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In this paper we develop a new technique (superconvergent tracking) for 

tracking particles through a circular accelerator or a transport line with nonlinear 

elements. We use the superconvergent perturbation theory of Kolmogorov to 

solve the Hamilton-Jacobi equation (approximately) over a finite time interval. 

This transformation defines a map from the initial conditions to the state of the 

system at some later time. This technique can be iterated to examine long term 

stability in betatron phase space in a circular accelerator or it can be used to 

calculate the trajectory in betatron phase space of particles in a transport line. 

We verify the algorithm with two test cases in one degree of freedom, and then 

further develop the technique to track the two transverse degrees of freedom in 

a general accelerator lattice with sextupoles. As an example we track a section 

of the SSC arcs with and without sextupole errors in the bending magnets. 
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1. 1NTRODUCT:ION 

The purpose of this paper is to explore a new algorithm for computing the 

trajectory of a particle in a circular accelerator or transport line. Presently, 

there exist many different techniques for ‘tracking’ a particle or a collection of 

particles through an accelerator ‘lattice’ (the collection of dipoles, quadrupoles, 

sextupoles, etc. which are used to guide the particle and maintain transverse 

stability). ‘-’ Each of these techniques has its strengths and weaknesses. 

The basic problem is a trade off between accuracy and speed. In the extreme 
- 

case one can simply numerically integrate the differential equations through each 

magnetic element. This of course is extremely slow and in practice is not used 

at all in the study of ‘long term’ stability in storage rings. On the other hand 

‘this careful but slow method is useful for studying finite length transport lines in 

which nonlinear effects are important, for example the transport and final focus 

of a linear collider. However, even in this case numerical integration suffers in 

that it gives little insight into the design problem of aberration-free final focus 

systems. 

The other extreme is the study of long-term stability in storage rings. In this 

case one would like to examine the stability for hours in the case of protons or 

for a few radiation damping times in the case of electrons. In practice, however, 

one is limited to about an hour of calculation time with the tracking technique 

.P. 
being used. Therefore, the tracking times usually fall far short of the ultimate 

goal. 

-- To study long term stability it is therefore useful to augment the numeri- 

cal techniques for orbit study with analytic techniques. Perhaps one should say 

that the numerical techniques augment the analytic techniques! The problem of 
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interest is the long term stability of a weakly honlinear system which has two 

transverse degrees of freedom (and possibly the longitudinal degree of freedom 

as well) with forcing terms that are functions of the independent variable. This 

yields a Hamiltonian which is a function of the two coordinates, their canonical 

momenta and the independent variable, s. This is sometimes referred to as a 

system with 2f degrees of freedom. There are many new techniques for study- 

ing this problem and also some useful old techniques. For a review of various 

techniques used in the study of nonlinear dynamics see Ref. 4. 

In this paper we are concerned with tracking techniques which use methods 

that are borrowed from the analytic and perturbative study of stability. The 

basic idea is taken from canonical perturbation theory4 which has its roots in 

Hamilton-Jacobi theory. In the Hamilton-Jacobi approach one attempts to find 

a canonical transformation of the coordinates and momenta which converts the 

..- - . -. 
problem to one where the Hamiltonian is a function only of the new momenta. 

Since this new problem is trivial to solve (the new momenta are the constants of 

the motion), all of the dynamics is wrapped up in the canonical transformation. 

This technique can be applied as one of the analytic tools to study long term 

stability. 5 

_ .z_ 

_ -- 

In the present case we apply this technique to the particle orbit. The idea is 

to find a canonical transformation which will leave the new Hamiltonian a linear 

function of the momentum. In such a case the new momenta is a constant of 

the motion while the new coordinates are simple functions of the independent 

variable, and thus with appropriate boundary conditions on the canonical trans- 

formation the new momentum can be taken to be an initial condition. Thus 

the canonical transformation defines a map from the present state of the system 
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to the-initial conditions. If this map is inverted, it yields a map of the initial 

conditions to the present state of the system. In this paper we find this desired 

canonical transformation perturbatively using the techniques of canonical per- 

turbation theory. This yields an analytic representation of the map which can 

then be iterated numerically to study long term stability. 

The map obtained using this technique will differ slightly from those found 

using other techniques in that the expansion is made treating the perturba- 

tion or multipole strength as the small parameter. Matrix methods such as 

TRANSPORT’ expand in a taylor series about a trajectory, treating 3 as the 

small parameter while integration techniques such as symplectic integration7 ex- 

pand in terms of the distance travelled through the magnets. 

..-.- . -. 

In Section 2 we begin by calculating the generating function as an iteration of 

superconvergent perturbation theory. We carry this forward analytically through 

.two steps of the process. In Section 3 we demonstrate the technique by using the 

‘superconvergent tracking ‘8 algorithm on two model problems in one degree of 

freedom. These serve to illustrate the salient features and are not unlike many 

problems in accelerators. In Section 4 we develop the technique for a general 

accelerator lattice with an arbitrary sextupole distribution. Finally, in the last 

section we treat several model lattices taken from the design study for the SSC. 

.- .*_ 



* ,s- 2. SUPERCONVERGENT TRACKING 

The aim of superconvergent tracking is to calculate a map which takes the 

initial conditions at one point in a magnetic lattice to final conditions at some 

other point. For a circular accelerator or storage ring, one would like to calculate 

the map for a significant fraction of an entire turn. Once this map is obtained, 

it can be iterated numerically to discover long term behavior. 

The map is generated by a sequence of canonical transformations so that 

after n steps the Hamiltonian is a linear function of the new momentum through 

some order in the perturbation strength. In such a case, the new momentum is 

constant and the new position is a constant plus a phase which advances with 

the independent variable. Thus with the appropriate boundary conditions on the 

generating function, the new momentum and the new position minus the phase 

-advance can be used as initial conditions. The map is then obtained by applying 

the transformations in reverse order. This, in effect, solves the Hamiltonian- 

- 

..- - . -- 

Jacobi equation for a finite interval in the independent variable. 

We begin with the Hamiltonian for linear motion perturbed by Vi, a small 

nonlinear term of order E, 

Ho = LJ . Jo + vO(&, Jo, 0) (24 

.- _z_  

where Vi is periodic in both 4. and 8. Note that throughout this paper bold face 

_ -- characters denote d-dimensional vectors and variables will be used as subscripts 

to indicate partial differentiation. 

Now we perform the first of a sequence of canonical transformations with the 
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* ,s- 

generating function9 
. 

F2(40, J1,fl) = $0 * Jl + G(l)($o, JI,~) , (2.2) 

which yields the transformation equations 

Jo = Jl + G$)(40, Jl,B) 

41 = 40 + &&h,,Jl, 0) , 
(2.3) 

and the new Hamiltonian 

HI = u ’ Jl + v * G$’ + V&b,, Jl + Gz’,e) + $1 . 0 0 
(2.4) - 

This in turn can be written in the suggestive form 

HI = u - Jl + V&$0, JI + G4 @I, fl) - vO(bo, Jl, 0) 

+ [a” + Y - G;i + &$o, Jl,O)] . 
P-5) 

..- - _ -. 

.Note that the Hamiltonian has temporarily been left in the same mixed variables 

as G(l). 

We would like to find G(l) so that the perturbation in HI is higher order in 

the perturbation strength. If we solve for G(l) such that the bracket in Eq. (2.5) 

is zero, then the new Hamiltonian is a linear function of Jl plus a perturbation 

of order c2. Completing the substitution, we are left with 

. 

. .z_ where 

Hl(hJl,~) =~.Jl+Vl(til,Jl,@ P-6) 

4 

-- 

_ -- Vl(hJd) = h(&,Jl + G$;,fl) - V0(4~,Jl,fl) , P-7) 

and where @o will be expressed as a function of &, Jl, and 6 by inverting (2.3). 

