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ABSTRACT 

The Coulomb potential is derived in “one space - one time” dimension, and 

introduced into Dirac and Klein-Gordon equations. The equations are solved, 

and somewhat surprising result - nonexistence of bound state solutions in the 

lower dimension - discussed and identified as another fine example of the “Klein 
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1. Introduction 

The success and quick acceptance of the Quantum Mechanics (QM) in both 

nonrelativistic and relativistic form, and later of Quantum Field Theory (QFTh), 

is to a good degree related to their successfulness in the analyses of hydrogen. 

It is mainly through the repetition of hydrogen related calculations from our 

textbooks that we gain a confidence in the sequence 

Nonrelativistic QM -+ Relativistic QM --) Quantum Field Theory . (l-1) 

- 

Indeed, the Schtidinger (nonrelativistic) equation correctly predicts rncz’ terms 

in hydrogen spectrum, the Dirac (relativistic) equation gives successfully the fine 

structure (order ma4 ), while QFTh can be used to calculate energy terms to 

even higher orders PJI. ( H ere, m denotes the mass of electron, and (Y is the fine 

structure constant). 

- 

However, had we lived in an environment in which e.g., positronium and not 

hydrogen was readily available,. the history of physics would most likely have 

been very different. The positronium is a bound state of an electron and a 

positron 13-‘1, with essentially nonrelativistic spectrum. One can again try to 

use the Dirac equation as a middle step in an analysis, hoping that this will 

reveal fine corrections to energy levels. If the mass of the electron in the Dirac 

equation for hydrogen is simply replaced by the reduced mass m/2, and the 

proton mass changed to m, the expression for the energy becomes 

Ez,,,, = 2mc2 - s - cx4mc2 3a4mc2 
2n3(2J + 1) ’ 1Gn4 + ‘b6) ’ (1.2) 

_ . 

_ -- 

n is the principal quantum number. In hydrogen J, L, S indicated angular mo- 

mentum, orbital angular momentum and spin of the electron , respectively. In 

positronium one might try an interpretation in which the above quantum num- 

bers denote the tatal angular momentum, relative orbital angular momentum, 

c 
~-- 

2 



and the total spin of two constituents . Eq. (1.2) then can be compared to the 

,s- experimental results. However, the observed spectrum of parapositronium (a 

state of positronium with total spin 0, and L = J) is to order cy4 given by “I 

Ez,,,, = 2mc2 - 9 - a4mc2 lla4mc2 
2n3(2J + 1) ’ + &ln4 - -- - (1.3) 

We see that Eq. (1.2) d oes not reproduce all o4 terms correctly! The disagree- 

ment between the predictions of the Dirac “reduced mass” equation and the 

observed spectrum is even bigger and more dramatic for orthopositronium (a 

state with S = 1): not only that levels are displaced relative to parapositronium, 

but an additional splitting of magnitude cy4 and depending on projections S, of 

- the total spin appears. Eq. (1.2) 1 c early can not account for such a situation. - 

-- 

It does not take long to understand why the sequence (1.1) is valid for hy- 

drogen but fails for positronium. In hydrogen, radiative corrections, interactions 

of magnetic moments and relativistic corrections due to the recoil, are all of the 

order (m/M) a4mc2 or higher and thus not important if only terms up to order 

a4 are considered. (M stands for mass of proton). On the contrary, no small 

mass ratio appears in positronium (m/M + l), and the relativistic recoil and 

electromagnetic interactions other than the Coulomb attraction induce terms of 

magnitude comparable to Dirac’s a4mc2 terms. Consequently, fine and hyperfine 

structures are of the same order, and mostly due to the spin-orbit and spin-spin 

interactions the spectrum of positronium is considerably more elaborate than the 

one given by Eq. (1.2). W e can conclude that the Dirac approach, though perfect 

(to the order o4 ) for hydrogen, is not particularly useful in analyses of bound 

states with constituents of nearly equal masses. 

In this paper we shall examine a situation in which even the hydrogen presents 

a problem for the Dirac equation. This happens if the dimension of space becomes 

lower than 3. The source of trouble this time is unrelated to obstacles met in 

the analysis of positronium. The problem can most clearly be seen in a study 

of a world with one space and one time degree of freedom. There is no spin 
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or orbital angular momenta, and no magnetic field in 1 + 1 dimension. This 

,s- eliminates- a possibility of spin-related splitting.. Furthermore, the Schrcdinger 

equation with the Coulomb potential, which is attractive but not proportional to 

l/s in 1 + 1 dimension, can be easily solved. The Dirac equation is simpler than 

in 3 + 1 dimensions, and QFTh (k nown as Schwinger massive model) is relatively 

well understood Is’ at least in the “weak coupling” and “strong coupling” limits. 

