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. . - I. Introductiop 

There is currently a substantial amount of interest in testing the SU~LX Ui 

model to levels exceeding 1% accuracy1 at the SLC (and LEP) on or near the Z” 

resonance. Such an accuracy necessarily implies that the respective SU~LX Ui 

radiative corrections are known to 2 .3%. Accordingly, inspired by the Mark II 

SLC Z” Mass and Width Physics Working Group, we have developed a method- 

ology for achieving such an accuracy on these SU2,5x Ur radiative corrections.2 

This methodology is our subject in the following discussion. 

More specifically, the standard SU2,5x Ui model, in its minimal manifesta- 

tion, uses the parameters (Y, G,, M,, , mf and mH to describe all known elec- 

troweak physical processes. Here, CII is the fine structure constant of QED, G, is 

the p decay constant, Mzo is the rest mass of the Z” vector boson, mf denotes 

the rest mass of standard model fermion f and mH is the rest mass of the physi- 

‘cal Higgs boson 4” in this minimal manifestation of SU2,5x Ur (we note that, at 

this time, 4” has yet to appear explicitly in an experimental apparatus). Super- 

symmetry considerations, 3 for example, even in their most minimal form, would 

enlarge this set of parameters. It is thus a great achievement that, to date, the 

minimal Sups x Ui electroweak theory has encountered no obvious disagreement 

with observation. 

Indeed, the theory has enjoyed the outstanding predictions of the IV* and Z” 

bosons themselves (with masses of essentially the right value) and the attendant 

Z” neutral current interactions with the essentially correct magnitude and space- 

time structure. The stage is therefore set for precision checks of the predictions 

of SU~LX Ur theory. Such checks are a primary aspect of the physics programs C 
*- _T_ at SLC and LEP on (or near) the Z” resonance. 

The type of checks envisioned are described in some detail in Refs. 1 and 4. 

For example, precise measurements of Pao, M,, and A,, (the left-right asym- 

metry for e+e- + Z” --+ X) can restrict the number of new light neutrinos, or 

give an eye toward possible new heavy particles. The type of precision required 
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,-- ranges from a few % down to .l% for some qf the more subtle effects. As a 

benchmark, we may say that precision Z” physics (at SLC and LEP) requires 

that the respective cross sections are known to 2 l%, as we have noted. 

One of the main contributors to the error on e+e- annihilation cross sections 

is the uncertainty associated with the respective SU~L x Ui radiative corrections. 

Accordingly, it has been realized by many5 that precise Z” physics will entail a 

substantial improvement on the methodology by which such corrections are per- 

formed in comparison with the analogous methodology used at PEP and PETRA. 

- 

One can make a straightforward assessment of the situation by considering 

the processes illustrated in Fig. 1 where we show only the 7 exchange graphs, 

since they already characterize the size of the radiative corrections of interest to 
- 

us here. Upon effecting the familiar cancellation of the real and virtual infrared 

(IR) singularities in the standard manner, we find that the size of the order o 

.correction to the basic Born process for e+e- + Z” + X is expressed by 

F(ln--$--l)ln-$ 

where @ = total c.m. energy and &c is a typical energy resolution type (detector) 

parameter. One notices that the pure large ultraviolet (UV) corrections are 

characterized by t - (2cr/~)(ln(s/m~) - 1) E .108 for fi = M,, and, hence, 

that the infrared effects are possibly - 100% corrections in each order of Q since 

generally G/2 >> &c, for example. It follows that .3% SU~LX Ui radiative 

corrections in e+e- --+ X near the Z” resonance involves summing all large IR 

effects and summing 2 3 loops of the large UV effects. 

Accordingly, we have used the method of Yennie, Frautschi and Suura6 

(Y-F-S) to sum the respective large IR effects and the renormalization group 

method of Weinberg and ‘t Hooft to sum the respective large UV effects. In this 

way, we have arrived at the consideration of renormalization group improved 

Y-F-S theory. (The entire development has been motivated by precision Z” 

physics at SLC and LEP.) 

rt 
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Thus, in the next section we shall present a brief review of the elements of the 

Y-F-S program. Section III then presents a description of the basic renormaliza- 

tion group improved Y-F-S theory. Section IV illustrates the type of application 

we have in mind for our theory-the exponentiation of Monte Carlo electroweak 

event generators. Section V contains some concluding remarks. 