It is easy to see that VI is of order e2 by expanding Vi about Jl for small G$‘. 
0 
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. 
Af th?s point we can return to Eqs. (2.3) to repeat the process. Stopping 

after n steps, we find 

Hn = u - Jn + V&J,, Jd) 

(24 
VtZ - O(E2”) , 

and from Hamilton’s equations 

$, = VO + constant + O(c2”) 

J, = constant + O(c2”) . 
P-9) 

Thus, provided that E is sufficiently small, J, is constant while 4, advances 

uniformly in 9. 

- 

As an illustration of the technique we will calculate the second order trans- 

.formation in one dimension for an arbitrary non-linear perturbation Vi. By 

expressing G(l) and VO as a Fourier series in $0, the bracket in Eq. (2.5) becomes 

..- - . 
-. 

&h(Jl, 0) 
ae + ~~wn(J1,e) = -um(J1,B) , (2.10) 

where gm and u m are the Fourier coefficients for G(l) and Vi respectively. The first 

order differential equation requires a boundary condition to specify the unique 

solution. The condition we impose is that G(l) + 0 as 6f -+ 8i, i.e. the canonical 

transform becomes the identity transform when 8f = t+. Thus (41, 51) will equal 

(40, Jo) at 6f = 8;. The solution for G(l) is then 

_- .rr_ 

_ -- 

of 

G(1)(&,J1,6f,6i) = -Ceimdo 
/ 

um(J1,B’)eimv’e’-ef’dB’ . (2.11) 
m 8; 

Although G(l) is not a periodic function of 8, it is important to note that since 

Vi is periodic in 0, G(l) is invariant if both 0; and 6f are shifted by 27r. 

7 



* ,c- 
The form of the new Hamiltonian is showniin Eq. (2.6). Before the second 

. 
transformation can be calculated, VI from Eq. (2.7) must be re-written in terms 

of the new variables, 41 and Jr. To do so, we expand VO(C#Q, Jr + Gtj, 6) and 

G$lJ in Taylor series: 

GiO 
. vl(hw) = v~l~~o,~l~~~~~o(~o,~l~~) + vh.hT + -- 

G~obhJ19~) = G4,(h,Jl,6) + A+G#,,+, + . . . (2.12) 

v(40,Jl,e) = v(41,4,6) + wvil + -- 

where A# = ~$0 - ~$1. Note that the sub/superscripts on Vi and G(l) have been 
- 

dropped for simplicity. Now A+ is calculated from Eqs. (2.3) 

A4 = -[GJ,(~JI,J~,~) + G1+Jhl + -1 . 

We then combine the equations, keeping only terms through order c3 since Hp,, 

and therefore the error, will be of order e4: 

HI = a + wbw) (2.13) 

where 

-- 

hhJl,e) = V.r$tj, + +J~G$~ 

- VJ~&#J, - VJ~G~,&J, + O(c4) . 
Finally, Gt2) is calculated from VI in a manner identical to that of G(l), 

(2.14) 

ef 

&)(4,, Jo, 6,) = - C eimdl 
/ 

Vlm(J2,6’)eimv(e’-et)d6r (2.15) 
m 

ei 

where vrm are the Fourier coefficients of VI. Again note that Gt2) is invariant if 

-- 

both 6f and 6i are incremented by 27r. 
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When tracking we find a particle’s position, in phase space, from a prior 

position; we need to calculate (40, Jo)e=,g, given (40, Jo)o=ei. Using Hamilton’s 

equations, Eqs. (2.9), and knowledge of the boundary condition on the generating 

functions, we can easily estimate (4,, J,)e=ef from the initial conditions: 

&e=e, = 4; + 4ef - a + Ok2”) 
Jne=,yf = Ji + O(c2”) . 

(2.16) 

NOW by inverting the canonical transformations, Eqs. (2.3), we can calculate 

bbo,Jo) from (4,, Jn). First we solve for &,+r implicitly and then we can calcu- 

late J,-I explicitly 

- 

(n) 
+n-le=r, = hr=e, - GJ1 6L-l~ Jtb 6,) 
Jn-le,e , =‘Jne=s, + $y9,-1, Jm e,) * 

(2.17) ‘. 

..- - . 
-- In this manner we reverse each transform until we arrive at the values of c$~ and 

Jo. The error of (4 0, J ) = 0 0 of is then of the same order as the error in (c$,, J,)e=e,. 

The tracking algorithm will approximate the true motion only if the strength 

of the perturbation, E, is small. In addition it is necessary to control the step size 

6f - t+ - he. Assuming that the perturbation varies slowly with 6, G(l), shown 

in Eq. (2.11), will be linear in A6 for small A6. Additionally, if G(l) has terms 
- 

with m = 0, true‘for octupole perturbations but not for sextupoles, then these - 
e- .z_ 

terms will be linear in A6. The A6 terms will then appear in VI through the 

-- partial derivatives of G(l) with respect to Jl, upon which VI is linearly dependent. 

Therefore VI will also be linear in A6. Now looking at Hamilton’s equations for 

J1 and & we can see that the error will be of order Ae2 for one step since VI is 
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i 
integrated over the range A6, 

@f 

Jr = - 
/ 

$d6 = Ji + O(Ad2) (one step) 
1 

ei 

of 
(2.18) 

= 4bi + Y(ef - 6;) + ope2) . (one step) 

Since we are actually interested in the error over one turn which is composed of 

N steps of length Ad, the error in Jr and 4r will depend linearly upon A6 

Jr = Ji + O(A6) (one turn) 

41 = fbi + v(ef - ei) + o(he) . (one turn) 
(2.19) 

Similarly, terms in Gt2) will increase quadratically with A6 since VI is linear in 

A6. H2 will then depend cubically upon A.8, and thus the error of (42, 52) will 

also increase cubically with At? 

..-.- . 
-. 

J2 = Ji + O(Ae3) (one turn) 

42 = 4i + u(ef - q + o(Ae3) . 
(2.20) 

(one turn) 

This dependence is important since it restricts the distance over which we can 

track while maintaining accuracy, and thereby may force us to divide the ring into 

steps. It also allows us to check the convergence of the algorithm by changing the 

step size and comparing results, much like an adaptive quadrature routine. When 

the errors obey the power law dependance on A6, i.e. when the perturbation 

varies slowly with 6; the error for the second order tracking can be written 4 

-- 
(fi - he> = are3 , fl - f2 

a = 6: _ 6; ) 
(2.21) 

where itrue, fr , and f2 are values of Jz,y or &,Y for the exact solution and tracking 

with steps of 61 and 62 respectively. 
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~ -3. TRACKING IN ONE DEGREE OF FREEDOM 

In this section the superconvergent tracking -algorithm is tested on two simple 

problems with one degree of freedom (and a time dependent Hamiltonian). In 

the first case (i) we examine a sextupole perturbation whose strength varies as 

cos(6), and in the second case (ii) a periodic delta function octupole perturbation. 

In both cases we use a smooth approximation for the focusing in the ring so the 

unperturbed motion is a simple harmonic oscillation. The Hamiltonians for the 

two examples are 

(4 Kx2 Ho=;+- b2 3 
2 

+ cos egx 
. 

(3-l) 
(ii) Ho=;+ 

Kx2 
2 + s,(e)$z4 . 

. 

Transforming to action-angle variables 

..- - . 
-- 

(4 Ho = 5 + cos &$$I: Jj cos3 4. 

