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I. Introduction

There is currently a substantial amount of interest in testing the SUpzx U;
model to levels exceeding 1% accuracy! at the SLC (and LEP) on or near the Z°
resonance. Such an accuracy necessarily implies that the respective SUyrx Uj
radiative corrections are known to S .3%. Accordingly, inspired by the Mark II
SLC Z° Mass and Width Physics Working Group, we have developed a method-
ology for achieving such an accuracy on these SUsz x U; radiative corrections.?

This methodology is our subject in the following discussion.

More specifically, the standard SUsz x U; model, in its minimal manifesta-
tion, uses the parameters o, Gy, M,, , my and m,, to describe all known elec-
troweak physical processes. Here, o is the fine structure constant of QED, G, is
the p decay constant, M, is the rest mass of the Z° vector boson, m s denotes
the rest mass of standard model fermion f and m,, is the rest mass of the physi-
‘cal Higgs boson ¢° in this minimal manifestation of SUzz X U; (we note that, at
this time, ¢° has yet to appear explicitly in an experimental apparatus). Super-
symmetry considerations,? for example, even in their most minimal form, would
enlarge this set of parameters. It is thus a great achievement that, to date, the
minimal SU,z, X Uj electroweak theory has encountered no obvious disagreement

with observation.

Indeed, the theory has enjoyed the outstanding predictions of the W* and Z°
bosons themselves (with masses of essentially the right value) and the attendant
7° neutral current interactions with the essentially correct magnitude and space-
time structure. The stage is therefore set for precision checks of the predictions
of SUzz x Uj theory. Such checks are a primary aspect of the physics programs
at SLC and LEP on (or near) the Z° resonance. 4

The type of checks envisioned are described in some detail in Refs. 1 and 4.
For example, precise measurements of I',,, M,, and A,, (the left-right asym-

metry for ete™ — Z° — X) can restrict the number of new light neutrinos, or

give an eye toward possible new heavy particles. The type of precision required
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ranges freom a few % down to .1% for some of the more subtle effects. As a
benchmark, we may say that precision Z° physics (at SLC and LEP) requires

that the respective cross sections are known to S 1%, as we have noted.

One of the main contributors to the error on eTe™ annihilation cross sections
is the uncertainty associated with the respective SU,r, x U; radiative corrections.
Accordingly, it has been realized by many® that precise Z° physics will entail a
substantial improvement on the methodology by which such corrections are per-

formed in comparison with the analogous methodology used at PEP and PETRA.

One can make a straightforward assessment of the situation by considering
the processes illustrated in Fig. 1 where we show only the v exchange graphs,
since they already characterize the size of the radiative corrections of interest to
us here. Upon effecting the familiar cancellation of the real and virtual infrared
(IR) singularities in the standard manner, we find that the size of the order «
.correction to the basic Born process for ete™ — Z° — X is expressed by
2 (ln iz - 1) In —\{—E—
™ mg 2kg
where /s = total c.m. energy and k; is a typical energy resolution type (detector)
parameter. One notices that the pure large ultraviolet (UV) corrections are
characterized by t = (2a/7)(In(s/m2) — 1) = .108 for \/s = M,, and, hence,
that the infrared effects are possibly ~ 100% corrections in each order of & since
generally 1/s/2 > ko, for example. It follows that .3% SU,rx U; radiative
corrections iﬁ ete™ — X near the Z° resonance involves summing all large IR

effects and summing < 3 loops of the large UV effects.

Accordingly, we have used the method of Yennie, Frautschi Aand Suura®
(Y-F-S) to sum the respective large IR effects and the renormalization group
method of Weinberg and ’t Hooft” to sum the respective large UV effects. In this
way, we have arrived at the consideration of renormalization group improved
Y-F-S theory. (The entire development has been motivated by precision Z°
physics at SLC and LEP.)
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Thus, in the next section we shall present a brief review of the elements of the
Y-F-S program. Section III then presents a description of the basic renormaliza-
tion group improved Y~F-S theory. Section IV illustrates the type of application
we have in mind for our theory—the exponentiation of Monte Carlo electroweak

event generators. Section V contains some concluding remarks.
IL. Yennie—Frautschi—Suura Theory—A Short Review

With the ultimate purpose of achieving high-precision radiative corrections
at SLC and LEP energies, we shall review the relevant elements of the Yennie—
Frautschi-Suura (Y-F-8) theory as it relates to ete™ — Z° — X near the Z°

resonance itself. We have, then, the full SUyz,x U; theory in mind.