II. Yennie-Frautschi-Suura Theory-A Short Review 

With the ultimate purpose of achieving high-precision radiative corrections 

at SLC and LEP energies, we shall review the relevant elements of the Yennie- 

Frautschi-Suura (Y-F-S) theory as it relates to e+e- + Z” + X near the Z” 

resonance itself. We have, then, the full SU~LX Ur theory in mind. 

More precisely, consider the situations illustrated in Figs. 2 and 3. In Fig. 2, 

we show a typical contribution to the expansion of the full connected amplitude 

'M for e+e- + X at fi = M,, in terms of the number of virtual photon loops. 

’ In Fig. 3, we show a typical contribution to M which involves X = n(r) + X’, 

an n-real photon final state. The key results of Y-F-S theory are that 

M (I',, Pi) = exp{aB} 2 m, 
n=O 

(1) 

(n) - where mn are free of virtual infrared divergences and, if mj 1s the n-real photon 

case Of mj, 

03 

2 
c 

rn3) =S ICI “(- ) . ..F(Tn)g. 
n '=O 

>- .= 

+ebF(Zl) .--5(Ici-l)s”(7Ti+l) . ..iT(jln)pl (Zi) 4 
i=l 

(2) 
-- 

+~~.+~s”(Z~)jT,~ (kl,...,~i-l,Zi+l,...,~n) - i=l 



; ,-- where- pj- have no real or virtual infrared diverkences so that, for X’ = f f and 
. 

ef t?R = electric charge Of f, 

ReB+g d4y exp {iy . (Pe + I$ - PXI) + D} 

- 

‘where the functions B  and g are given by (here, my is our photon mass infrared 

cutoff) 

a SksKmud3k 
2& = - 

4x74 (k2 + m t)l/2 

-ef (3-$)2-ef ($-j$-)2 (4 

- 



i ,-- zi --j-&k 

{( 

-2Pep - kp 2 
fj=- . &r3 k2 - rn; + in - k2 +2k. Pe + ic 

‘+ 
-2P++ k, 

k2 - 2k. PE + ic 

-2Pep - kp 2Pfp + k, 
2 

k2+2k.Pe+ic + k2 + 2k . Pf + ir 

> 
2 

- ef 
-2Pep - kp 2Prp + k, 

k2 + 2k. Pe + ic ’ k2+2k.Pf+ic 

-2PEp - k, 
2 

- ef 
2Pfp + k, 

k2 + 2k * Pz + ic ’ k2 + 2k. Pf + ic: 
2 

-APEX - k, 2Pfp + k, 

k2+2k.PE+ic + k2+2k*Pf+ic 

(5) 

- e; 
2Pfp - k, 3, + k, 

k2 - 2k . Pf + ic + k2+2ksPf+ic 

and 

with 

D=/F.s”x (e-‘v’k-6(K,,-k)) 

2cG E 
J 

KKmax d3k 

(“2 + mt)“2 
g . 

-- 

(6) 

(7) 

Here, Kmax may depend on the direction of T. It is result (3) which we will use 

in our study of e+e- --+ Z” + X. In (3), all infrared divergences are cancelled in 

the sum ReB+fi to all orders in CL 

As we (and others) have discussed elsewhere, 2$5 there remain large ultraviolet c 

>- _Yz_ effects in p, in (3). Th ese may be analyzed using the methods of Weinberg and -- 

‘t Hooft as we illustrate in the next section. 
- 
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.-- III. Rencwmalization Group Improved Yeqnie-F’rautschi-Suura Theory 

In this section we shall illustrate how one uses the partial differential equation 

of Weinberg and ‘t Hooft to sum the large ultraviolet effects in pn in (3). We 

begin by recapitulating this equation. 