(ii) Ho = $’ + s,(e)f$&Pcos%po 
P-2) 

where /3 is the beta function which, for the purpose of this model calculation we 

take to be 

The radius of the ring has been set to unity so the independent variable is angular. 
_-- _ 

G(l) is calculated from Eq. (2.11) 

-- 
(i) G(1) = -b2fi 2 i --yg--@  J1 2Re[ei34013(3, ef) + 3e”+013(l, e,)] 

(ii) ~(1) = -b”p” ~1” 2Re[,wOe~4@6-ej) + 4ei2d'oei2V(ea-ef) + 31 
96 

11 



where 196 is the location of the delta octupole and I3 is the integral: 

ef 

13(k,ef) = 
/ 

COS(e’)eiku(e’-ej)de~ 

Oi 
-1 

2e 
-ikuef 

= k2v2 - 1 k ikue’ (ku cos 61 - sin ef)]:; . 
(3.5) 

Now we can use Eqs. (2.14) and (2.15) to find VI and Gc2). Since the 

calculation of VI involves evaluating more than two hundred terms, we used 

the symbolic manipulation program REDUCE” version 3.1 for many of the 

algebraic manipulations. A REDUCE program was written which, given an initial 

perturbation, would calculate G(l), V 1, and Gc2), and then write the results in 

the form of Fortran subroutines. The goal was to avoid the necessity of copying 

- 

..-.- _ -- 

the expressions by hand where mistakes would likely have been made. 

At this point it is useful to introduce a simple generalized method of writing 

Gt2) which can be used to represent different perturbations. The obvious solution 

l/2 is to express it in terms of a power series in J2 and a Fourier series in 41, 

Gc2) = c J2? 2Re[Ckm(6)eik91] . 
k>O,m 

(34 

The range of k and m in the summation can be found by looking at the expression 

for VI, Eq. (2.14). For sextupoles or higher order perturbations the.ranges are: 

k maz = 3~, krnin = 0 

m maz=(3P-4), mmin=(2P-2), 
(3-V 

_- .rr_ 

_ -- 

where p is the order of the perturbation. Since the generating functions are 

invariant in 6 once the steps A6 are fixed, the c&(6) coefficients only need to be 
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calculated once. Thus calculating Gc21 for a steb on any turn is simply a matter 

of summing the series in 41 and J2. Actually, when tracking, we need the partial 

derivatives of Gt2) with respect to ~~51 and J2, not Gc21 itself, but in this series 

representation the calculation of the derivatives becomes trivial. 

The particle’s position in phase space is calculated at the end of each step 

from the position at the end of the previous step. When tracking to second order, 

this requires solving the implicit equations for 4 and the explicit equations for 

J twice for each step. We use a simple Newton’s iteration method to solve the 

implicit equations: 

f bn-1) 
Xn = %~-l - j,cxn-lJ . (3.8) 

Since the perturbation is a small effect, 42 is a good approximation to 41 (as 

..- - . -- 

is ~$1 for 40) and can be used as a starting point for the Newton’s method. In 

such a situation Newton’s method converges quadratically to the solution, and 

despite the extra function evaluation, it is faster than simple iteration. Typically, 

a solution accurate to the computer’s double precision arithmetic is be found in 

three to four iterations. 

In Figures 1 and 2 we show the results of tracking the two perturbations. 

Both plots are of J/~COS& US. -dmsin&. The six initial conditions 

used to generate the curves are listed next to each plot. To heighten the effects of 

the perturbationsthe tune Y was set fairly close to 3 for the case of the sextupole 
_- _x_ 

L perturbation and f for the case of the octupole. In both cases superconvergent 

-- tracking closely approximates the true motion. 

The effects of the continuous sextupole perturbation can be calculated from 

Hamilton’s equations using a differential equation solver. Figure 3 is a plot 

13 



Parameters: b, = 0.01 
p = 2.90 

Initial Conditions 
# J 
1.0 0.05 
1.0 0.20 
1.0 0.50 
1.0 1.20 
1.0 1.80 
1.27 14.40 

-2-"""""""""' 
-2 -1 0 1 2 

Fig. 1. Superconvergent tracking of the cos(B)x3 perturbation. 

Parameters: b, = 0.01 
j3 = 4.100.5 

Initial Conditions 
# J 

0.63 0.05 
0.63 0.20 OvO 
0.63 0.40 
0.63 0.51 
0.63 0.53 
0.63 0.556 -0.5 

Fig. 2. Superconvergent 
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tracking of the S,(6)z4 perturbation. 
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Fig. 3. 

. . 

-2 " " " " " " " " ' ' J 
-2 -1 0 1 2 

Tracking of the cos(6)x3 perturbation by integrating 
Hamilton’s differential equations. 

..- - . - 

-generated in such a manner with the same parameter values and initial conditions 

as Figure 1. The only noticeable differences appear on the separatrices. The 

superconvergent tracking method is roughly eight times faster than EPSODE,ll 

a routine which we use to integrate Hamilton’s differential equations through 

the non-linear elements. Since the routines for tracking were written to test the 

method and not for speed, the results are encouraging. 

For the case of a delta function perturbation, the true motion can be eas- 

ily found by integrating the equations of motion. Hamilton’s equations for the G 
_- .*_ octupole perturbation are 

_ -- i=p 

fi = -Kx - s(e)+x3 . 
(3.9) 

The solution to these equations is a simple harmonic oscillation, except at the 
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location of the perturbation, 06. At 96, the momentum simply changes by %x3. 

Thus to calculate the position at the end of one turn, we have the two maps 

xea = x; cos(ueg) + 5 sin(v06) 

b3 3 PO, = -xiv sin(m9~) + pi c0s(ve6) - 6~86 
(3.10) 

and 

52r = xea COS(V(~?~ - 0,)) + ? sin(v(27r - e,)) 

pas = -xeau sin(Y(27r - e,)) + pea COS(Y(~T - e6)) . 
(3.11) 

- 

This ‘kick’ method is frequently used in accelerator design programs to track the 

effects of sextupole magnets by approximating them as delta functions. It is quite 

useful for element by element tracking, but cannot handle very long sextupole 

fields (such as errors in bending’magnets) unless the magnets are subdivided and 

..- - . 

_- 

_ -- 

replaced with many kicks. 

To verify that the errors in the second order superconvergent tracking are of 

order c4, we tracked the sextupole perturbation with different values of b2, the 

perturbation strength. We set the p parameter to 2.90 and used Ji = 1.20 and 

& = 1.0 as the initial conditions. Figure 4 contains a plot of the absolute error 

of JO and ~$0 versus b2. The absolute error was found by subtracting the value 

of J or C$ on tenth turn calculated with the superconvergent method from the J 
4 

or C$ value calculated-with EPSODE, the differential equation solver. The other 

.I graph in Figure 4 is a plot of the logarithm of the same points. The slope of these 

lines show the power dependence of the error on b2. The slopes of the log(J,,,) 

versus log(b2) line and log(r#+,,) versus log(b2) line are almost exactly 4.0 as they 

should be. 
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Log10 @,I 

Fig. 4. Absolute error in J and C$ us. perturbation strength, b2. 
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Fig. 5. Absolute error in J and 4 us. AB. 
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i -’ Another diagnostic which we performed is to look at the small AB behavior. 
. 

For small AtI, the eimv(8’-8f) terms in the integral for G(l), Eq. (2.11), can be 

expanded. The result is that the lowest order of A8 in G(l) are linear terms. 

The same is true in VI, as can be seen from Eq. (2.14). Gc2) will have a Ad2 

dependence, for small Ad, and thus the lowest order of A0 in H2 will be cubic 

(see Eqs. (2.19) and (2.20)). Th e cubic dependence is displayed in Figure 5, 

where we plot the absolute error in J and 4 versus A0/27r for the case of the 

sextupole perturbation. We also plot the logarithm of the points, and one can 

see that the error is of order (A0/27r)3. - 
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,c- . . - 4, TWO DEGREES 0F:‘FREEDOM 
. 