More precisely, consider the situations illustrated in Figs. 2 and 3. In Fig. 2,
we show a typical contribution to the expansion of the full connected amplitude
‘M for e*e™ — X at \/s = M,, in terms of the number of virtual photon loops.

"In Fig. 3, we show a typical contribution to M which involves X = n(y) + X/,
an n-real photon final state. The key results of Y-F-S theory are that

M (P., Ps) = exp{aB} > my, (1)

n=0

where m,, are free of virtual infrared divergences and, if mg.n) is the n-real photon
case of m;,

2

3 m®

n!'=0
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where FJ have no real or virtual infrared divergences so that, for X' = ff and

erer = electric charge of f,

~ 1 .
‘da = exp {Za (ReB + B) } (2n)? /d4y exp {ty - (Pe + P: — Px:) + D}

Bk B (3)
k'J exp{—z'y-lcj}ﬂn dEXI d3Px:
J

. [o.0] 1 n
<180+ [ 11
n=1"""Y j=1

‘where the functions B and B are given by (here, m., is our photon mass infrared

cutoff )

208 = & kaKm“dsk _( P Pey 2+e Pry Py 2
4m? (k2 + m2)i/2 P.-k P,k f : :

2 2
—e Pry _ Pey e Pry Py (4)
I\P;k Pk I\P; k Pk

2 2
te Pz, Py _ 2 Pry, Py
I\P;-k Pk I\P;-k Pk ’
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=i fd%
8n3 k% — m?7 + 1€

B =

{"<k2+2k-Pe+z‘e

k2—2k'Pg+i6

I\%T+ 2k - P. + 1

l'c2+2k-Pf+i6/

—2P., — ky
k% + 2k - P, + 1e

2Pr, +ky
T P+ ie

2
2Pry + ku

- —ef(k2+2k-Pg+z'e

k% 4+ 2k - Pf+u-:

- +ef(k2+2k-Pg+z'e

2Py — ky

2P;5, + ky )

k% 4+ 2k - P + z€

— €2
F\ k2 —2k-P; +1e

and

v [%

with

3
ﬂSx

2
Ic2+2k-Pf+ie

e VE 9 (Kpax — k))

k<Kmax 3
~ = d ~
ez [P

(kZ + n,l?’)l/2

!

(7)

Here, Kpnax may depend on the direction of ? It is result (3) which we will use

in our study of ete™

the sum ReB+]§ to all orders in a.

— Z° — X. In (3), all infrared divergences are cancelled in

As we (and others) have discussed elsewhere,?® there remain large ultraviolet

o effects in §,, in (3). These may be analyzed using the methods of Weinberg and

’t Hooft” as we illustrate in the next section.
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II1. Renormalization Group Improved Yennie-Frautschi—-Suura Theory

In this section we shall illustrate how one uses the partial differential equation
of Weinberg and ’t Hooft to sum the large ultraviolet effects in G, in (3). We

begin by recapitulating this equation.

Specifically, Weinberg and ’t Hooft have shown that the multiplicatively
renormalized Green’s functions {I'} of a theory may be subtracted with the mass-
less limits of the subtraction constants for the theory at a Euclidean scale . The

fact that the unrenormalized theory is independent of u then implies the equation

a ad
(/’"é; + B (gR) W

R

~10(a) e g~ (@) D=0 (®

where for simplicity we imaginé we have one renormalized coupling g, and one
renormalized mass m,. In the SUyzx U; theory, we would have two couplings,
e, and g, ., where g, . is the SU,, coupling and e, is the electric charge of the
positron, we would have renormalized mass parameters for the fermions in the
presumed three families of quarks and leptons, we would have the mass parameter
of the W* and Z° bosons, and the mass parameter of the physical Higgs particle
(or the quartic coupling of the physical Higgs particle), as a minimal set of
masses and couplings. The physics beyond the standard model would enlarge
this set. The coefficient functions 3, v, and v, are computable to in renormalized
perturbation theory. The detailed application of (8) to (3) for the full SUszx Uy

theory has been illustrated in Ref. 2 and will be taken-up in more detail elsewhere.

