + 01: 

oobs (s) = P 
J 

ao(s’) /c@~(I + 61) d/c - p 
/ 

a&‘) (1 - ;) d/c , (35) 

where s’ = s(1 - k/E) = s(1 - K), as before. The second term (hard photon 

bremsstrahlung), is ignored for the remainder of this discussion. This convolution 

then takes on the general form 

“ob&) = 
/ 

ao(s’) f(w) (1 + 61) d/c . (36) 

In Ref. 21, however, the integral is broken up into two terms 

sobs(s) = 
/ 

OO(S’) f(&S) dtc + 61 ~o(S> - (37) 

In this case, the virtual correction 61 modifies the cross section only at the energy 

&. The reason that this approximation breaks down is illustrated by considering 
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a situation where the center-of-mass energy is slightly above a narrow resonance 

of mass MR, so that fi = MR + AE. The virtual correction shown in Fig. 6 has 

a small effect which is correctly included in the 61 term in both Eq. (36) and 

Eq. (37). The emission of bremsstrahlung radiation of energy near AE repre- 

sents, on the other hand, a very large effect, and the process depicted in Fig. 7 of 

a virtual correction along with emission of photons down to the resonance peak 

is relatively important. Such contributions are not included in Eq. (37). The 

numerical significance of this omission can be seen in Tables 2 and 3 by compar- 

ing Ref. 21 to Ref. 14, wherein the most significant difference is the distinction 

between Eq. (36) and (37). Because Ref. 21 has been used extensively to extract 

physics results, this distinction is potentially important. It is discussed further 

in the last section. 

Previous discussion indicated that several calculations possess sufficient ac- 

curacy for the extraction of the parameters of the 2’ resonance. We now see 

that there is excellent agreement between the most complete of these results, 

i.e., Refs. 3, 9 and 11. The simplified result of Ref. 14 is, in fact, also sufficiently 

accurate, given the expected experimental errors. Although the authors repre- 

sented in Tables 2 and 3 include different levels of approximation for the virtual 

and hard photon contributions to the cross section, they all include some form of 

exponentiation of the soft photons. This is not too surprising, as Table lshows 

that an excellent approximation is achieved by including exponentiation of soft 

photons along with other corrections to only first order. 
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5. Monte Carlos 

In the course of this work, two Monte Carlo programs have been developed. 

The first is based on the MMGl program’1Q’ which embodies the complete first 

order calculation, and has been widely used in analysis of PEP and PETRA 

data. MMGl has been modified to include the second order and exponentiation 

corrections, as in Eq. (26), and shall be referred to here as MMGE. The second 

program is based on the structure function analysis of Ref. 11. We give a brief 

review of each program here. 

. 

The starting point of MMGl is the radiation spectrum, da/d/c, which is 

used to generate the photon energy. All other kinematic variables are generated 

subsequently. The finals result is a set of four vectors for the produced fermion 

pair, and a four vector for the photon if its energy was generated above ~0. 

Normally”’ rce = 0.01. In MMGE, th e radiation spectrum is taken from Eq. (26). 

The energy generated from this spectrum is then assigned to a single photon, 

and the remainder of the program proceeds in the usual fashion. Final state 

radiation, box diagrams, initial/final state interference, and photon vacuum po- 

larization corrections are turned off. The use of exponentiation allows ICO to be 

set arbitrarily small, and typically tee = 0.0001 is used. As an example of this 

program’s application, Fig. 8 shows the effect of higher order corrections on the 

forward-backward p-pair asymmetry, calculated with MMGE. One sees that, 

characteristically, the first order calculation exaggerates the correction, and with 

higher orders, the final result lies between the lowest order and the first order 

expectation. 

A drawback to a program of MMGE’s nature lies in the approximation that 

all the radiated energy is carried by one photon. In fact it should be spread 

over infinitely many photons. In practice, if the radiated energy is large, then 

it certainly is carried predominantly by one photon, while if the radiated energy 

is small, the kinematic effects are negligible anyway, so it does not matter. In 

the middle ground where one might have two photons of comparable energy, 
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the approximation is poorest, and one may expect to see discrepancies between 

acollinearity data and predictions of this Monte Carlo. 