- 

. Specifically, Weinberg and ‘t Hooft have shown that the multiplicatively 

renormalized Green’s functions {I’} of a theory may be subtracted with the mass- 

less limits of the subtraction constants for the theory at a Euclidean scale p. The 

fact that the unrenormalized theory is independent of p then implies the equation - 

-%hR) mR & - % (gR) 

> 
r = ’ (8) 

R 

where for simplicity we imagine we have one renormalized coupling gR and one 

renormalized mass mR. In the SU~LX Ur theory, we would have two couplings, 

eR and !&R, where gWR is the SU,, coupling and eR is the electric charge of the 

positron, we would have renormalized mass parameters for the fermions in the 

presumed three families of quarks and leptons, we would have the mass parameter 

of the W* and Z” bosons, and the mass parameter of the physical Higgs particle 

(or the quartic coupling of the physical Higgs particle), as a minimal set of 

masses and couplings. The physics beyond the standard model would enlarge 

this set. The coefficient functions /?, re and rr are computable to in renormalized 

perturbation theory. The detailed application of (8) to (3) -for the full SU2,5-x Ur 

theory has been illustrated in Ref. 2 and will be taken-up in more detail elsewhere. 

. More precisely, we have shown in Ref. 2 that (8) yields the following form 

of (3), where, here, we focus on the QED aspect of the SU2,5x Ur theory for 

purposes of illustration, 
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,-- 
ReB (Pi(l),miR(X)) + g 

. 
Pi(i),miR(X), F 

(2L)4 J 
d4Y exP{iY.(P, +PE- Pxt) + D} (9) 

- exp { -iy . kll} pn (qn) dExtd3Pxt 

where 

zn (qn) = X2b~(n)pn (Pi(l), k oPiRP)&),P) (z)-2n (10) 

and 

D f D Pi(l),miR(X),a(X), F) . (11) 

The running charge eR (A) and the running masses m;R(X) have their familiar7 

‘definitions; these definitions are reviewed in Ref. 2. The normalization of (9) is 
- 

such that DM(,) is the engineering dimension of the amputated amplitude MC”) 

which describes the connected contribution to e+e- -+ n(7) + X’ (see Ref. 2). 

Our scale parameter X is such that 

and, in MC”), 

Pe z 
( 

X&/2, dm & 
> 

(12) . 
Pz - 

( 
x*/2, -&jzg & 

> 

P;+P;=A(&o-gk;i) , kiC$,; , 

Ff +q= -Ai:k,i . 
i=l 

5 

-- 

We can always presume this in the physical region provided that AGo > 2mf 

and Xfio > 2me. We will always imagine that Go > 2me and that X > 1. 
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i .-- The result (9) is central to our approach tar high-precision radiative correc- 
. tions in e+e- + Z” + X near the Z” resonance. It is a rigorous consequence of 

the renormalization group equation. The detailed application of (9) to e+e- + 

Z” -+ X will be taken-up elsewhere by the author and S. Jadach8 and the Mark II 

SLC Z” Mass and Width Physics Working Group.g In the next section we wish 

to illustrate, in a pertinent way, the type of application we have in mind for (9). 

IV. Exponentiation of Monte Carlo Event Generators 

- 

A primary use of a formula like (9) would be in exponentiating large infrared 

(IR) effects and summing large ultraviolet (UV) effects in a way which allows an 

event generator, such as MMGl in Ref. 10, to reflect the respective net effects 

in e+e- ---+ X near the Z” resonance, for example. Accordingly, in this section 

we wish to show how (9) would be applied to the results in Ref. 11 for e+e- 

* p+p-(7), which are the basis of the event generator MMGl. (The application 

;of (9) to the general one-loop calculation of e+e- --) X from the standpoint of 

event generators is one of the details which will be taken-up elsewhere by Jadach 

and the author’ and by the Mark II SLC Z” Mass and Width Physics Working 

Group.g) In this way, we hope to clarify the relationship between (9) and the 

results in Ref. 5, for example, and to illustrate the type of applications we have 

in mind for (9). 