Nothing so far signals a failure of the sequence (1.1). Still, some surprises are 

waiting for us. 

We shall begin with a brief review of electrodynamics and Dirac’s theory 

in 1 + 1 dimension. In Section 3 the Dirac (and Klein-Gordon) equation with 

Coulomb potential will be solved. Somewhat unexpected result of Section 3 
- will be analysed in Section 4. Two appendices are added: in Appendix A the 

nonrelativistic limit is derived, and Appendix B gives some basic information 

on the parabolic cylinder equation. The present lack of experimental data from 

1 + 1 dimensional universe is regrettable, but - fortunately - will not be a serious 

drawback in what follows. 

2. Life in one dimension 

In a not too likely case of a sudden collapse of two space degrees of freedom, 

the electrodynamics in the resulting one space and one time (1 + 1) dimension 

would be described by only two Maxwell equations, compactly written as 

a,FaP = L jP 
QC2 

(24 

_ . 

_ -- 

The field tensor is defined by F@ = PAP - #Aa , the vector field Aa has 

two components, Aa = ( +U, A ), and the conserved current is ja = (cp,j ), 

a,ja = 0 . Symbol a, stands for the two-vector ( a/a ct ; a/&c ). The metric 

tensor is gee = -911 = 1 , and summation over repeated Lorentz indices is 

understood: ab = a”@g,p = a”bo - alb’. The constant EO appears in the MKS 

system of units and denotes the permittivity of a free space. 
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The gauge transformation Aa --) AQ + PA does not affect equations of 

,c- motion (2.1). A gauge invariant function 

E(z,t) = -cFol = -g - g P-2) 

can be called “electric field” of the theory. Note that there is no room for an- 

other gauge invariant function, and “magnetic field” is therefore absent in 1 + 1 

dimension. In terms of E, Maxwell equations (2.1) read 

i3E 
- LP(z,t) 

aE 
z- - Eo , - = -J&j(z,t) 

at 
. 

- 
(2.3) 

These equations determine the electric field in presence of external charges and 

currents. The solution of system (2.3) is 

+= 
E(v) = $ / dh(s’,t).[@(z-z’)-@(-s+s’)] + G  . 

0 
--oo 

This is a gauge independent expression in which 0 is the Heavyside function, 

and G a constant (in space) background electric fieldl”. G disappears in the 

three-dimensional world, and comes out not to be too important in the study of 

single-particle relativistic equations in one-dimensional space. However, it plays 

a significant role in 1 + 1 dimensional field theory 161 . 

_ . ._T- 

For our later study of hydrogen-like systems we have to determine the static 

potential between two fixed charges. (By imitating the successful procedure from 

the analysis of three-dimensional hydrogen, we neglect all retardation effects and 

velocity dependent contributions to the potential). It will be sufficient to find a 

vector potential Aa of a fixed point charge q at the origin. The correct interaction 

term in relativistic equations is then obtained by using the “minimal coupling” 

._ _- 
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(see later). With p( x’, t) = q 6(x’), Eq. (2.4) gives the electric field 

E(x,t) = & [O(x) - O(-x),j + G . 

While the electric field is unique, it can be generated by various potentials Aa. 

Eq. (2.2) shows that a possible choice is 

U(x, t) = - & 1x1 - Gx , A(x,t) = 0 . 
0 

- 

A3 long = IGI < Iq(/2Eo, the potential (2.6) induces an attractive force between 

particles of opposite charges. As a further simplification, we shall assume that the 

above inequality is satisfied, and neglect the background field thereafter. (This 

will in no way affect the conclusions of the paper). The choice (2.6) with G = 0 

will be referred to as the Coulomb potential. So, the Coulomb potential in 1 + 1 

dimension changes linearly with the distance, giving rise to a constant, infinite- 

range force [‘I. Using terminology from three-dimensional electrodynamics, we 

can say that (2.6) corresponds to both axial (A = 0) and Coulomb (~A/c~x = 0) 

gauge. The gauge transformation may generate Aa for some other gauge. 