In this section we move to two degrees of freedom and to the problem of 

motion in an ‘arbitrary’ accelerator lattice. The Hamiltonian for oscillation about 

the closed orbit in a circular accelerator with an arbitrary sextupole field is 

Ho = !$ + $ + K~(zs)x2 + % (z6)Y2 I b$) tx3 _ 3xy21 , . (4.1) 

where K(s) is the focusing function and bz(s) is the sextupole strength: 

b2(s) = e!f?f!! 
pot ax2 y=o * r=o 

In action-angle variables this becomes 

..- - . 
-- 

Ho = & + $) + -- b(s)& g ; 6 [I2 (6) J,- axi3 qL 

- 3& (s)&, (s) Jj Jy cos & COST $y] 

(4.2) - 

where Pz (Py > is the beta function in the x (y) d irection. Note that we assume the 

bending magnets and quadrupoles are separate and did not include those cross 

terms. Also, we are now using S, the distance around the ring, instead of 8 as 

the independent variable. 

<- _*_ 

_ -- 

The first order generating function used for tracking, G(l)($,, Jr,s), is cal- 

culated from Eq. (2.11) 

G(l) = - 3,: [ 3i% (3 3 0) + 3e’4z131(3 1 0) + CC] 48 2 e 31 , , , , 

-I- fiJtJ [ i(dz+24y)131(1 16 = ye 
1 2) + 2ei4'131(1 1 0) , , , , (4.3) 

+ ei(4=-2+y)1si(1, 1, -2) + CC] , 
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i where*“CC” represents the complex conjugate. :‘&r is defined as the integral: 

8 f 

131 (n, m, sf) = 
/ 

b2p$y? eimelt4+?&~f)l&J , 

si 

(4.4 

where b2, pz, and &, are all periodic functions of s’. Since the phase advance is 

no longer uniform, the solution is in terms of $(s) instead of A, where 

0 

(4.5) 
- 

It is obvious that the integrals, 131, are invariant if both sf and si are shifted by 

one period of the structure, and therefore they do not have to be re-calculated 

for each iteration of the ring. 

To now calculate the second order generating function we need to calculate 

Hl(@,,Jl,e) f rom G(l) and Vi. HI, in two degrees of freedom, is calculated in 

- an analogous manner to that in one degree of freedom (see Eq. (2.13)), 

Jlz JlY -- Hl = p&) + py(s) + w%b Jd (4.6) 

and 

- vJz,z GJz Gb - vJz GJz G&& 

+ VJ& + &J~J& - VJ&,GJ~G&, - VJvGJvG&4s (4.7) ; 
_ ..=. + VJzJyG# G&, - VJ,$.G#,GJz - VJ,GJzG#z&, 

-a 
.= 

I - VJz&Gd=GJy - VJ.GJ,Gd.ds 3 

where G is G(l) and V is Vi. For the case of an arbitrary sextupole distribution, 

G(l) and HO are calculated in Eqs. (4.3) and (4.2) respectively. Now Gc2) is 
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‘ ,=--  ca lcu la ted  -by  in tegra t ing V I, as  in  E q . (2.15).  T h e  ca lcu la t ion  o f G c 2 )  fo r  th e  
. 

2 -D  case  invo lves  th e  eva lua t ion  o f ove r  fou r  th o u s a n d  terms.  Ve ry  rough ly  th e r e  

shou ld  b e  2 4  tim e s  th e  n u m b e r  o f te rms  in  th e  1 -D  case  s ince  th e r e  a re  ove r  twice 

as  m a n y  te rms  in  V o , G (l), a n d  V I. A g a i n , w e  u s e d  th e  a lgebra ic  m a n i p u l a tio n  

p r o g r a m , R E D U C E  vers ion  3 .1 , to  pe r fo rm th e  calculat ion,  a n d  a g a i n  w e  express  

G 1 2 )  as  a  p o w e r  ser ies  in  Jz a n d  a  Four ie r  ser ies  in  &  

G t2 )  =  c  J2zJ2t  2 R e [C,,kl(s)eik~lzei’~ ly] 
m n k X 1  ,,-, 

(4.8)  

-  
w h e r e  th e  s u m m a tio n  lim its c a n  b e  ca lcu la ted  in  a n  a n a l o g o u s  m a n n e r  as  E q s . 

( 3 .7 ) . For  th e  case  o f th e  sex tupo le  per turbat ion:  

- l< m < 5  O < n < 6  
(4 -g )  

O < k < 9  - 6 5 1 5 6 . 

If w e  w e r e  to  s u m  ove r  th e  fu l l  r a n g e  o f e a c h  i ndex  th e r e  w o u l d  b e  ove r  6 ,0 0 0  

..-._  _  -- te rms  in  th e  s u m , b u t th e r e  a re  on ly  8 7  non -ze ro  c o e fficients, C m ,.& 1  ( these a re  

ta b u l a te d  in  A p p e n d i x  A ). Thus  w e  u s e  a  n u m b e r  o f s imp le  ru les  wh ich  c a n  b e  

de r i ved  f rom th e  express ions  fo r  G (l) a n d  V i a n d  f rom th e  fo r m  o f V I: 

1)  n = 2 [9 ]. 

2 )  1  =  0  if n  =  0 . 

3 )  1  is a lways  e v e n . 

4  
k is a lways  e v e n , if m  is e v e n ; 

_ . _  _ T _  k is a lways  o d d , if m  is o d d . 
- . 

_ -  5 )  
k 5  m  +  2 , if m  is e v e n ; 

k 5  m  +  4 , if m  is o d d . 

6 , 1 1 1  5  4 , if m  is e v e n ; 

1 1 1  5  6 , if m  is o d d . 

2 1  



i ,; These rules, which can be implemented quickly and easily, reduce the sum to 97 
. 

terms of which only 10 are zero and therefore unnecessary. 

As in the case of G(l), the coefficients of the series for Gc2), the Cm&l’s, 

need only be calculated once for each step. Since VI contains multiplicative 

combinations of the 1sr type integrals in Eq. (4.4), the coefficients contain double 

integrals of the forms: 

- 

Sf 

132(n,m7P’4f) = 
/ 

b2p~~~~e”“.[~(s)-4b(sf)1131(pl, s)ds 

Si 

and 
8 f 

/ 

" 
I33(n, m, p’, P”, q) = W22Py ~,W+(s)-rb(sf )I x 

Si 

131 (P’, 4131 (P”, s)ds , 

(4.10) 

(4.11) 

..-.._ _ 
_.. 

where p’ and p” are the parameters (n’,m’) and (n”,m”) respectively. The 

number of these integrals needed was reduced by using simple rules derived from 

integrating by parts. In final form the expressions for the coefficients require the 

ten possible 131 integrals, fifty-four I32 integrals, and one hundred and seventy- 

five 133 integrals. 

In the 1-D cases we used REDUCE to perform the integrations analytically 

since the 8 dependence of b2, b3 and p was explicitly specified. When tracking 
..- _T_ 

-,. actual rings, it is more convenient to calculate the integrals numerically. In this 

- case one can specify the ring with an accelerator lattice program such as MAD12 

or COMFORT13 and use the calculated ,8’s etc. to evaluate the integrals. A 

detailed description of the methods we use is given in Appendix C. 
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It is w.orth noting at this point that these integrals can provide useful in- 

formation when designing a lattice. All first order geometric aberrations due to 

the sextupoles will disappear when the 131 integrals are all zero. Likewise all 

aberrations up to fourth order in the sextupole strength will disappear when the 

I32 and 133 integrals are all zero. The 131 integrals will be largest when the phase 

advance between sextupoles, 69, is of the form: 

N!, = 2n7r, 36KPz = 2rm 
(4.12) 

6XP, f 26\k, = 2n7r . 