-.. 

More precisely, in specializing (9) to the results in Ref. 11, we may identify 

Po(ao) as 

PO (Qo) = -g 
P 

(l-loop) - 2 Re (cr(l)B) 2 
P 

where da( l-loop) /dn, is the one-loop cross section in Eq. (2.27) of.Ref. 11 and 

dao/df12, is the lowest order cross section in Eq. (2.2) in Ref. 11. o(l) is the fine c >- _T_ -- 
StrUCtUre COnStaId at + = 2?np,-,hys, for example. 

- Similarly, the cross section p1 is identified as (k = ICI) 

7% = daB1 
dfl, d!-l, kdk 

- S”(k)2 
P 

(15) 
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G  ,;-  w h e r e  d o e 1  is g i ven  by  E q . (3 .13)  o f R e f. 1 1  a n d  g(k)  is g i ven  by  (7). 
. 

Clear ly ,  th e  vi r tual  in f rared fu n c tio n  B  shou ld  b e  c o m p u te d  in  a  c o m p l e te  

w a y  in  o rde r  to  m a k e  (14)  as  p rec ise  as  it is des i red .  W e  fin d  

w h e r e 2  

B  =  B l(J’e ,& )  +  B z ( P e ,P f) -  B 2 ( P f +  P f) 

-  B 2  ( P e  -+  P e ) +  B 2  ( P e  +  Pz , P f - - +  P f) 

+  e fB 1  ( P e  - +  P f, Pz  - +  P f, m e  +  m f) 

( 16 )  

B l =  - &  +  - &  (1  - 4 m z /s) 1 ’2  In  

m 2  
-  ii/? e e ( S  -  4 m :) -  - $  In  - - -$  

e  

1  -  P e  -I- iL i2  - -  
(  )  1  +  P e  (17)  

7 ?  
+  i l n2  ( 1  +  b e )  +  4  +  L iz 

+ i 
(s -  2 m ,2 )  

S P e  
d(s -4mz)  

1 0  



c .-- and __ - 
._ 

. 

B2=~+~[ln~+ln~]+~[In~+ln~] 

where 

In 

( 

mt tef 

Sef tef - (“:-m!)’ 1 

- gi2 (-12cc_) (18) 

+aLi2(lTi+) +Li2(-&) 

+Li2 (-lEL+) 4% (,3 

-Li2(lTk+) +ln2ln([~~~j~:+~~~) 

- tLi2 (;-“!$) + :-Liz (1TiF)} 

-${ln(q) +ln(%) +b21(Pf,,Pf,me,mf) 

+ 621 (Pf,Pe,mf,me) - ~6r.t (Pe,Pf,me,mf) 3 

C ZZ 
F 

4% ’ F (mi -m?) / (-tef> 

( -( Sef m2-m2 e f 2 /tef)1/2 ’ > 

(19) 
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.-- . . - 

b21 (Pet f’f, me, m/) = 

1 - (rnz - m; - tef) / (-2tef) - ((m: - rn; - tef)2 /4tzf - T7ZS/tef) “‘1 

In ( rnz - rn; - tef) / (-2tef) + ((mz - rn; - tef)2 /4taf - my /) 1 tef 1’2 - 1 - 
rnz - my - tef) / (-2tef) + ((ml - my - tef)2 /4t:f - rn; 1) 1 tef 1’2 

mY - tef) / (-2tef) + (( rnz - rn; - tef)2 /4tb - m3/t,f)“‘] 1 

+ 
[ 
1 - (ml - m; - tef) / (-2tef) + ((mf - my - tef)2 /4tzf - my t,f 1’2 ‘) 1 - 

In 
[ 
1- (rnz - m; - tef) / (-2tef) + ((ma - rn; - tef)2 /4tff - rn; 1) 1 t,f ‘I2 