More precisely, we have shown in Ref. 2 that (8) yields the following form
of (3), where, here, we focus on the QED aspect of the SU;rx Uj theory for

purposés of illustration,
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(271r); / d*y exp {iy- (P. + P: — Px:) + D} (9)

(w32 [ 11

dakgl . = 3
e exp {—1y - k¢'} By, (an) ¢ dEx1d° Py

£'=1
where
~ _ e —2n
B (an) = X208, (B0, o min(),00) (28) T qag
and
D=D (Pi(l),m,-R(A), (), %ﬁ) . (1)

_The running charge e, (A) and the running masses m;r()\) have their familiar”
.deﬁnitions; these definitions are reviewed in Ref. 2. The normalization of (9) is
such that Dy is the engineering dimension of the amputated amplitude M(®)
which describes the connected contribution to ete~ — n(vy) + X' (see Ref. 2).

Our scale parameter A is such that

P = <,\\/£/2, V/A2s0/4 — m? 2)

(12)
s = (A\/ga/z, —1/A250/4 — m2 2)
and, in M),
n
PP+ P) =2 <\/§0 —Zkf,’i> ki =Mk
=1 (13)

n
Pf+Pf=—)\Z k o

1=1

We can always presume this in the physical region provided that A\/sy, > 2m;
and A\\/s, > 2m.. We will always imagine that /s, > 2m, and that A > 1.

8
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The result (9) is central to our approach to: high-precision radiative correc-
tions in ete™ — Z° — X near the Z° resonance. It is a rigorous consequence of
the renormalization group equation. The detailed application of (9) to ete™ —
Z° — X will be taken-up elsewhere by the author and S. Jadach® and the Mark II
SLC Z° Mass and Width Physics Working Group.® In the next section we wish

to illustrate, in a pertinent way, the type of application we have in mind for (9).

IV. Exponentiation of Monte Carlo Event Generators

A primary use of a formula like (9) would be in exponentiating large infrared
(IR) effects and summing large ultraviolet (UV) effects in a way which allows an
event generator, such as MMGI1 in Ref. 10, to reflect the respective net effects
in ete™ — X near the Z° resonance, for example. Accordingly, in this section
we wish to show how (9) would be applied to the results in Ref. 11 for ete™
— utp~(v), which are the basis of the event generator MMG1. (The application
‘of (9) to the general one-loop calculation of ete™ — X from the standpoint of
event generators is one of the details which will be taken-up elsewhere by Jadach
and the author® and by the Mark II SLC Z° Mass and Width Physics Working
Group.®) In this way, we hope to clarify the relationship between (9) and the

results in Ref. 5, for example, and to illustrate the type of applications we have

in mind for (9).

More precisely, in specializing (9) to the results in Ref. 11, we may identify

Bolao) as
_ do.

~dQ,

dO‘o

ﬁo (g0) m

(1-loop) — 2 Re (a(1) B) (14)

where do(1-loop)/dQ, is the one-loop cross section in Eq. (2.27) of Ref. 11 and
doo/df1, is the lowest order cross section in Eq. (2.2) in Ref. 11. «(1) is the fine

structure constant at \/s = 2my phys, for example.

Similarly, the cross section §, is identified as (k = k1)

— doB! ~..\ dog
= — §(k)— 15
b dQ, dQ, kdk S()dﬂu (15)

9
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where do®! is given by Eq. (3.13) of Ref. 11 and §(k) is given by (7).

Clearly, the virtual infrared function B should be computed in a complete

way in order to make (14) as precise as it is desired. We find

B = Bl(Pe,Pa) +B2(Pe,Pf) — Bz(Pf — Pj_')

— By(Pe — Ps) + By(P. — Py, Py — Pj) (16)
+ e}Bl(Pe — Py, Pe — Ps,m, — my)

where?