Equation (30) provides the starting point for the structure function Monte 

Carlo. With this method one may generate an initial state that already contains 

all the important radiative corrections, and add further radiative corrections 

of lesser impact to first order in the matrix element for the hard annihilation 

process. The kinematics of the final state are largely accounted for by the initial 

state radiation. 

. 

In the structure function Monte Carlo, the momentum fractions zr and x2 are 

generated first. The center-of-mass frame is then defined, and the fermion four 

vectors are generated back-to-back in that frame, and boosted to the lab frame. 

No photon variables are generated; effectively, all radiation is assumed collinear 

with the beam axis. The fact that collinear radiation accounts for the bulk of 

the kinematic effects (p-pair acollinearities, chiefly) make this a useful program. 

The absence of photon variables may hinder it in some applications. As with 

MMGE, final state radiation, boxes, and so forth are not presently included. 

In both Monte Carlos the ICO problems that plague first order programs are 

eliminated by the exponentiation of infrared photons. The value of ICO may 

be pushed arbitrarily low. The structure function approach has the additional 

strength that the radiative corrections are explicitly decoupled from the anni- 

hilation process. This means that one may use the same program for different 

processes, simply by substituting the a0 of one’s choice into Eq. (28). By the same 

token, beam energy spreads of arbitrary shape are easily included in this pro- 

gram. Both programs give negligible errors on predictions of total cross sections 

for fermion pairs. 

25 



6. Applications 

In Sec. 4 we explored the consequences of a separation between soft/virtual 

terms and radiation terms in the Z” energy region. As an interesting application 

of the current radiative correction calculations, data on the hadronic cross section 

at the J/+ resonance’241 were exhumed and refitted. 

For this particular case, the beam energy spread a~/& is much larger than 

the natural width of the resonance, and a further integration over all annihilation 

energies should be considered. Eq. (6) becomes 

oobs(SO) = dk d(&)f(k/E,s)G(fi- &)oo((l i k/E)s) . 
/ J (38) 

The energy distribution G is assumed to be gaussian with standard deviation 0E, 

and the dependence of f on s can be dropped in this particular case. For the 

same reason we can change the order of integration and we get 

“ob&O) = / d(fiG(fi - &i) / W(k/E,s)~o((l - k/E)s) . 

The use of such a formula as a fitting function is still technically almost impossible 

for this particular case. On one hand, a repeated numerical evaluation of a double 

integral is prohibitively CPU-time consuming; on the other hand, the available 

integration algorithms do not easily allow a precise determination (2 1%) of the 

integral, because of the almost singular shape of the cross section and of its first 

derivative respect to s or k. 

It is interesting instead to perform the integral over k analytically using the 

formula given by Cahn[‘*’ and reported in the Appendix, and check the results 

against the formula given by Ref. 21. In fact, these two recipes are equal but for 

the different treatment of the virtual terms mentioned in Sec. 4. We checked that 

the formula by Cahn, integrated over the beam energy spread, was equivalent 

within M 1% to the results of the structure function Monte Carlo, which is 

numerically stable. The photon vacuum polarization was taken into account. 
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For this work we have made first a fit to the resonance using five free param- 

eters: the branching ratio of the J/$ into electrons B,,, the mass M, the beam 

energy spread UE/& the total width I, and the background cross section frgk. 

The hadronic cross section at the peak from unitarity considerations is 

1% reerhad 
ahad = M2 rFot = $BerBhad . (40) 

As a partial constraint to the fit, the sum (2B,, + Bhad) was set equal to one. 

The minimization program was observed to find three close minima (k: 5% apart) 

along the hyperbola defined by 

Beer = be - constant - 4.8keV . (41) 

These two parameters, B,, and I’, could not be constrained separately without 

using data for e+e- and p+pL- final states from the same scan. The product, 

however, is roughly proportional to the area under the resonance peak, a quantity 

to which this analysis is sensitive. The other three parameters, M, 0~ and obk, 

were tightly constrained. The fit performed with the algorithm of Ref. 21 behaved 

similarly and gave a partial width into electrons approximately equal to 4.5 keV. 