+ (4 
[ 

- rn; - tef) / (-2tef) - ((mi - rn; - tef)2 /4tzf - rn; /) 1 t,f ‘I2 

In - rnz 
1 

( - rn; - tef) / (-2t,f) + ((mz - rn; - tef)2 /4t,2f - rnf ‘) 1 t,f 1’2 L 

and 

12 



z ,:- 
bm (Pi, Pf, me, mf) = 

. 

l+iln2+ h 

( 0 

-!- 
4fi G 

Sef - (rnz - mT)2 /tef)l12 

- 4% (l + (mZ1 - mT) /tef) - i(l+ln2) 

+ln 1 
( Js ( ( sef - mf - m2f)2 t,f 

I > 

112 d-tef 

- 7 (l+ (mZ - m;) ltef) 
> 

- -(( A Sef - (4 - mT)2 /tef)1’2 + Jq (1 - (mz - m;) /tef)) 

-[ 
- i (1+ In2) + In 

( 

-$ (sef - (rnz - my)2 /t,f)l” 

+ 7 (l- cm: - m;> ltef) 11 [ - -$ (sef - (mz - m7)2 ltef)li2 

+ fi (1 + (mif - m;) / ,3 tef [ -a(l+ln2) 

+ln 1 
( 

+ Sef- mi++2 ( ( I > tef 
v2 + * 

G 
(1+ cm3 - 4) /t,f)) ] 

+ -$ 

[ 

(sef - (mf - mT)2 ltef) ‘I2 - dq (1 - (mz - m;) /tef) 1 
[ 

- i (1 + ln2) + In 
( 

-$ (sef - (mf - m7)2 /tef)1’2 - 

- 
7 (l- (mZ-m3)/tef))]} 

(21) 
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s ,+- with __ - 
. 

S = (Pe +PE)2 , Sef E (Pe + Pf)” , 

tef E (Pe - P/>” , Be = (1 - 4mz/s)1’2 . 

ef is the electric charge of fermion f. 

Similarly, we note that the real infrared function 5 which cancels the infrared 

singularities in ReB may be represented as 

; 2 Pe, PE, Pf, J’r 
( > - 

= Bl (Pe, PC, me) + B2 (P,, Pf, me, mf) - 52 ( -pi) f’f 

-.Ez(Pe+PE)+E2 Pe+PE,Pf +Pf 
> 

+eTBl Pe+Pf,Pc+Pf,me+mf 
“( > 

, 

(23) 

where, for a spherical cutoff Kmax for the photon momentum magnitude, 

_- _= 

51 (Pe7PE,me) -2m: In (2K,,/m7) 1 1 = 

KSPe c-py 1 + Pe ) 
(24 (s - 2m2;) 5 

- Tspe In (2Km=lmr) In -- 

14 



-I In 

- In 

& (P,, pf, me, mf) = s In (2K,,/m7) 
( 

& - --L 
l+Pf 1 

+ 2 ln (2Km,/m7) (A - &) (25) I? 

( sef 
+ 

- rnz - m;) ef In (2K,,/m7) 

47r 
6 4 - rnz - t,f )2/4+mZ (sef -2(mf+mj)))lJ2 

sef-2 m:+m2 ( f > ( - m!-rnz-t,f )/2-- ((mj-m:-tef)2/4+mf(sef -2(mZ+mj)))li2 

( n2f -mz-t,,)lz+((mj- m:-t.f)2/4+m:(sef -2(m:+m;)))li2 
- 

sef-2 rn:+rnf ( > ( - rn;-rnz -tef)/2+ ((mj-m~-t.f)2/4+m~(sef -2(m:+mj)))li2 

( m; -mZ-&f)/2- ((m;- mi-tef)2/4+m:(Sef -2(m:+mf)))1’2 

where (note that (l/(1 - /?f) -. l/(1 + pf))/spp E 1/2m;) 

pf E (1 - 4m7/s)1’2 . (26) 

Hence, we have completely specified PO and PI; we now turn to F. and F1. 