By =— 1 + L (1 —4m§/s)1/2 In (———1 +ﬂe>

21 | 4m 1- 3,
- -i—'z'ﬂeﬂ(s — 4m?) — % In Z_g

i e (o) = (5)

~3 (175 o
i (5 - ()
(155 (525

2

+%1n2(1+ﬂe)+%+lﬂ2 (ﬁ) +L22(1‘—ﬂe)]

2
: 2) PN I TR L
+ZTO(S 4me) {zlnﬂe 211'1 S }

10
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and

: 2 2 .
B :3_e£+e—f ln—"ﬁ--i—lnln—l +—ci ln—s——l-lni
2 m2 m}| 8w | mi m}

2

—t —1
—e—f-{hl< ;f) +ll'l< 82f> + b21 (Peﬁpf’me’mf)
47 mi m;

+ bg1 (’Pf,Pe,mf,me) } — ;—:rbzz (Pe,Pf,mea‘mf) y

where

15 (m2 = m?) [ (~te)

(sey — (m2 = m2)” Jtep)il

S, =V

b

11

{_1 In ((1+2+) (1+X-)
(1-=)(1-=+)

(19)

|



b21 (Pe,Pf,me’mf) =

In

- 1ln

In

In

and

_ "
(m2 = m3 —teg) [ (=2tey) + ((m2 = mF — tey)" /422, — m? 1)

[ 1/2
(m2 = mf —tey) [ (=2tey) + ((m2 = m% — tef)” /422, — m? [1c;) W
1= (m? = m} —teg) [ (<2tes) + ((md —md —teg)” [at2, — m? [1f)

L= (md = m —teg) [ (=2teg) + ((md = mf — tes)” [ 442 = m} 1)

i (m? —m% — t,5) / (—2t,s) - ((mg —m—t,))" /4t3f _ m?/tef) 1/2]

12

1/2 ]

1/2 ]

1= (2 = —tug) | (2t~ (1) /482, —m? /tef)l“]

] 1/2
(m? —m} —ty) [ (=2tes) + ((m2 = m3 —t))" Jas?, m} fter) "~ 1}

2=y —tg) | (<t + (2= 1) ot = /@W]



bsz (P:, Py, me,my) =

Lo, W5 [1 2 _1)? [y )Y
1+21n2+4 = {ﬁ((sef—(me_mf) /tef)

3

— /=t (1+(m§—m})/tef)) [—%(1+ln2)

+In (\/Lg (sef — (m? - m})2/tef)1/2 ~ \/f (1+ (m? — m}) /m))]
_\/Lg((sef_(mg_m})z/te,)1/2+ —tos (1—( e — m}) /tef))

| l:—%(l-i—an) +In (715- (ses = (m2 —mﬁ)z/tef)l/2

Y () o) )| G| G 1)

5
v (1 () fu) | [~

+1n (\/ig (sef — (mf — m%)z/tef)lﬂ + \/\;? (1+ (m? —m}) /tef>> ]

(ses = (m? —m2)” /tef)1/2 ~ Ve (1= (m? —m) /tes) ]

/2 .

[—%(1+ln2) +In (% (sef— (me ’mﬁ)z/t“o

=YL (1 () [1eg) )]}

(21)
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|



with

S:(P5+P§)2 sy Sef = (Pe+Pf)2 ’
(22)
tey=(Po— P;)® , Bo=(1—4m?/s)"/?

ey is the electric charge of fermion f.

~ Similarly, we note that the real infrared function B which cancels the infrared

singularities in ReB may be represented as

E (PeaPE,Pf,Pf) = El (Pe,PE,me) +§2 (Pe,Pf’mesmf) —§2 (Pf — Pf)
— By (P. - Po) + By (P. - o, Py — P;)

+€%§1(Pe""Pf,PE—)Pf,me_)mf) )

(23)
where, for a spherical cutoff Kpnax for the photon momentum magnitude,
~ —2m?2 In (2Kmax/m-~) ( 1 1 )
Bi (Pe, Ps,me) = ‘ K -
1 (Pe, Pz, me) S0 1-8. 1+ 8
‘ (24)
(s - 2m?)

1‘“ﬂe
- Tﬁeln (2Kmax/m4) In (1 n ﬁe)

14
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1n

—1In

Bz (P,,,Pf,mc,mf) ﬁf In (2KmaX/m'1) ( lﬂf 1 +1ﬂf)

eym? 1 1 '
+ L e/ (5, - ) (3)

(sef —m? — m%) esIn (2K max/m-)

47 ((m,zf - mf - tef)2/4+m§ (Sef -9 (m3 N m§)))1/2

Sef — 2 (mf—i—m%) - (m'}—mf ——t,f) /2—- ((m%-mz_tef)2/4+mf (Scf_2 (mg-;-mz})))l/z

+

(mﬁ_mg_td)/ﬂ(( m3 mg—te,)2/4+mg (sef—z(m3+m§))>l/2
cor =2 (mt 4 ) = (m = mt =) 2+ (= mt = 1)" [ sy =2 (mi 4 m3)))

2 1/2
(3 = m2 —teg) [2= (3 = 2 —tug)” [+ 2 (o0 — 2 (2 + m2))
where (note that (1/(1 — By) —1/(1 + By))/sBy = 1/2m})
Bs = (1——4m}/s)1/2 . (26)

Hence, we have completely specified 3, and §;; we now turn to B, and ;.