These are just the sextupole resonances. The 131 integrals can be minimized by 

adjusting the sextupole strengths and their locations. For example, to zero the 

Is1 integrals over N identical cells (N > 3), one can choose the phase advance 

per cell, Q, such that 

..-.._ _ (4.13) _.. 
XPz + 2Qy = 2n2r/N Xi?, - 2Xk, = 2ngr/N 

where nr, n2, and ns are all integers. In this case the integrals can be written: 

[J 1 
N-l 

I31 = ,-WwSf) b2 (s)Pz&eim’+(“)ds x ei(m’e)n . 

first cell n=O 
(4.14) 

The integrals will be zero since the summation of the complex exponential is 

equal to zero. 
>- _Y_ 

-,. When using the superconvergent tracking algorithm, the ring is divided into 

- steps 8i --) Of over which the integrals are calculated. The variables J and 4 

are then evaluated at the end of each step. Since the sextupole strength is a 

P 

discontinuous function of the azimuth around the ring, the errors do not obey 
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Fig. 6. Log plots of errors VS. perturbation strength, b2, 
for 1st and 2nd order tracking. 

..-.._ _ _.. 
the power laws of Eq. (2.19) and Eq. (2.20). The accuracy of the algorithm 

is then a complicated function of the steps chosen. In general one increases the 

accuracy by increasing the number of steps, but we cannot offer any rigorous 

rules for choosing the steps; we simply compared the error for various step sizes 

and then chose one so that it was not possible to visually discern the difference 

between the superconvergent tracking and the ‘exact’ solutions from EPSODE. 

A procedure to estimate the error of the various step sizes is presented later in 

this section. 
>- _T_ 

- ,_. As in the 1-D cases, the performance of the superconvergent tracking algo- 

- rithm was verified by comparing the errors versus the sextupole strength, b2. 

Figure 6 contains plots of errors for both first and second order calculations. As 

before the absolute values were calculated with EPSODE. We compare the two 
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,+.-. tracking methods after calculating twenty points in a test lattice with a single 

sextupole whose strength was varied. The logarithms of the absolute errors for 

& and & are plotted as q and o and the logarithms of the relative errors for Jz 

and Jy are plotted as o and CB respectively. We chose to plot the relative errors 

for Jz and Jy to keep the 4 errors and the J errors on the same scale; the J 

values were of order lo-’ while the 4 values were of order unity. The scales of 

the two plots in Figure 6 are the same, displaying the difference in the slopes of 

the first and second order calculations and the dependence of the errors on b2. As 

described in Section 2, the errors in first order tracking should be proportional 

to (b2)2, while those for the second order should go as (b2)4. It is evident from 

Figure 6 that both calculations perform as they should. 

- - 

In testing the 1-D cases, the dependence of the errors on Ad, the step size, 

was also checked. It was not possible to do this for our 2-D program because 

each magnet is treated as a unit which can be concatenated with others, but not 

subdivided. Since, in general, adjacent sextupoles have neither the same strength 

nor the same values of pZ or &, the integrals forming G(l), Eq. (2.11), are not 

linear functions of A8. The errors decrease with A8, but the values oscillate 

within a decreasing envelope and thus we were not able to explicitly show the 

..-.._ _ -- 

power law dependence. 

The fact that the errors do not obey a power law dependance on A8 makes it 

more difficult to estimate the error on any given turn. For most typical sextupole 

--__ configurations the error when tracking with one step per magnet is very close to 

the computer accuracy and thus can be used as an exact solution. A more 

accurate result can be obtained using the power law dependance on Ad if all of 

the magnets in the lattice with a sextupole field are divided in half so there are 

_. _Y_ 

- 
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q& 1 0.254 x 1O-3 ) 0.266 x 1O-3 16.05 x lO-61 

Jz I-O.858 x IO-“1 -0.951 x lO-1o1 7.47 x 1O-61 

cpy -0.371x 1o-4 -0.364 x 1O-4 3.59 x 1O-7 

JY -0.147x 10-g -0.163 x lo-' 7.79 x~O-~ 

Table 1. Error estimates of 2nd order tracking 

- 
two identical adjacent magnets. Now if one compares the results of tracking with 

steps of half a magnet to that with steps of the full magnets, one can get an 
- 

accurate estimate of the error using Eq. (2.21): 

(4.15) 

where fr and fii2 are the values of Jz,y or c&, for steps of a full magnet and a 

half magnet respectively. 

We used this procedure to estimate the errors of tracking 200 turns of the 

SSCerr lattice, described in the next section and listed in Apendix B. The results 

are listed in Table 1. The ‘Est. Diff.’ column, calculated using Eq. (4.15), lists 

the estimated difference between the exact values and results of tracking with one 

step per magnet, and the ‘True Diff.’ values were found by comparing tracking 

with results from EPSODE. The relative error is the error between the value 
_T_ -- 

-AT- found by adding the estimated difference to the tracking result and the value 

- from EPSODE. The difference between the actual error and our estimates was 

less than 10% in each case, and as can be seen, the solution found by adding the 

estimated difference to the tracking data is very close to the exact solution. 
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Fig. 7. Relative error us. turn number in 2nd order tracking of SSCerr. 

..-.._ _ _.. 
The disadvantageof this method is that it is slow. To arrive at the estimate we 

had to track the lattice with 56 steps and with 112 steps per turn when we usually 

use 4. Such error estimates are useful to see how accurate a choice of step size is 

over a small number of turns and then extrapolate the error to a larger number 

of steps. The extrapolation is difficult since the error does not depend linearly on 

the number of turns. However, on the cases we tested, the enuelope of the error 

is approximately a linear function of the number of turns and can be estimated 

from the envelope of the first 200 turns. Figure 7 is a plot of the relative error of 
..- _Y_ 

---- Jz for the SSCerr lattice with initial conditions (J,, Jy) = (4. x 10m7, 4. x 10s7) 

- and (h, &) = (WO.0) with 4 steps per turn. The error of Jz was larger than 

that of Jy, &, and q& in this case. 

In Figure 8 we compare the results of second order tracking with the dif- 
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..-._ _ _.. 
ferential equation solver, EPSODE. The lattice used was SSCerr which is de- 

scribed in the next section and listed in Appendix B. With initial conditions of 

(J,, Jy) = (4.0 x 10-7,0.0) and (&, &,) = (O.O,O.O), the distortion in Jz was 

about 20% of the mean amplitude. Note that since Jy = 0.0, this has one degree 

of freedom only, and the plots are of Jz vs. &. The results from the supercon- 

vergent tracking are plotted as dots and the results from EPSODE are plotted 

as crosses. The plot on the right is a blow-up of the box outlined in the left-hand 

plot; obviously the difference between the two is very small. We used four steps 
A- _T_ 

-es. per turn of the lattice, and the non-optimized superconvergent tracking program 

- ran roughly 30 times faster than EPSODE. 

- 

- 
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- 

Fig. 9. 2nd order tracking of SSCerr: Jz = 4. x 10-7, Jy = 0.0, 
& = &, = 0.0 and the tunes are: u, = 2.265,~~ = 2.285. 

5. TRACKING THE SSC14 
..-._ _ _.. 

In this section we use the 2-D program to track a section of the SSC (Super- 

conducting Super Collider) arcs. We take fourteen arc cells of the form: QD, SD, 

BEND, QF, SF, BEND, where the symbol QD represents a defocusing quadrupole 

magnet, SD is a defocusing sextupole, QF is a focusing quadrupole, SF is a fo- 

cusing sextupole, and BEND represents five sequential bending magnets which 

we concatenated into one bend with the same total length and bending angle. 

The accelerator design program MAD was then used to adjust the quadrupole 
*- -27. 

--F strengths to fit the appropriate fractional SSC tunes, u, = .265 and L+, = .285. 

_- The phase advance per cell for the SSC is specified to be sixty degrees, thus we 

use Vz = 2.265 and vY = 2.285 for the 14 cells. The MAD input deck of our 

lattice, called SSC, is listed in Appendix B. Starting with the nominal lattice 
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,; 
we add random sextupole error fields to the bend magnets where the RMS field 

strength was chosen to be the order of the specification in the SSC design hand- 

book: K2,ms = 1.9786 x 10e4rnm3. Note the units here are the units used in 

MAD not the units of the SSC specifications. The set of random fields used had 

K2 rms = 1.873 x 10m4rnm3 and K2,,, = 2.520 x 10-5m-3. This lattice is called 

SSCerr and is also listed in Appendix B. 