Considering first jo, we have (the pi in (14) and (15) contain a standard 

phase space factor relative to those in (9)) 

Zo = Xe2 PO [Pe(1),4(1),P~(1),P~(1),me,phys/~,m~,phys/X,c.u(X)] 

_T. where fro E 2mP,phyS and 

Pf (1) = (Go/2 3 sf j/w) , f = e,~,~,P 

(27) 

(28) 

5 

-- 

with ie = -& s .Z and ,?P = -2~. Here, x = M~~/2mP,phys. 
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.-- 
Similarly, for pr, we have 

21 = xv4 & [pi(l), mi,phys/k k/X, a3 -+ a(l)cr2(X)] . (29) 

This, then, completely specifies PO and Dr. 

Thus, in our example Exf = PT + P;, Fx, = Pf + $r and we have 
- 

’ do=exp{2o(l)(ReB +g)}& /d4yexp{iys(P,+PE-Pxt)+D} -- 

I 
{zo(qo)+/T e-“Y’k1~~(q,))dEx,d3Px, - 

(30) 

where 

D= e-iY.k _ e(K,, - k)) it . (31) 

_- _ _=- 

- 

We note that, as one may check from (16)-(26), ReB+g does not contain infrared 

singularities. 

5 
., 

The effect of eD in (3) has been discussed in detail by Jadach in Ref. 12. The 

basic result is that, for Monte Carlo simulation, one should write (30) as 

16 



;.- 
da 2 ekp (241) (ReB + B”(P,(~),~~R(X),E,,,,IX))} 

. 

6 (fi - Ep) F. (fi) lKmax p(r’)dr’ 

+ 8 (E - Km,,) z. (4 @(lf)a) (~/E~,max)~(‘)~ dEx, 
I 

+=P {2a(l) (ReB + B”(P,(~),~~R(X),~~,~,/X))} 

{ J K 
rS(c - k’) -p’(d - k’)d(c’ - k’) 

0 

(e) a ‘1’A} dEx, , 

where we have introduced 

a( E 2a(l)g (Pi(l) , 

(32) 

- 

:. 

(33) - 

(34 

and 

4l)A ff (l)A 
P(E) = 

41)A 
7 9 7 (35) 

with 5 
_e. -- 

E 7,max = G/2 - 2mT/fi t E;,mm = 
( s-2k’+-4m; 

> 
2(+-2/c’) - (36) 

[Note that f = p in (30).] 
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Hence, here, Km= is the maximum energy of a photon which cannot be 

detected by the respective detector. In order to implement (32), one proceeds 

as follows. One uses P(E) (p’(c - k’)) t o c h oose a value for E(E - Ic’) by standard 

Monte Carlo methods. One sets the number n of Yennie-Frautschi-Suura soft 

photons equal to 0 if E < Km,(c - k’ 5 Km,,). For E > Km,(c - k’ > Km,) 

one picks n according to the Poisson distribution 

@ev-l 
pn-l = (n-l)! ’ ii = o(l)AIn(c/Km,) (37) 

where the n-l variables that generate Pn-1 in Ref. 12 may be used to choose 

the photon energies ICI,. . . , k, such that xi k; = c(Ci ki = E - k’). The angular 

distribution of the n photons is then chosen, by standard Monte Carlo methods, 

according to g(k)d3k/k. In th’ 1s way, a one-loop event generator based on results 

like those in Ref. 11 may be rigorously exponentiated. 

We have used Ref. 11 as a pedagogical example. The method illustrated by 

(14)-(37) awl ies to any electroweak Monte Carlo event generator. 

Currently, there is an effort by Berends’ group13 to create an order o4 event 

generator for e+e- annihilation into /.L+,u- (7,77). Thus, it is of some interest to 

record the analoga of (14) and (15) at order 04. In (14) we would use 

a4 
PO (Qo) = “,b,) - 2Retat1)B) 

da(a3) + (2Re(a(1)B))2 da0 
dn 2 dfb 

(38) 
P 

and in (15), we would use 

ml) = 
daB1 ( a4) 

dfl, dil, ICI dkl 
- 2Re(cr(l)B) daB’((r3) 

dfl, di12, kl dkl - &)P, w-4 

where daB1(04) is the cross section for single bremsstrahlung through order cr4; 

the analogous definition holds for do(cP). In addition, to order 04, the cross 

18 



,--- section&-((kr , k2) may be identified as 
. 