-- 

Having found the Coulomb potential, we can proceed by constructing rela- 

tivistic single-particle equations of motion. The Dirac equation for a free fermion 

is - like in 3 + 1 dimension - based on a linearization of the energy relation 

E = c2p2 + m2c4. This requires an introduction of traceless, Hermitian, 2 x 2 

matrices LY and ,B. The Dirac equation for a particle with mass m becomes 

ihg=(Fa& +mc2P )\E(x,t) , P-7) 

where KP(x, t) is a two-component spinor, and Dirac’s matrices satisfy a2 = 

p2 = 1, ap + /3a = 0 . The “standard choice” ( ,0 is diagonal ) in 1 + 1 

dimension is 5 
__ 

_- 

0 1 
cY= ( > 1 0 

, P= ; -4 
( > 

~- 
. (2.8) 

If a fermion has a charge q ‘, and is placed in an external field AQ , the minimal 
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substitution ( aa + d” + f q’ Aa ) should be introduced into the equation of 

,s- motion, Thus we have to replace space and time-derivatives in Eq. (2.7) by 

d d *’ -+-++tQ d a iq’ 
at at h 

-- , z’az h 
A P-9) 

The resulting equation for the Coulomb potential (2.6) will be considered in the 

next section. 

. Another relativistic equation can be constructed following the Klein-Gordon 

procedure. We quantize the theory starting with E2 = c2p2 + m2c4 relation. 

The wave equation becomes 

- 
-h2 g = ( -h2c2 2 + m2c4 ) (a(x, t) 

- 
. (2.10) 

To obtain the equation of motion for a charged particle (charge q’) in an external 

field, the minimal substitution (2.9) again must be used. 

Only a brief sketch of main equations relevant for 1 + 1 dimensional world is 

given above. The reader might wish to study these equations more thoroughly. 

Standard textbooks on quantum mechanics often contain detailed studies of 3 + 1 

dimensional Maxwell, Dirac and Klein-Gordon equations (see e.g., Chapters XX, 

Part 2 and XXI, Part 3 in Ref. 1 ). A simple repetition of the steps from three- 

dimensional space reveals many interesting aspects of the compactified theory, 

and it is funny and instructive to convert as much of the material as possible. 
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3. Dirac and Klein-Gordon equations with Coulomb potential 

From now on we shall neglect all but instantaneous Coulomb interaction 

between two fermions of opposite charges, assume that one of the particles is 

much heavier (“proton”), and then calculate the spectrum of the lighter particle 

(“electron”) with relativistic equations. It should also be noted that most of 

the analysis could be repeated for two particles of nearly equal masses, by using 

the relative coordinates and the reduced mass system. We could hope that the 

procedure would fill a gap between a simple nonrelativistic approach and a more 

complete (and more complicated) QFTh solution. 

- 
When the Coulomb potential U = -qlzl/2co, A = 0 is introduced into the 

Dirac equation for a particle of mass m and charge q’, and a separation of space 

and time coordinates performed by a substitution 

U(X, t) = eeiEtlfi ( ) z: !z; (34 

a system of two coupled equations results. With the standard choice (2.8) for 

Dirac’s matrices, and q’ = -q, one obtains 

$I:+i[-x Ztifhcl I - 
E;;c2]?b2=0 , 

$g+i[-x 23 I - 
E;yc2]$l =o . 

(3.2) 

Eq. (3.2) allows an easy treatment of the nonrelativistic limit (see Appendix A). 

However, for a complete solution it is more convenient to introduce 

Pl = ($‘I+ $2)/h , P2 = ($1 - $2)/d . (3.3) 

_ -- 

Technically, this corresponds to another choice of Dirac’s matrices, the one with 
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a diagonal CY and a real p. Eq. (3.2) then becomes 

3(02=+i5 . 

To solve this system, one must find general solutions in x 5 0 and x 2 0 regions, 

and match them at the boundary so that the wave function and its derivative 

is continuous. We shall look closely at x 2 0 region. (A similar analysis can be 

performed in the other region). 

- The notation is simplified by introduction of a dimensionless coupling con- 

stant A, and a new dimensionless variable y, 

AA- h 
m2 CO c3 , Y=x+&-2E/~ ’ 

-- 

The system (3.4) now becomes (note that -3 d- *IY<cJo), 

&r -+i+--p2 
dy 6 

dm . y -_ 
dy y2=+& 

The elimination of e.g., (~2 from (3.6) finally leads to 

- . 