Figure 9 is a plot of Jz versus 4= and 4y generated with the second order su- 

perconvergent tracking program. The initial values are ( Jz, Jy) = (4. x 10m7, 0.0) 

and (4z,4y) = (0.0,O.O). The initial value of Jz corresponds to a displacement 

ofAx= 1.6 cm, calculated using /3 = 333 m. Note that the initial values are the 

same as in Figure 8, but in Figure 8 Jz was plotted against 4= while here we plot 

Jz versus dz and 4y. 

The meshes are created by ruling the two-dimensional surfaces on which 

the data points lie. Typically it takes about ten thousand points to sufficiently 

populate the entire 2-D surface so that a 40 x 40 mesh can be generated. The 

existence of the surface (a 2-torus) reflects the presence of the two invariants in 

a (nearly) integrable system and the fact that all of the data points evolve from 

the same initial state.8 In Figure 8 it is not necessary to display the data in this 

manner; however, in general the X and Y motions are coupled, making it very 

hard to interpret projections on the (J,,4,) or (Jy,4y) planes. See Figures 11 

..-._ _ _.. 

_. and 12 for comparison. Figure 11 is a plot of two mesh surfaces ( Jz, 4z, 4y) and 
_Y_ 

--+- ( Jy , 4z, 4y) while F’g 1 ure 12 contains the projections of the same data onto the 

_- (Jz,4,) and (Jy,4y) PI anes. Finally we note that in all of the mesh surface plots 

displayed, the scales are set such that the origin is at J = 4z = 4y = 0.0. 

Figures 10 and 11 are plots of tracking SSC and SSCerr with the same initial 

30 



- 

i ,; 

. 

..-._ . 
_.. 

. . - 

Fig. 10. 2nd order tracking of SSC: Jz = 4. x 10-7, Ja, = 4. x 10-7. 

Fig. 11. 2nd order tracking of SSCerr: Jz = 4. x 10m7, J, = 4. x 10m7. 
The same initial conditions as Figure 10. 
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conditions: (J,, Jy) = (4. x 10w7,4. x 10A7) and (4z, 4y) = (0.0,O.O). In both 

figures the left-hand plot is of Jz versus 4z and 4y, while the plot on the right 

is of Jy versus the two 4 variables. The large distortions in Figure 11 are a 

result of the relatively small sextupole errors added to the bending magnets. 

Figure 10 was generated using 2 steps per turn of the ring while 4 steps were 

used in creating Figure 11, thus in both cases 14 sextupole field magnets were 

concatenated in each step. When calculating the data for Figure 10, the 2nd 

order superconvergent tracking took 0.023 sec./point on an IBM 370. This is 

roughly 30 times faster than EPSODE. In comparison, the data for Figure 11 

was generated at a rate of 0.040 sec./point while EPSODE was more than 40 

times slower. The decrease in speed of EPSODE when tracking the SSCerr 

.- lattice is a result of tracking through the sextupole fields in the bend magnets. 

Note that these times are given as reference points; the superconvergent tracking 

.algorithm has not been optimized in ways other than described with regards to 

the summation of Gc2), th e second order generating function. For example, we 

use a simple iteration method to solve the implicit equations for 4 which takes 

roughly 8 iterations for each order in each dimension. Obviously there are more 

efficient methods of solving these equations. 

- 

..-._ _ _.. 

Figure 12 contains plots of tracking SSCerr with ( Jz, Jy) = (4. x 10m7, 4. x 

10m7) and (4z, 4y) = (O.O,O.O), th e same as Figure 11 except that the left plot is 

a projection of J; onto the ( Jz, 4z) pl ane and right plot 1s the projection of Jy 
*- _=_ 

--- onto the ( Jy, 4y) pl ane. It is included to show the advantages of displaying data 

_- in the form of projected 2-D surfaces. 

Finally, Figures 13 and 14 are invariant surfaces calculated with first order 

perturbation theory of the SSC and SSCerr lattices for the same initial conditions 
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Fig. 12. 2nd order tracking of SSCerr: Jz = 4. x 10e7, J, = 4. x 10w7. 
The data plotted is the same as in Figure 11. 

..- - _ 
_.. 

as Figures 10 and 11. The invariant surfaces from 1st order perturbation theory 

are calculated by the program since the necessary integrals can be found from the 

integrals calculated for the 1st order superconvergent tracking. Appendix D de- 

scribes the details of the invariant surface calculations. Figure 15 is a comparison 

of the 1st order invariant surface calculation and the 2nd order superconvergent 

tracking with one degree of freedom. The dots are the tracking while the solid 

curve is the invariant surface. Obviously there is a large-discrepancy. The two 
>- _T_ 

icp techniques converge, as they should, as the sextupole strength is reduced. 
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. 

Fig. 13. Invariant surface of SSC: Jz = 4. x 10-7, Jar = 4. x UT-~. 
Same initial conditions as Figures 10 and 11. 

Fig. 14. Invariant surface of SSCerr: Jz = 4. x 10w7, Jy = 4. x 10p7. 
Same initial conditions as Figures 10 and 11. 
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4.25 

Fig. 15. Comparison of 2nd order tracking us. 1st order invariant surface. 

..- - _ 6. DISCUSSION _.. 

In this paper we have introduced a new tracking algorithm to track a par- 

ticle through an accelerator lattice. Our method is closely tied to the analytic 

techniques used to calculate invariant surfaces. Some of the advantages of this 

algorithm over more conventional methods are that: (1) many elements can be 

concatenated and tracked in a single step, (2) long elements such as error fields 

in bending magnets are easily handled, (3) ‘t 1 is relatively fast, i.e. useful for the -rL 
>- _T_ 

---.. study of long term stability, and (4) the method is self checking in that one can 

_- test for convergence simply by reducing the step size. 

We illustrated the technique with two test cases in one degree of freedom 

and then treated the case of two degrees of freedom when tracking an arbitrary 
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,a-. accelerator lattice with sextupoles. In both cases we used REDUCE to perform 
. 

the analytic manipulations since the expressions become very complicated. This 

has the advantage of eliminating mistakes when transcribing the expressions to 

Fortran routines. After demonstrating that the algorithm performed correctly in 

both one and two degrees of freedom, it was used to track a segment of the SSC 

arcs as an example. 

One of the problems with superconducting magnets is that it is harder to 

control the multipole error fields since the field shape is strongly determined by 

- the conductor placement. Therefore, we compared the SSC with random field - 

errors to the SSC without. We used two lattices of 14 arc cells, one with random 

sextupole errors in the bending magnets where the RMS field strength was taken 

from the SSC Parameter List,14 and one without bending magnet errors. It was 

found that while the sextupole magnets alone did not disturb the orbit much, 

the addition of the random errors to the bends caused some large distortions. 

In studying the case of two degrees of freedom we found it quite useful to 

use a new technique of displaying the tracking data which was first introduced 

in Ref. 8. By displaying the data in perspective as shown in Figs. 9, 10, and 

11, it is possible to untangle the invariant surfaces. In an integrable system the 

motion will always lie on a surface in these perspective plots. Large scale chaotic 

behavior can thus be viewed as departures from the surface. In the cases shown 

*- _=_ 
here the data was ruled to guide the eye; however, this is not essential. 