j72 = daB2 N - dao 
dn,(d3kl/kl)(d3CC2/k2) - S(k1)S(k2)dflp (40) 

- @l)Pl (k2) - qk2)Pl(h) 

where daB2 is the respective order a4 double bremsstrahlung cross section. For- 
N N 

mulas analogous to (27)-(29) may then be used to obtain Do, PI and F2. The 

steps leading from (30) to (32) may then be repeated. The net result is to add 

to (32) the term 

exp { 241) (ReB + g (P,(~),~~R(X),E~:,,IX))} 
;,(k’ k”) d3k’ d3k” 

2’ k’ 7 

-- { J K 
+-k'-k") max p" (E' - k' _ k") d (E' _ k' - k") 

0 -- 

4A +e (E - k’ - k” - K,,) E _ k, _ k,, (’ ;.;--k”) +),) d&t - 

(41) 
where (here k’ . k” = k’k” - 2 . kt’ so that k” = 1x1~ k for all k) 

E” 7,max = 

(,/X-k’-k”+Ik’+jC;‘I) (s-2&(k’+k”)+2k’.kf’-4m;) 

2 (s - 2 fi(k’ + k”) + 2k’. k”) , 

P’ ‘(4 = 44 IE7,,.,=E&,, 5 
_- _=. (42) --G 

Thus, it is clear how to extend (32) to order cz4 input. (We ignore, here, the 

processes e+e- --+ ,!L+,u- + ff, f = e,p, for pedagogical reasons; they pose no 

particular problem, but are expected to be insignificant at the level of accuracy 

of interest to us here.) 
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Several comments are in order. First, the use of E4,max and E;[,, for the 

respective upper limits of the radiated photon energy is a refinement; these two 

can both be replaced by their maximum value, which is just E7,mu. Secondly, we 

have not allowed Km= to depend on the spherical angles (fi, q5) of the respective 

photons. This we have done for simplicity. The expression (32) is flexible enough 

to allow one to include a possible angular dependence of Kmw. Indeed, let Km= 

7 minimum value of Km= (0,4) for the respective detector. Then, if we set 
- 

K max = Km, in (32), we have a correct formula. We can then include the 

effect of Kmu(6,4) by amending our prescription for choosing E(E - k’) and n: 
- 

if E > Kmm(e - k’ > Km=) and n > 0, use the bremsstrahlung distribution 

,?(k)d3k/k to pick the respective angles (8i,&) of the n photons with energies 

{ki} as determined by the procedure in Ref. 12. Due to the angular dependence 

of Kmax (fl,+> 3 some subset of the n photons with energies { ki,, . . . , kij} may not 

be detected. Let the energies of the detected photons be { kij+l,. . . , kin}. Then, 

‘treat the event as an event with n-j detected photons with fi - EXI = e where 

only c;“=j+1 at k. of E(E - k’) is- detected. In this way, we maintain a realistic 

description of the cross section in (32). 

Finally, in the interest of completeness, we would like to describe the procedure12 

which one uses to choose the photon energies associated with (37). Specifically, 

these energies are generated as 

ki = cezi/ ($ezj) (ki = (c- k’)ezi/ (gezj)) (43) 

where the zi are such that zi = In ki + Y. Here, for i = 2,. . . , n, we take 

zi’= In E + (In Kmax - In E) (J&/B) 

pi = In (E - k’) + (In Km= - In (e - k’)) (&/FL)) 
(44 

where we recall that fi is defined in (37) and we note that the &+I are generated 

from a series of uniformly distributed random numbers ri E (0,l) with RN+~ = 
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‘ ,;  - C c 1  In  ri, 1  5  N  <  n  - 1 , w h e r e  (n  - 1 )  is th e  va lue  o f N  fo r  wh ich  R N + ~  first 
. exceeds  fi. T h e n , Y  is f ixed so  th a t kl =  E  -  Crz: ki+ l (ICI =  E  -  k’ -  Cyzt ki+ l) 

a n d  

z1  =  l ne  (zr =  ln(c - k’))  , ( 45 )  

wh ich  m e a n s  th a t, a t th e  e n d  o f th e  process,  w e  m u s t re ject  th e  e n tire e v e n t if 

2 %  - Y  5  In  K m = , i.e ., if kn  5  K m = . T h e  prescr ip t ion rep resen ted  by  (14) - (45)  

is n o w  a  pract ica l  w a y  to  i m p l e m e n t (9). 