(3.5) 

P-6) 

w 

The good news is that (3.7) is one of the known second order differential 

equations, called “parabolic cylinder equation”. The general solution can be 
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expressed (see Appendix B) in terms of parabolic cylinder functions D,(Z) : 

i ,c- 

. m(Y) = 7 Di,&e’“/4 )ss 2 D-i-i/A (yesiui4) . (3.8) 

The first equation in (3.6) then gives 

PS(Y) = -7 i D-l+i,A(ye’“/4) + 6 D-ijA(ye-‘r/4) c 
. (3.9) 

7. and 6 above are two arbitrary constants. The bad news is that solutions (3.8) 

and (3.9) can never represent a bound state: although the potential is attractive, 

the Dirac equation allows no hydrogen (and similarly - no positronium) in 1 + 1 

dimension! This claim will be substantiated below. 
- 

Bound states are characterized by normalizable wave functions. Therefore, 
- 

only if a certain choice of 7 , 6 , and E produces a finite value of the integral 

I 
J dY’( lP112 + lP212 ) (3.10) 

when y + oo , we have a bound state. However, the asymptotic behavior of 

D,(z) is known (see Appendix B ) , and one easily finds 
-- 

(pl(y + +oo) = 7 es=/“* exp(-$+&lny) [ 1 + O(y-‘)I , 
(3.11) - 

(p2(y -+ +oo) = 6 ewuj4* exp(+$-glny) [l+ O(y-‘)I . 

Thus regardless of values of constants, the integral (3.10) reduces to 

_ . ._T- 

e-u/2A 
~l712+l42~J dY’ , (3.12) 

and diverges when y + oo . Consequently, the system (3.6) has a solution for 

an arbitrary energy, but does not provide genuine bound states. This answer 

could have been guessed already from the form of equation (3.7): positive y2 

dominates, and prevents any exponentially decaying amplitude at infinity. 
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A different insight comes from the analysis of the Klein-Gordon equation 

i ,c- with the Coulomb potential. After the factorization (a(x, t) = exp(--iEt/h) cp , 

. the Eq. (2.10) with the minimal substitution (2.9) and q’ = -q becomes 

d’+[(g- &-lxl)2-(~)2]u,=o . 
0 

(3.13) 

The equation has a familiar nonrelativistic form. Indeed, with 

E = (E - mc2)(E + mc2) 
2mc2 , V,,,(x) = q2Elxl - ,L;Io2 , 

2mc2Eo 
(3.14) 

Eq. (3.13) can be written as 

- d2p 2m 
dz2 + yp(& - %ff )v3 = 0 

- 
(3.15) 

The effective potential is sketched in Fig. 1. When c = 00 (nonrelativistic limit), 

V eff is truly a confining potential (V,ff + q2 ]x]/2co), but for any finite value of c, 

would-be bound state solutions leak through the potential barrier to continuum. 

It comes as no surprise that bound states are absent in such a potential. The 

formal proof easily follows after an analysis of Eq. (3.13) in the x 2 0 region. 

-- The replacement (3.5) transforms the equation to 

d2p dy2+ (C- +o (3.16) 

and the general solution is 

p(y) = u Di,A-1,&eis'4) + 7 D-;,A-,,,(Ye-iu'4) (3.17) 

With the known asymptotic forms of parabolic cylinder functions, one obtains 5 
__ 

_ -- 

e--n/4A 
[Oexp(-$+~lny-~)+rexp($-J-lny+~)]. P(Y ---) = & 

(3.18) 

Thus regardless of the choice for constants ~,r, the normalization integral di- 

-- 
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verges for large y : 

- 

!I 

J 

Y 
dy ’ IP(Y ‘) I2 - J dy’/y’ + 00 . 

To summarize, we have run into an apparent paradox. The Coulomb poten- 

tial, which is confining for nonrelativistic particles in 1 + 1 dimension, provides 

no bound states when applied to Dirac or Klein-Gordon equation. The equations 

have solutions, but these are not discrete. That happens not only for hydrogen 

atoms with an infinitely heavy source of potential, but also for positronium-like 

systems. However, the last step in sequence (l.l), Schwinger model, again does 

produce 1” bound states! What could have caused the failure of the middle step? 