Considering first 8,, we have (the §; in (14) and (15) contain a standard

phase space factor relative to those in (9))

Bo = X% Bo [Pe(1), P2(1), Pu(1), Pa(1), M phya/ A Mppiye/ A, (M) (27)

where /sy = 2my, phys and

Pi(1) = (Voo/2 » 2ryfso/a—min /X)L f=eun (28)

with 2, = —2; = £ and 2, = —2;. Here, A = Mz./2m phys.

15
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Sifnﬂilrly, for —51, we have

™[

1 = A7 By [Pi(1), mipnys/A, ki/X, o® — a(l)a?(N)] . (29)

This, then, completely specifies 8, and 3;.

Thus, in our example Ex: = P}’ + P}’, -ﬁX' = Ff + ?f and we have

do = exp {2a(1) (ReB + E)} (2;)4 /d4y exp {iy - (P + P: — Px:) + D}

~ Bk, =
{Botw) + [ 52 ek B, (@)} dbxs P

(30)
where

We note that, as one may check from (16)—(26), ReB+B does not contain infrared

singularities.

The effect of ¢ in (3) has been discussed in detail by Jadach in Ref. 12. The

basic result is that, for Monte Carlo simulation, one should write (30) as

16
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do = exp {2a(1) (ReB + B (Pi(1), mir(Y), Bymax/)) }

Kmnx

| [a (Vo Ex) Bo (V) [ ale')ae!

0

+0 (e~ Kua) o (v3) CUA (¢/B, 1)°04 | By,
(32)
+exp {Za(l) (ReB + E(P,.(1),m,~R(A),E4,M/A)) }
Bk T dote— k) [ e~ k(e — k)
1 k! o
o € — k! a(1)A
+O (e k'~ Kn) SO (E,;,mka) } e
: where we have introduced
a(1)A = 2a(1) B (P;(1), mir(A), Kmax/)) / In (sz / ,\mv) . (33)
e=vs—Exi=+/s—E;— Ej (34)
and
_af1)A € a(1)4 iy al)A € (D)4
p(E) a € <E’7,maX> > P (E) a € <E'4,ma,x> ’ (35)
with
s —2k'\/s — 4m?
Eymax = \/§/2 - 2m3’/\/g ’ E';,ma.x = ( i \/_ . f) (36)

AN
[Note that f = u in (30).]
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Hence, here, Kp,x is the maximum energy of a photon which cannot be
detected by the respective detector. In order to implement (32), one proceeds
as follows. One uses p(€) (p'(e — k')) to choose a value for e(¢ — k') by standard
Monte Carlo methods. One sets the number n of Yennie-Frautschi-Suura soft
photons equal to 0 if € < Kmax(€ — k' < Kmaz). For € > Kpax(e — k' > Kmax)

one picks n according to the Poisson distribution

e—k'
where the n—1 variables that generate P,—; in Ref. 12 may be used to choose
the photon energies ki,...,ky, such that Y~ k; = (3>, k; = € — k'). The angular
distribution of the n photons is then chosen, by standard Monte Carlo methods,
according to S (k)d3k/k. In this way, a one-loop event generator based on results

like those in Ref. 11 may be rigorously exponentiated.

We have used Ref. 11 as a pedagogical example. The method illustrated by

(14)—(37) applies to any electroweak Monte Carlo event generator.

