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1. Introduction 

Luminosity and tune shift have been the subject of numerous papers and talks 
since the invention of electron-positron storage rings. In this paper we derive an 
equation for luminosity and one for the linear tune shift based upon two simple 
assumptions. The first assumption is that the storage ring be designed such that 
the linear tune shifts in the two transverse planes, x  and y, are equal; i.e., that 
Au, = Au,. The second assumption is that the max imum acceptable disruption 
angle, 00, of the colliding beams is approximately equal to the “natural” beam 
spread, 0~, of the stored colliding beams at the interaction point. 

,m 

W e  will first derive the results for round beams having transverse gaussian . . - . distribution functions and then extend the derivation to beams having elliptical 
cross sections. W e  will then compare our theoretical results with the observed 
results in several operating machines and with the “design” parameters of three 2  
new machines; namely KEK, BEPC, and LEP. 

-- - 2. Theory 

TUNE SHIFT 

The linear beam-beam tune shift parameters Av, and Au, are defined by 
the equations ‘I1 

(1) 
and - -- 
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:: N is the number of particles in each stored bunch, p; and flz are the lattice beta 
functions at the interaction point. cry = JG,oz = d= where Q, and cz are 
the emittances of the stored, colliding beams in the y and x planes respectively. 

e2 7-e = - is the classical electron radius and 7 = Eo 
mc2 mc2 ’ -- 

If the tune shifts in the two planes are equal, i.e., Au, = Au, then it follows 
. from Eq. (1) and Eq. (2) that 

-fi=fi=eB (3) 

where $J-J is the angular beam spread of the stored colliding beams at the inter- 
action point. Note that it is the same in the x and y phase pIames. 

DISRUPTION ANGLE 

The maximum distruption angle, 80, resulting from two round beams, with 
gaussian cross sections colliding with each other has been given by Hollebeek and 

-Minten! The result is 
- . 

,a 

eD z Nr, 
70R 

(4 

where for a round beam cz = cy = CR, pz = p; = pg and (TR = d=. Equat- 
.-- - ing Eqs. (3) and (4), we implement our second assumption that the maximum 

acceptable disruption angle, 80, of the colliding beams is approximately equal to 
the natural angular beam spread of the stored beams, flB. The result is 

or 
NT, - = KCR 

7 
(5) 

-foFthe round beam case. K is a factor to be determined by comparing our 
theoretical results with the observed luminosity in operating colliders. 
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Substituting Eq. (5) intoEq. (1) or (2), we find the interesting result for the 
linear tune shift 

AuR=% 

-- 

This result for round beams has been mentioned by Pellegrini”’ in a 1972 review 
article on colliding beam accelerators. ,m 

The corresponding equation for the luminosity of two colliding round gaussian 
beams may now 
The result is 

.- 

or 

be derived using Eq. (5) and the usual definition of luminosity. 

where (Nfb) = 6.10** I, 7 = 3 and rc = --$ is the classical electron radius. 
N is the number of particles per bunch, j is the circulating frequency of the 
machine, b is the number of bunches in each beam and I is the total stored beam 
current in each beam. Substituting numbers into Eq. (7), we have 

. . - . 

L: k: 3.3 . 103’ (F)cm-2sec-1 
R 

(8) 
5 

where I is in amps, Eo in GeV and ,B;i in meters. 

-. - ELLIPTICAL BEAM CROSS SECTIONS 

If the colliding beams have elliptical cross, sections, then we must modify the 
equations to take this into account. To do this, we assume that the elliptical 
beams have the same cross sectional area and charge density as the round beams 
such that ozoy = ai, and m = eR. Given this assumption, it has been 
determined by computer simulations “I that the maximum disruption angle for 
the “equivalent” elliptical beams is essentially the same as that for the round 
beams. Specifically if 

- -- 

and for 

Qz 4 
( > - =- 
QY 1 

, then eD w 0.980 (round) 

- 
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02 
( > 

6 - =-- 
1' then 00 B 

QY 
0.8580 round) 

Substituting eR = ,/z& into Eq. (S), we arrive at the result 

- (8) I 

for colliding beams having elliptical cross sections. We are now in a position to 
derive expressions for the luminosity and tune shift. 