W h a t w e  s e e  is th a t (14) - (45)  ff d  a  o r  o n e  a  m e th o d  fo r  s u m m i n g  th e  la rge  IR 

a n d  U V  e ffects in  e + e -  - -+  p ,% (r) wi thout  e n c o u n te r ing  m a s s  s ingular i ty  p rob lems  

a n d  wi thout  p r e s u m i n g  th e  pa r ton  m o d e l , a t th e  leve l  o f a  real ist ic M o n te  Car lo  

e v e n t g e n e r a tor.  T o  r e p e a t, th e  gene ra l  app l ica t ion  o f such  “e x p o n e n tia te d ” e v e n t 

g e n e r a tors  wi l l  b e  ta k e n - u p  e lsewhere .8 ,g  

- 

V . Conc lus ion  

W e  h a v e  de r i ved  a  r igo rous  renorma l iza t ion  g r o u p  imp roved  vers ion  o f th e  

Y e n n i e - F r a u tsch i -Suura  p r o g r a m  us ing  th e  renorma l iza t ion  g r o u p  e q u a tio n  o f 

W e inbe rg  a n d  ‘t H o o ft. T h e  d e ta i led  app l ica t ion  o f ou r  fo rma l i sm to  th e  S U ~ L  x Ur  

theo ry  fo r  th e  p rocesses  e + e -  +  2 ” -+  X  wi l l  b e  d iscussed  e lsewhere .8sg  W e  h a v e , 

h o w e v e r , i l lustrated h o w  o n e  w o u l d  u s e  ou r  fo rma l i sm by  g iv ing  a n  expl ic i t  rec ipe  

fo r  th e  renorma l iza t ion  g r o u p  imp roved  e x p o n e n tia tio n  o f th e  popu la r  M o n te  

Car lo  e v e n t g e n e r a to r  M M G l in  R e f. 1 0 . 

A c k n o w l e d g e m e n ts 

_ -  _  _- -  

- 

T h e  a u tho r  h a s  b e n e fitte d  f rom d iscuss ions  wi th th e  Ma rk  II S L C  Z” M a s s  

a n d  W idth W o rk ing  G r o u p  a n d  th e  Ma rk  II S L C  W e a k  P a r a m e ters  G r o u p . T h e  

a u tho r  is gratefu l  to  P rofessor  S . D . Dre l l  fo r  th e  hospi ta l i ty  o f th e  S L A C  Theo ry  

G r o u p  a n d  th a n k s  P rofessor  A b d u s  S a l a m  fo r  th e  s u p p o r t a n d  k ind  hospi ta l i ty  

o f th e  In te r n a tio n a l  C e n tre fo r  T h e o r e tical Phys ics  in  Tr ieste, Ita ly  w h e r e  par t  

o f th is  work  w a s  d o n e . T h e  a u tho r  h a s  b e n e fitte d  f rom n u m e r o u s  d iscuss ions  
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,z-. with Prof;. S. Jadach. Finally, the author thanksprof. G. Feldman for the warm 
. hospitality of SLAC Group H. 
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,--- . . - Figure Captiovs 
. 

Fig. 1. Order cy: radiative corrections to the initial state in e+e- -+ X in QED: 

a) virtual effects; b) bremsstrahlung. 

Fig. 2. Virtual photon correction to e+e- + X. This is a typical graph. 

Fig. 3. Real photon emission in e+e- + n (7) + X’. This is a typical graph. 
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