Finally, we should explain what is meant by calling the algorithm relatively 

- fast. We have not performed any serious timing tests against the standard track- 

ing codes because we have not yet attempted to optimize the algorithm. In 

addition since this technique has wide applicability, speed is not always the key 

; 
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issue. We have timed it against EPSODE and a kfck code we wrote which treats 

sextupoles as delta functions. While the algorithm is much faster than EPSODE, 

it is slower than the kick code when tracking the SSC lattice. Of course, our kick 

code cannot be used to track through a lattice with finite length sextupole fields 

such as the SSCerr lattice without either subdividing the magnets or using a 

higher order symplectic integration technique. 

To conclude, we have added yet another tool to the growing arsenal of tracking 

algorithms which are useful for understanding nonlinear effects in storage rings 

and transport lines. The ultimate utility of superconvergent tracking can be 

tested only by further detailed application to various problems in the tracking of 

particle beams. 

..- - . 
_.. 
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,; . . - APPENDIX A ,c 
. 

A List of Non-Zero Elements in Z-D Gt2) Summation 

This is a listing of the non-zero C,,,,(s) coefficients of the second order 
generating function, Gc2), for the 2-D sextupole perturbation 

Gt2) = c JTJj 2Re[CmnLI(S)eik~,ei19~] . 
m n k>O 1 , , - , 

Listing of rn, n, k, and I Subscripts for Non-zero Cm&l’s 

m 
-1 
0 
1 
1 

2 
..- - _ 3 _.. 

3 
4 
4 
5 
5 

n Ic 
6 1 
4 0 
4 1 
4 5 
2 2 
2 1 
2 5 
0 0 
0 4 
0 3 
0 7 

1 
-6 - 6 
-4 - 4 
-6 - 6 
-4 - 4 
-4 - 4 
-6 - 6 
-4 - 4 

0 
0 
0 
0 

m n cc 
-1 6 3 
0 4 2 
1 4 3 
2 2 0 
2 2 4 
3 2 3 
3 2 7 
4 0 2 
5 0 1 
5 0 5 
5 0 9 

1 
-6 - 6 
-4 - 4 
-6 - 6 
-4 - 4 
-2 - 2 
-6 - 6 
-2 - 2 

0 
0 
0 
0 

where all 1 values in a range are even. 
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,; 

. 

. . - APPENDIX B ;: 

MAD Input Decks for SSC and SSCerr 

SSC Deck 

TITLE 

. SSC cell lattice - 14 SSC arc cells w/ concatenated bends 

SBEND, BOl, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 = 0.0 

SBEND, B02, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 = 0.0 

SBEND, B03, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 = 0.0 

SBEND, B04, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 = 0.0 

SBEND, B27, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 = 0.0 

SBEND, B28, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 = 0.0 

QUAD, QF, L = 3.32, Kl = 0.003178 

..- - _ QUAD, QD2, L = 1.66, Kl =-0.003178 
_.. 

SEXT, SF, L = 1.5, K2 = 0.00987 / 1.5 

SEXT, SD, L = 1.5, K2 =-0.01591 / 1.5 

DRIFT, END, L = 0.4 

DRIFT, BPM, L = 0.2 

DRIFT, DSP, L = 3.48 

LINE, CELL (BBl, BB2) = ( QD2, END, BPM, & 
SD, DSP, & 
BBl, & - 

a- _T_ END, QF, END, BPM, & 
--e.. 

SF, DSP, & 
_- BB2, & 

END, QD2 ) 

LINE, CELL14 = (CELL(BO1, B02), CELL(B03, B04), CELL(B05, B06), & 

CELL(B07, BOS), CELL(B09, BlO), CELL(B1l, B12), & 
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,c-. . . - CELL(B13, B14), CELL(B15, B16), CELL(B17, BlS), & 

. CELL(B19, B20), CELL(B21, B22), CELL(B23, B24), & 
CELL(B25, B26), CELL(B27, B28) ) 

CELL, CELL14 

VARY, QDP[Kl], STEP = 1.E6 

VARY, QF[Kl], STEP = 1.E6 

. CONSTRAI, #E, MUX = 2.265, MUY = 2.285 

MIGRAD 

ENDMATCH 

- USE, CELL14 

PRINT, CELL14[ l] 

TWISS, LINE = CELL14, TAPE 

STOP 
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,c-. SSCerr Deck 

TITLE 

SSCerr cell lattice with bend errors: Ave=2.520e-5 Rms=l.S73e-4 

SBEND, BOl, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 = 6.0754E5 

SBEND, B02, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 =-2.5014E4 

SBEND, B03, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 = 1.59573-5 

SBEND, B04, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 =-2.19173-4 

SBEND, B05, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 = 1.7396E4 

SBEND, B06, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 = 2.16603-5 

SBEND, B07, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 =-4.33073-4 

SBEND, BOS, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 =-1.51933-4 

SBEND, B09, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 = 7.0427E5 

SBEND, B24, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 =-9.89153-5 

SBEND, B25, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 = 1.1680E4 

SBEND, B26, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 =-1.0955E4 
..- - _ 
-. SBEND, B27, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 =-1.11753-4 

SBEND, B28, L = 5 * 17.34, ANGLE = 5 * 17.34 / 10108.0, K2 = 1.2723E4 

<The rest of the deck is the same as the SSC deck.> 

Note MAD vers 6.0 allows one to generate random errbr fields for various *- _=_ magnets during the run rather than externally as we did. --e.. 
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APPENDIX C, 

Calculation of 131, 132, and 133 Integrals 

When implementing the tracking algorithm, described in Section 4, integrals 
of the forms 131, 132, and 133, Eqs. (4.4), (4.10), and (4.11) respectively, must 
be calculated. These integrals depend upon the parameters bz (s), pZ (s), &(s), 
h(s), and &(s) h’ h w rc are specified by the configuration of the ring lattice. We 
pass this information to the program in the form of a table of Twiss parameters. 
Accelerator programs, such as MADf2 are used to generate such a table for a 
specific configuration. Initially, the integrals are calculated over each individual 
magnet and saved in a file. When tracking, the ring is subdivided into steps, 
containing one or more magnets, to reduce errors. The integrals over each magnet 
are then added together to form integrals over the steps. The coefficients of the 
series for G(l) and Gc21, Eqs. (4.3) and (4.8), are calculated from these integrals. 
Because the coefficients are periodic they only need to be calculated once for each 
step. 

..-._ _ -. 

Once the lattice is specified, the integrals are calculated numerically over 
each individual magnet, taking each magnet to be a single step about the ring. 
If a magnet has zero length, the strength parameter b2 is assumed to be the 
integrated strength and the integral is set equal to the integrand. Otherwise, 
Simpson’s l/3 integration rule is used: 

8 f 

131(Sf, Si) = 
J 

f(q, s)ds 

Si 

= $f( Sf9 4 + 4f(“f, 31) + 2f(Sf, s2) + * - - 

+ 2f (Sf 44 + 4f(Sf, sn-1) + f(sf, sf)] + O(As4.) 
where 

*- _T_ 
As = Sf -si* 

--.F.. N ’ 
sl =si+As; ..- 

- 

(Cl) 

Note that the integrand contains a phase factor which depends upon the final 
point of the step, sf. The values of ,8(s) and $(s) are calculated from the values 
of /3, Q(, and $ at the end of the magnet, s = sf, using the expression for the 
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,z.- drift space--beta function: 

P(s) = Pf - 2&f (s - Sf) + [ 1 2 (s - Sf)2 

+k4 = $f + tan-l pp _ of (s _ Sf) [ 
ts - Sf) 1 

W) 

where a(s) = -p’(s)/2 and Pf, o!f, and +f are the /3, CX, and + values at s = sf. 
The expression for the horizontal beta function in a bending magnet is 

D(s) = Pf - afPsin(2(s - sf)/p) + 
[ 
( *g)p2 - pf] sin((s - sf)/p)2 pf 

w 
$(s) = $f + tan-l 

[ 
PW - sf UP) 

Pf cos((s - sf)/p) - afPsin((s - sf)/p) 1 
where p is the bending radius. The vertical beta function behaves as if in a drift. 