These numbers should not be taken as new measurements of the J/$ leptonic 

width, because we did not use the leptonic data and there could be differences 

in the details of this analysis and that of Ref. 24; their interest is only in the 

comparison between the two results. The present error on lYee is .3 keV,[““’ and 

we plan to discuss this discrepancy in a future paper. Finally, the Monte Carlo 

was run to produce the fit of Fig. 9 with the following parameters: B,, = .0675, 

M = 3095.02 MeV, UE/& = .i’5 MeV, I = 71.0 keV and Ubk = 21.5nb, which 

correspond to the best fit obtained. 

In a separate application of the J/t,b d a t a, we may turn around the classic 

problem of radiative corrections to a resonance, and instead of using radiative 

corrections calculations to probe the resonance, use the resonance to probe the 
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radiative corrections. The J/$, being much narrower than the combined beam 

spread and radiative spread of the beam, may be regarded as a delta function. 

As such, it makes an excellent probe. We take the graph of Fig. 9, subtract 

the QED background, and replace the abscissa with 2E’ = 2(E - Enominal). 

What one obtains (Fig. 10) is a mirror image of the resonance that is a precise 

measurement of a (new) convolution function where beam energy spread effects 

are taken into account, 

f’(k/E,M2) = / dxd(AEl) d(AEa) 

1 - k/E 
Xa(xl,S) a-( xl 3’s) 

(42) 

where k/E = rc = 1 - 21x2, M is the resonance mass and the convolution of the 

D’(AE) functions gives the previously defined function G(,/Z - fi). We have 

assumed that s N M2, so that f(k/E, s) d oes not change during the scan. D’ is 

the beam energy spread (and can include, for example, beamstrahlung as well), 

and the integration must be performed on AE first to take into account the time 

ordering correctly. Comparing this with Eq. (28) we see that the cross section 

has dropped out after an integration over fi, as the resonance is effectively a 

Dirac b-function in this case. Substitution of f’(k/E, s) above into Eq. (6) could 

then be used as a test of the structure functions, as it is relatively insensitive 

to small changes of the J/$ resonance parameters. Measurements of this kind 

could also be performed at the T, which is narrower and sits on a very smooth 

continuum. These beam energy spread effects, however, are much larger because 

of the increased critical energy of the synchrotron radiation emitted by the beams. 
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7. Conclusions 

We conclude that while the radiative corrections to the 2’ resonance are 

quite large, they can be calculated and incorporated into the comparison with 

experiment so that there will be no significant theoretical uncertainties on the 

measurements of the resonance parameters at SLC and LEP. We have shown 

that the photon bremsstrahlung is a large distortion to the Z” resonance because 

of the large effective coupling constant for a 50 GeV electron to emit a nearly 

collinear photon, and because the resonance is relatively narrow. We find that 

we can sum to all orders (exponentiate) just those terms (real photon emission) 

that are responsible for the line shape distortions, and the virtual corrections, 

calculated to second order, will mostly affect the overall normalization of the 

resonance, and that at a level below the expected experimental systematic error. 

Electroweak radiative corrections need not be included to extract the resonance 

parameters to sufficient precision. 

. 

The ability to factorize the initial state effects from the remainder of the 

cross section has led to the description of the initial state radiative corrections in 

terms of structure functions and evolution equations. We discuss this approach 

and show how the structure function formalism allows us to include effects like 

beam spread in a natural way. 

At least three papers have calculated radiative corrections using independent 

matrix element and structure function methods. We have directly compared 

these calculations and several others by using them to fit a resonance shape. The 

agreements and disagreements between the calculations are understood, and we 

find that all calculations that include exponentiation of the soft photons and 

virtual corrections to at least first order are adequate for the measurement of the 

parameters of the 2’ resonance. We also find that the analytic fitting function 

derived by Cahn is suitable for fitting the data. An absolute precision of better 

than 1% everywhere around the resonance, however, can be achieved only by 

including (together with soft photons to all orders) form factors and hard pieces 

29 



to second order, real pairs to lowest order, and box diagrams and final state 

corrections to first order. The electroweak corrections do not affect the resonance 

shape at the 1% level. 