Could it be that neglected retardation effects and some two-body relativistic 

corrections played such a crucial role in 1 + 1 dimension, though they were unim- 

portant in 3 + 1 dimensions? We shall study these questions more thoroughly in 

the next section. 

- 

4. Paradox resolved; Conclusion 

-- 

_ ..T- 

_ -- 

The object of interest in the previous section were two particles of opposite 

charges in an attractive potential. In hydrogen one of these two particles is 

much heavier than the other, but this comes out not to be a crucial detail. 

When we assumed an unlimited velocity for propagation of signals (i.e., in the 

nonrelativistic limit - see Appendix A), equations of motion revealed an infinite 

set of bound states. The particles became permanently confined in a hydrogen- 

like system characterized by discrete energy levels, and exponentially decaying 

wave functions. However, when we tried to use theories that accommodated 

finite speed of light, we found the following: equations of motion had solutions 

for continuous set of energies, and the probability of finding the particles did 

not fall off with their mutual distance quickly enough to provide bound states. 

In other words, despite the attractive force, the probability of finding these two 

particles infinitely separated, remained finite at all times. 

5 
-- 
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- 

One can try to blame the retardation for this strange result. Maybe, by 

correctly including the time of propagation of the signal from one particle to the 

other, we could reintroduce bound states into the relativistic picture. However, 

the explanation lies somewhere else. After all, the retardation effects do not play 

a crucial role in analyses of three-dimensional objects, so why would they be so 

important in 1 + 1 dimension? 

The real source of troubles is a paradox named after Oscar Klein and for- 

mulated as early as 1929, immediately after the publication of the Dirac theory. 

Since the paradox has a form slightly different from the one usually described in 

textbooks, we shall examine it more closely. An electron in the central potential 

will be considered, but the argument is very similar for two particles analysed in 

the center of mass system. Imagine first a free Dirac’s particle. The equation 
- 

(2.7) has solutions for all energies for which /El 2 mc2 , and there is a “forbid- 

den” band in between. From mathematical point of view, the negative energy 

solutions, E 5 -mc2 , are therefore perfectly acceptable. It is only through the 

‘hole theoryn reinterpretation 11921 of the Dirac equation that states with such 

energies are eliminated: in order to stabilize the vacuum, we say that negative 

continuum is filled up with particles forming the so-called ((Sean. 

The situation changes completely when charges (no matter how small !) are 

Uswitched on”. Regardless of a sign of its energy, the electron becomes attracted 

to the center of the potential, and allowed regions now get separated by a V- 

shaped forbidden region (Fig. 2). Let th e energy of the electron be E = mc2 + E . 

For a free particle, E corresponds to the kinetic energy. In the attractive potential 

(Fig. 2), E represents a sum of kinetic &K, and potential cp energies. If the 

kinetic part is positive, the potential energy has an upper bound and classically, 

the electron is confined to the inner area, 1x1 5 ~E&c(,!? - mc2)/qi . Another 

possibility is to write ,?? = -mc2 + E’, where e ’ is again a sum of two pieces, 

ek + sk. We see that if the potential energy satisfies eb 2 E’, an electron can 

have ef( < 0 (whatever this means), and still keep the positive total energy. 

In other words, a particle previously in the negative continuum (characterized 

i 
--. 
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by negative kinetic energies ek ), can remain in the sea and have e > mc2, 

provided it is far enough from the center, 1x1 2 2coftc(E + mc2)/q2 . Had it 

not be for tunneling, electrons with positive kinetic energies would have always 

remained~isolated from the continuum. Dirac equation would have two kinds of 

clearly separated solutions. One with discrete spectrum and localized within the 

inner allowed region, and the other describing the excited particles from sea, with 

all possible energies and restricted to the outer region. 

. However, due to the quantum tunneling, there is always a possibility of com- 

munication between the two allowed regions. Tunneling occurs for an arbitrary 

energy B > mc2, and one can never be sure where exactly the electron is local- 

ized. Therefore, when we solve the Dirac equation for energies where tunneling 

occurs, we do not obtain two separated solutions. On the contrary, a single, con- 

tinuous wave function emerges, containing information on probability of finding 

the particle in all three regions: inner, “forbidden”, and outer. By no means can 

we distinguish the would-be bound states. Solutions will exist for all energies, 

‘they will not be normalizable, and will have a similar asymptotic behavior im- 

posed by characteristics of the outer region. And this is just what we discovered 

in Section 3. The Klein paradox, which is always related to mixing of states with 

positive and negative kinetic energies in a strong field, is reflected in Section 3 

as an absence of bound state solutions where naively we would expect them PJ . 