The forms of the I32 and 133 integrals are similar to the single integrals, and 
they are evaluated in the same manner. The intermediate values of 131, needed 
when evaluating the integrands, are calculated using Simpson’s l/3 rule and a 
single panel three point rule: 

= $5f(sf 3 sd + 8f(sf, R) - f(sf, sz)] + O(As4) 
w 

where 

Note that the integrand still depends upon sf, the final point in the step, although 
the limits of the integral are si and sr. 

The integrals are stored in arrays as they are calculated and then written 
>- _=_ to a file for subsequent retrieval. There are ten 131 integrals, one hundred I32 

--r-. integrals, and one hundred and seventy-five 133 integrals to be calculated for each 
sextupole magnet. Note that although only fifty-four I32 integrals are needed to _- 
calculate the coefficients, others are needed when combining the 133 integrals 
into steps. The speed of access is not of concern for the integrals, they are only 
accessed to calculate the coefficients of the series for G(l) and Gt2), and so a 
simple indexing method is used. 

t 
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i ,; In the case of the sextupole perturbation there are only ten possible values 
. for the three parameter group (n,mz,my): (l,-l,-2), (l,-l,O), (l,-1,2), (l,l,-2), 

(l,l,O), (1,1,2), (3,-3,0), (3,-l,O), (3,1,0), (3,3,0). A unique index between 0 and 
9 is found from: 

Indez(n, m) = 
n(5 - m,) + 4m, + my 

2 PI 

This scheme leads to 100 spaces per magnet for the double integrals and 1000 for 
the triple. Additional space is saved when storing the triple integrals by using 
a’one dimensional array 1000 elements long to convert the initial index, a value 
between 0 and 999, to an index between 1 and 175. 

The ring is subdivided into steps to reduce the errors when tracking. The 
integrals which were initially calculated over the individual magnets, must be 
combined to form integrals over the steps. Unfortunately, the combining is com- 
plicated by the phase factor, e-im’$(sf), appearing in the integrands. The inte- 
grals are combined using the recursive relations: 

- 

~31(P,Sn,So) = ~31(PA,%-1) 

+ e~m.[rP(s~-l)-~(s~)l131 (p, snml, so) ( w 

..-._ _ 
- 

I32(P, P’ ,%,sO) = 132(P,P’,%,%-1) 

+ ,i(m+m’).[~(sn-l)-cP(s,)l~32(p, p’, snml, so) 

+ eim”[~(s~-1)-3(s~)l131 (p, sn, sn-1)131 (p’, sn-l, so) 

(C7) - . . 

~33(P,P’,P”,wO) = 133(P,P’,P”,%,%-l) 

+ ei(m+m’+m”).[~(8~-l)-~(S~)l133(P, pf, p’f, sn-l, so) 

+ eim”[rp(s,-1)-~(sn)l~32(p, p”, sn, sn-1)131 (p’, Sri-l, So) 

+ ,im”‘[~(s.-1)-tb(sn)1~32(p, p’, Sn, Sn-I)131 (p”, Sn-1, So) 

+ ,i(m’+m”).[~(s,-l)-rb(s,)l x 

(C8) 

131 (P , sn, %431 (P’, Sn-l,S0)~31(P”,s,-1,so) 

where I(sr , se) is an integral over the first magnet, etc. These values are then 
_._ used to calculated the coefficients for the G(l) and Gc21 summations, Eqs. (4.3) 

and (4.8). 
_- 
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. . - APPENDIX D, 

CALCULATION OF INVARIANTS IN FIRST ORDER 
PERTURBATION THEORY 

The goal when calculating invariant curves, is to find surfaces in phase space 
which are invariant over time. This is done by solving for a transformation 
which leaves the Hamiltonian as a function of the action only. From Hamilton’s 
equations, the action is then a constant of the motion. The invariant surfaces can 
be found as a function of the constant action by reversing the transformation. 
For a review of this technique see Ref. 4. 

Suppose that the problem is described by a Hamiltonian of the form: 

II = Ho(J) + V(4, J,fl> , w 

where V(q5, J, 0) is periodic in 4 and 8, and has a zero average with respect to 
them: 

2r 2n 

d$V@,J,8) =0 . ( w 
0 0 

_-_ - . _.. If V has a non-zero average, the average can be absorbed into HO. 

Similar to the case of superconvergent tracking, we use canonical transforma- 
tions to remove the perturbation to first order. The generating function, which 
we will denote by 5, must be periodic in 8. The new Hamiltonian is given by: 

Hl = Ho(J1+ Sq$) + vO(4, Jl + i+,e) + &I , w 

where the new variables, C#Q and Jl, are calculated from $ using Eqs. (2.3) and 
(2.4). HI can be re-written as: 

>- _=_ 
--.F.. 

_- 

HI = Ho(Jl) + v~,(J1)$$/2 + --- - 

+ b(Jl)Sq$ + Se + WI4 Jl, 011 

+ [v(4,, ~~ + 8+,e) - vb4Jl,~)l , 

P4 

where y(Jl) is the tune of the unperturbed problem: dHo(Jl)/dJl. If the ex- 
pression in the first bracket is set to zero the new perturbation will be of order 
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* ,; c2. Since both 9 and V are periodic in &, they can be Fourier analyzed, and 
. the equations for the Fourier coefficients of 9 are: 

&lrn irn. v(JI)gm + ae + vm = 0 . P5) 

These equations are identical to the equations for G(l), except we will look for 
solutions periodic in 8, rather than one which goes to 0 as 9 + Be. The periodic 
solution for gm is: 

f9+27r 

J 
eim’Y(8’-o-n)vm( Jl, (j’)d(j’ . WI 

8 

where gm and 21, are the mth coefficients of the Fourier series for 5 and V in 
4 0. 

Now the new Hamiltonian becomes: 

- 

IT1 = Ho(Jr) + [vJ1 * $40 + $4, - vJ~ ’ i$,/2l + ” ’ 

s &,(JI) + V’(&, Jd) - 
PI 

..-_ - _ -. 

It is a function of J1 to first order. As in the case of superconvergent tracking, 
we can now return to Eq. (Dl), and repeat the process. After n steps, the 
Hamiltonian will a function of J, plus a perturbation of order e2” and the action, 
J,, will be a constant plus an error of order c2”. By reversing the transformation, 
the invariant surfaces can be calculated from a given J, with an error O(E~“). 

The form of $1 is very similar to that of G(l). Using Eq. (D6) $1 is: 

fi3 
$1 = - -&Z [e3+‘Iil(3,3,0) + 3e”+zIi1(3, 1,0) + CC] 

a+24Y)I’ 31 (1 9 1 3 2) + 2eidzI’ 31 (1 7 1 7 0) Pw 

+ e”(4~-2dy)I~l(l, 1, -2) + CC] . 

>- _=_ 

_- 

where 4 

Si+2* 

I&m,4 = 2sinim y 
/ 

If. 
W: Py ~,im~[~(3’)-~(3i)-V*lds’ . 

Pw . 
Si 

Using the definition of the tune, u: 27ru = T/+(C) = yd~‘/&(s’), where C is the 
0 
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i ,c-. circumference of the ring, IA1 can be written in terms of 131 (Eq. (4.4)): 
. 

Ii1 (n, m, 4 = 2si~~“mu131(n,m,si + C) . (DlO) 

Thus the integrals needed can be easily calculated from results which we already 
have. 

To calculate the invariant curves, the ‘invariant’ action is solved for implicitly 
from the initial conditions in the (40, JO) phase space: 

JI = Ji - $&, JIGI. + C) . W) 

From Hamilton’s equations, Jr is invariant with an error of order c2. The invari- 
ant curve is plotted by varying 4 and calculating JO: 

Jo = JI + S&i, JI,SI. + C) + O(c2) . (Dl2) 
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