We describe Monte Carlos that have been developed in the course of this 

work. We illustrate the new calculations of radiative corrections by refitting the 

Jlti resonance. 

It is a pleasure to thank F. Berends, R. Cahn, F. Dydak, B. Lynn and B. Ward 

for many useful discussions; special thanks to S. Brodsky and L. Trentadue for 

illuminating the physics content of evolution equations, and to V. Luth for helping 

exhume the data on the J/$. 
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APPENDIX 

In this section we collect those formulae the reader may find useful. These 

include the functions A(K), B(n), and C(K) from Eq. (18), taken from Ref. 9; the 

function uObS (s) taken from Ref. 14; the four forms of u&(s) used to make Fig. 3; 

and the function f(k/E,s) from Eq. (6) d erived from the structure function 

analysis of Ref. 3. 

A(n), B(K), and C(K) are given below: 

. 

A(/c) = - log2 -$log(l - n) + log 5 Li2(/c) 
e e 

- ; log2(1 - n) 

+ log(1 - n) log(n) + ; log(1 - /c) 1 + ; log2(1 - n) log(rc) 

-. 
+~Li2(n)log(l-n)-~logs(1-n)+~(2)log(l-n)-~L~2(n) (43) . 

- 5 log(1 - n) log@) - ; log(1 - rc) + ; log2(1 - K) 

- ; log2(1 - rc) - ; - $log(l - n) - & log2(1 - K) 

B(n) = log2 3 ;log(l - n) - 1 
e [ 1 

flog3 ~log2(1-K)-log(l--rc)+~ 
e [ 1 

+ iLi3(K) - 2&,&c) - log(n)li2(n) - c(2) + ; log2(1 - K) 

+ ; log(1 - n) log@) -I- a lo&c) + ; lo& - K) + f lo&c) - ; 

(44 
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. 

C(n) = 2 log2 3 + log 3 
e e [ 

log(1 - n) - y 1 + $(2) 

- 3i2(K) - ; log2(1 - n) - 4 log(1 - K) log(/c) (45) 

+ ; lo&c) - ; log(1 - n) - ; log(n) - ; 

The polylogarithms, Lij (n), and Spence functions, &J(K) are defined in the 

first paper of Ref. 4. 

The form of o&s(s) given in Ref. 14 is given below in the notation of this 

paper. 

r% 
uob&> = uZ(l + 61) r2 + M2 

z z 

[ 
-f--ap-2@(cos 8, p) - 
M.i 

a ~-l-&(cos e,1+ p) 1 (46) 

rz uzP-- [ 
2M.z - tan-l - - 

fi rz 
tan-l wz - 4) 

rz 1 
In this equation we make the approximation 61 M ip. The quantities a, cos0, 

and Q(cos 8, /3) are defined as follows: 

.2 = M;(s/M; - I)~ + r;(s/M;)” 
r;+M; 

cos e = -Mg (S/M; - 1) + r%(s/Mi) 

a(IJi + M;) 

qc0se,p) = 
7rp sin((1 - p)e) 

sin 7rp sin 8 

(47) 

(48) 

(4% 

The following four equations give o&(s) for four different levels of radiative 

correction, corresponding to the four curves in Fig. 3. 
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Pure first order: 

uobs(s) = 00(s) (1 + 61 + p log /co) + 
/ 

.: P(; - 1+ ;)q(s’)dn . (50) 

As noted earlier, s’ = s( 1 - K). The Born cross section, 00 (s), is given in Eq. (1). 