In the hole theory the consequence of the above mentioned tunneling is a 

creation of particle-antiparticle pairs. A particle from sea, with an energy E 

(Fig. 2), can e.g., penetrate through the forbidden zone into the central region, 

leaving a hole in the sea. The hole is pushed away from the center of potential, 

and behaves in every respect as an antiparticle. It is this creation of pairs what 

discredits Dirac and Klein-Gordon equations as tools in a description of one- 

dimensional hydrogen and similar bound states. Namely, relativistic equations 

of motion are single-particle equations, and they are meant to cover only the 

situations in which a pulling of particle-antiparticle pairs out of vacuum is sup- 

pressed. In three-dimensional hydrogen for example, a creation of virtual pairs 
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is a higher order process, a small quantum fluctuation that can be treated by 

perturbation theory, and therefore the Dirac equation works so good to the order 

a4. On the contrary, in our one-dimensional analysis the creation of pairs was not 

a small quantum fluctuation but an ever-present process of nonperturbative na- 

ture: tunneling occurs for any nonzero value of the coupling constant A, defined 

in (3.5). Single-particle equations cannot cope with situations in which particle 

creation is a prominent process. Thus, when Dirac equation says: there are no 

hydrogen atoms in one-dimensional electrodynamics, it does not mean that such 

relativistic bound states are really absent. It only means that this equation is 

not applicable to the problem. 

- 
Finally, the described situation is not a speciality of 1 + 1 dimension. It 

has been known for a while [lo1 that the Klein paradox also in 3 + 1 dimensions 

prevents the use of Dirac equation with a linear potential. Note however that 

such a linear potential (which is popular in analyses of quarkonia states) is put 

into equations by hand, and unlike in 1 + 1 dimension is not arising from a gauge 

theory. But even the three-dimensional Coulomb potential, which is derived from 

- 

-~ 

a field theory, suffers in certain situations of the Klein paradox! Imagine an atom 

with the atomic number 2. When the nucleus is pointlike, the highest possible 

2 for which the Dirac equation can be solved is known to be 137. However, with 

an extended nucleus one finds discrete levels even beyond that limit. It can be 

shown that for 2 > 172 an electron acquires the ionization energy larger than 

2mc2. Its ground orbit therefore immerges into the negative energy sea, and a 

variety of new effects might be expected. (For an extensive review see Ref. 1%) 

_ ..r. 

In summary, an unsuccessful attempt of demonstration of validity of the 

sequence (1.1) for the one-dimensional hydrogen was presented. While the tran- 

sition to the lower dimensional space eliminated problems related to couplings of 

spin, and made the equations easily solvable, the price payed was much higher. 

By tunneling through the classically forbidden region, electrons were able to ac- 

cumulate enough energy to create pairs of new particles, thus totally eliminating 

a possibility of using the middle step in the (1.1) sequence. When we need more 

& 
-- 
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precise results than the Schriidinger approach can give, the only alternative re- 

i ,c- mains to step into the QFTh. In a way, physicists in the late twenties and the _- _ 

. thirties were quite lucky. Not only that they lived in a world with plenty of 

hydrogen(and not e.g., positronium), but they. also lived in three-dimensional 

space which is about the only one in which Dirac’s theory when combined with 

electrodynamics successfully describes hydrogen-like systems. 

- Acknowledgements: I would like to thank Daniel Boyanovsky for useful conver- 

sation, and SLAC Theory group for kind hospitality. 
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APPENDIX A - Nonrelativistic Limit 

In this Appendix a formal expansion in l/c of the Dirac and Klein-Gordon 

wave functions will be performed, and the resulting Schriidinger equation for the 

lowest order components will be analysed. 