For elliptical gaussian beams with sigmas of oz and oy, we define the lumi- 
nosity as 

L 
N2jb 

= 4mTzuy 

and substitute the results of Eq. (8), yielding 

Note that Eq. (9) reduces to Eq. (7) if pi = p; = & as it should. 

As with Eq. (7) ‘f I we evaluate the constants and note that (Njb) E 6.lO'*I, =- 
we obtain : 

-- - 

1: = 3.3. 1031 IEoK cms2secm1 
dim 

for the predicted luminosity of electron-positron storage rings. Again I is the 
stored current in each beam measured in amps, Eo is the energy in GeV, and & 
and /3; are the x and y beta functions measured in meters. K is to be determined 
by comparison with operating machines. The results of these comparisons are 
tabulated in Table 1. 
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Table 1 
Luminosity of Storage Rings* 

- 

. . 
- . 

L = N2fb 
47ruzuy = 

(Nf b)rK 
4me&#2 - 

- 3.3 -103'$F cm-2sec-1 
z ; 

I(amps), Eo(GeV), p(meters) 

Machine IMAX Eo B; 

b4 (GeV) (cm) (1030cm-2sec-1) K 

VEPP-2M 

AC0 

ADONE 

SPEAR 

DC1 

VEPP-i 

DORIS II 

CESR 

PETRA 

PEP 

20 

35 

31 

16.4 

24 

12 

45 

18 

11.4 

24.5 

0.51 5.8 

0.51 400 

1.5 337 

1.89 10 

0.8 218 

4.7 12 

5.0 5 

5.28 3 

11.0 9 

14.5 11 

2.6 1.2 0.53 

0.5 0.1 0.34 

1.6 0.2 0.7 

3.5 2.0 0.68 

1.0 0.07 q.24 

5.0 6.0 1.93 

3.6 30.0 0.73 

6.5 15.0 0.93 

3.8 8.0 0.66 

5.2 32.3 1.58 

LEP (Design) 3.0 55 7 5 16 1.0 

BEPC(Design) 66 2.8 10 3.6 17 1.0 

KEK (Design) 6 28 10 4 14 1.0 

,m 

z- 

* J.T. Seeman, SLAC-PUB-3825. 
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BEAM-BEAM TUNE SHIFT . 

Substituting the results of Eqs. (8) and (3) into either of Eq. (1) or Eq. (2), 
we obtain the expression for the linear tune shift 

- 
(11) 

. _-. 

This reduces to Eq. (6) for the tune shift in round gaussian beams if pi = 
/3; as is expected. Note that. except for the factor K, the tune shift is just a 
geometric property of the aspect ratio of the elliptical cross section measured at 
the interaction point. All of the “interesting” physics seems to be contained in 
the factor-K. 

COMPARISON WITH EXPERIMENTS 

We note from the definition of K  (Eq. 5) that it is the ratio of the maximum 

e disruption angle, 80, that a collider will accept to the natural angular spread, 
flB, of the stored, colliding beams at the interaction point. No attempt has 
been made to determine K analytically. However, by comparing the predicted 

-luminosities and tune shifts as determined by extensive computer simulations for 
. . - the.recently designed machines LEP, KEK, and BEPC;we find that K  = 1 is in 

good agreement with all of these %ew” designs. It remains to be seen what the 
experimental value of K  will be for these colliders! 

A  value of K  =” 0.7 predicts the observed luminosity for Adone, Spear, Doris 
II, and Petra. For CESR we find K  S 0.9. The large values for PEP and VEPP- 

-- - 4 are not understood at this time. We cannot evaluate the results for DC1 and 
AC0 since they do not satisfy our first design condition that Au, = Avar. The 
low K value for VEPP-2M is also not understood at this time. 
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