First order with exponentiation: 

uo&) = u&)(1 + &)K{ + 
J 

/d-(1 + Sl) - I+ ;)u,,(s’)dn . (51) 
60 

Pure second order: 

p . 
uob&) = uO(s)(l + 61 + 62 + plOg&~ + 61plOgQ1 + ;p210g2 60) 

+/,: (10(s')[P(~-l+;)(1+61+plog(n)) (52) 

+Q2 1+ (1 - Icy 
tG 

A(K) + (2 - n)B(n) + (1 - ++))] drc 

Second order with exponentiation: 

u&.(s) = u&)(1 + 61 + 62)4 

+/,: uo(s')[+~-l(1+61+62)-1+;) 

+Q2 
1+ (1 - ICC)2 

K 
A(n) + (2 - n)B(rc) + (1 - K)C(S))] dtc 

(53) 



Finally, we give the expression for the f(~,s) in Eq. (6) as given by the 

structure function analysis of Ref. 3. 

f(n,s) =p/P 
[ 
1+&- $&og3+2a2 - F)] -P(l- +) 

e 

-4(2 - K) log tc - (1+ 3(1 - n)2) 
tc 

log(1 - n) - 6 + /c 1 

. 

+f 
21 ()i gp- y (log($) - g2 

x 
( 

2-22rc+lc2 + $? log 
( (Fig-i)) k 

+ ; log2 3 
[ 

2(1 - (1 - n)3) 
3(1- K) 

+ (2 - K) log(1 - n) + 
e 

+ 
II 
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TABLE CAPTIONS 

1. Accuracy of various levels of approximation on the fit parameters Mz, Tz, 

and a~ relative to the exponentiated second order calculation of Ref. 9. SQ, 

with Q = Mz, IYz, or a~, is defined as Q - Qg, where Qg is from Ref. 9. 

2. Comparison of cross section values, stated as a percent deviation from the 

cross section of Ref. 9. 

3. Results of comparing different calculations for extraction of Mz, I’z, and 02 

given data generated by Ref. 9. The differences are defined as in Table 1. 
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Table 1 

. 

( Fitting Function 

I 1st order 

6Mz 6I-z 6aZ 

(MeV/c2) WV) (Z) 

I -152 I 5.63 

I Exp. 1st order 2 

I 2nd order (Ref. 9) I 14 12 

Table 2 

Fitting Function 
g (%) at & (GeV) = 

91 93 95 I 97 

Berends, et al. (Ref. 9) I - I - I - I - I 
Jackson and Scharre (Ref. 21) 1 4.56 1 4.31 I-O.098 1 -3.07 1 

Cahn (Ref. 14) I -0.670 -0.034 -0.156 -0.681 I I I 

Trentadue and Nicrosini (Ref. ll)I 0.019 1 0.025 I -0.051 I -0.203 I 

Fadin and Kuraev (Ref. 3) 1 < 0.001 ) 0.003 ) 0.017 I 0.014 I 

Table 3 

6Mz 6rz 6aZ 
Fitting Function 

(MeV/c2) (MeV) (Z) 

Berends, et al. (Ref. 9) - - - 

Jackson and Scharre (Ref. 21) 35 69 -4.45 

Cahn (Ref. 14) -0.2 8.9 -0.01 

Trentadue and Nicrosini (Ref. 11) 1.1 1.4 -0.84 

Fadin and Kuraev (Ref. 3) < 0.1 0.2 -0.01 
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FIGURE CAPTIONS 

1. Lowest order diagrams for the process e+e- + ff. 

2. Diagrams for the first order correction. Note that the loop in (d) includes 

all fermions. There are four 7 - Z” box diagrams represented by (h), and 

two 7 - 7 box diagrams represented by (i). 

3. The Z” line shape with various levels of radiative corrections. Dot-dash 

curve: first order; dashed curve: first order with exponentiation; dotted 

curve: second order; solid curve: second order with exponentiation. 

4. An electron-photon cascade of the sort described by structure functions. 

5. Diagrams involving real and virtual pairs in the initial state. Emission of 

real pairs is depicted in diagrams (a) and (b), while (c) and (d) are the 

analgous processes involving virtual pairs. 

6. A lowest order virtual correction incorporated in 61. 

7. Photon bremsstrahlung down to a resonance. In this case, the virtual 

correction has a relatively large effect on the overall cross section. 

8. Forward-backward asymmetry as a function of ,/% for levels of correction. 

Dotted curve: lowest order; dashed curve: first order; solid curve: second 

order with exponentiation. 

9. The J/T) resonance shape from Ref. 24. The fit has been obtained using 

one of the Monte Carlos described in the text. 

10. The function f’(lc/E,s) as measured in Ref. 24. 
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