Consider the Dirac equation (3.2). The form of the equation allows a solution 

for which $1 is even, and $2 odd upon the exchange c + -c : $1 (c) = $r (-c) 

and $2(c) = -$2(-c). This suggests a substitution 

$1 =fo+$fl+$fi+... ; $2 = $J + $1 + $g2 + . . . . (A* 1) 

- 

With E = mc2 + ENR + El/c2 + E~/c* + . . . , one finds a set of equations 

corresponding to various powers of c. Particularly, by comparing terms of orders 

CO , and c-l, one obtains 

fo'-$O=o , go~-;(ENR-~o)fo=O , (A.4 

and by combining these two equations, 

fo" + ?(ENR - VO(Z) )fo = 0 . (A-3) 

Therefore, fe (which is the leading term in the “big” component $1 ) is de- 

termined by the Schr6dinger nonrelativistic equation (A.3), with the potential 

Vo(z) = q21#2~o - 

In a similar way, a substitution ‘p = TO + fr/c2 + 72/c* + . . . , into the 

Klein-Gordon equation (3.13) leads to the Schkidinger equation for &. 

Equation (A.3) h as eigensolutions that could be expressed in terms of Airy 

functions. One finds that solutions are characterized by a discrete index n > 1, 
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and normaZizabZe [121: 

_- _ 

fAn’(z>O) =Ai[z(*)li3 -cn] , 
Pq* 

COti 
Egi =c,&----)~~~ . (A4 

0 

Here, 

7i(n+1)/2 for n = 1,3,5,. . . 
C n= 

an/2 for n= 2,4,6,... , 
(A.5) 

- 

and -a, -a are zeros (on the negative t axis ) of Ai’ and Ai respectively. 

It is the property of the Airy functions that 0 < sir < al < li2 < a2.. . . When 

n is odd, the wave function j;“’ is even, and vice versa. When n is much larger 

than one, cn reduces to 

cn>>l M ( p/3 . (A-6) 

-With (A.6) one easily rediscovers the results of (i) WKB approximation and 

(ii) old Bohr-Sommerfeld quantization procedure for the potential q21z1/2co , 

namely Etn) - (n2q4/m)lj3 . 
.- . 

The study of fr, gr, and higher order terms in (A.l) however shows that 

these components are not normalizable and thus (except for c + 00 ) the whole 

expansion in l/c is ill-defined, which only confirms results from Section 3. 
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APPENDIX B - Parabolic Cylinder Functions 

. 
This kppendix describes some of the properties of the parabolic cylinder 

functions. Only the formulas relevant to the paper are presented. More details 

can be found e.g., in Ref. 13. 

Parabolic cylinder equation 

Consider the differential equation 

w=o . (B-1) 

The solutions of (B.l) , denoted by D,,(z) and characterized by some fixed values 

at z = 0, 

DJO) = 2”‘2 I-(1/2)/ I(1/2 - V/2) , 

D/(O) = 2(“-1)/2 I-(-1/2)/ lY( --v/2) 
P.2) 

, 

.- . 

are called the parabolic cylinder’functions. If D,(z) is a solution of (B.l) , so are 

Dv(-z), ~-v-l(;z) and D-,-l (-zk), and two linearly independent solutions 

may always be chosen among these four functions. 

Closely related to (B.l) is an equation 

d2u 
-@+(-A + iz2)u=o . (B-3) 

Two solutions, Dixml,2 (zeis/* ) and D-ix- r/2 (Ze-in/4 ), which are linearly 

independent for any finite value of A, were used in this paper. 
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Useful recurrence relations 

i ,c- 

. d&(z) 
dz + ;&(z) = V&-I(Z) , 

d&(z) 
dz - f Dy(z) = - D,+&) . 

(B-4 

Asymptotic values of D,(z) 

For large and positive y , and when y >> 1~1, it is possible to show that 

- 

D, ( ye*‘“/* ) k: yv exp (q=iy2/4 f iw/4) (1 + O(l/ y2) } . P.5) 

Special values 

DO(Z) = esz2/* ; A2 If&,* (2/4) . (B-6) 

-- 
Therefore, 

and 

Do (ye fir/*) = e+y2/* , 

D-112 (Ye +w) = - q/&p;! (y2/4) 

D--1/2 (ye- i”/“) = + i@f$~ (y2/4) 

, 

(B-7) 

(B-8) 

..-. 

K, H(l), and 1312) are a modified Bessel function, and two Hankel functions 

respectively. 
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FIGURE CAPTIONS 

1) Effective potential in the Klein-Gordon equation. Nonrelativistic limit 

(c = 00) is denoted by dashed lines. 

2) Klein paradox. Forbidden (shaded) and allowed regions, when the linear 

potential is turned on. 
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