Currently, there is an effort by Berends’ group!® to create an order o* event
generator for eTe™ annihilation into utu~(v,~vy). Thus, it is of some interest to

record the analoga of (14) and (15) at order o*. In (14) we would use

Bo (g0) = d(;g:) - 2Re(a(1)B)d(:i§IOf) + (2Re(°‘2(1)B))2 ;g‘; (38)
and in (15), we would use
Bk = =22 ) oRe(aB)—2®) __Fkyp, ()

T dQy, dQ kg dky dQ, dQ. ki di;

where doP1(a#) is the cross section for single bremsstrahlung through order a#;

the analogous definition holds for do(a™). In addition, to order a?, the cross

18
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section” B4 (ki1, k2) may be identified as

doB? doy

dQ,(d3k; k1) (d3ka k) (kl)s(’”)dn

_ﬂ—z =
(40)

~ 5 (k1) B, (k2) — S (k2)B1 (k1)

where doB? is the respective order o* double bremsstrahlung cross sectlon For-
mulas analogous to (27)-(29) may then be used to obtain ﬂo, ﬂl and ﬂ2 The

steps leading from (30) to (32) may then be repeated. The net result is to add
to (32) the term

exp{2a(1)<ReB LB (Pg(l),miR(/\),E;:max/}‘))} —Ez(k;,kn) dzlfr dzlf,”

Krax
{5(6—]6'*“10”)/ p”(f’—k,—k”) d(E’—k,—k”)
0

a()A  [e—k'—k'm\ M4
+0(e—k’—k"-—Kmax)e_k,_k,,( = dBx:

~,max
(41)
where (here k' - k'' = k'k'' — k' - k"' so that k° = |k |= k for all k)
E';Imax -
<\/_— K k' |k 4k ) (s —2/5(k" + k') + 2k' - k" —4m§.)
2 (s — 2 /s(k' + k') + 2k' - k') ’
pll(e) = p(e )lE, max=E!1
(42)

Thus, it is clear how to extend (32) to order o? input. (We ignore, here, the
processes ete™ — utu~ + ff, f = e, pu, for pedagogical reasons; they pose no
particular problem, but are expected to be insignificant at the level of accuracy

of interest to us here.)

19
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Several comments are in order. First, the use of E, ., and E;' ., for the
respective upper limits of the radiated photon energy is a refinement; these two
can both be replaced by their maximum value, which is just Ey max. Secondly, we
have not allowed Knax to depend on the spherical angles (6, ¢) of the respective
photons. This we have done for simplicity. The expression (32) is flexible enough
to allow one to include a possible angular dependence of Kpax. Indeed, let Kax
= minimum value of Kmax(#,#) for the respective detector. Then, if we set
Kmax = Kmax in (32), we have a correct formula. We can then include the
effect of Kmax(#,¢) by amending our prescription for choosing e(e — k') and n:
if € > Kmax(€ — k' > Kmax) and n > 0, use the bremsstrahlung distribution
S (k)d®k/k to pick the respective angles (6;,4;) of the n photons with energies
{k;} as determined by the procedure in Ref. 12. Due to the angular dependence
of Kmax (0, ¢), some subset of the n photons with energies {Ic,-1 yeensy k,'j} may not
be detected. Let the energies of the detected photons be {kij ST ki,.}- Then,
‘treat the event as an event with n—j detected photons with Vs — Ex+ = € where
only E?:j 41 ki, of (e — k') is detected. In this way, we maintain a realistic

'description of the cross section in (32).

Finally, in the interest of completeness, we would like to describe the procedure!?

which one uses to choose the photon energies associated with (37). Specifically,

these energies are generated as

k; = eez‘/ i e%i ki = (e— k')ez"/ 2": e (43)
J=1 J=1

where the z; are such that z; = Ink; + Y. Here, for : = 2,...,n, we take

z; = Ine+ (In Kpmax — Ine€) (R;/n)
(44)

(z,- =In(e—k') + (In Kmax —In (e — k")) (R,-/ﬁ))

where we recall that 7 is defined in (37) and we note that the R, are generated

from a series of uniformly distributed random numbers r; € (0,1) with Ry41 =
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— Zfil Inr;,1 <N <n-—1, where (n— 1) is the value of N for which Ry, first
exceeds fi. Then, Y is fixed so that k; = ¢ — f__fll kivi (ki =e~k'—Y " kipq)

and
z1=Ine(z1 =In(e - k') , (45)

which means that, at the end of the process, we must reject the entire event if
2n — Y < InKnax, ie., if kn < Kmax. The prescription represented by (14)-(45)

is now a practical way to implement (9).

What we see is that (14)—(45) afford one a method for summing the large IR
and UV effects in ete™ — pfi(y) without encountering mass singularity problems
and without presuming the parton model, at the level of a realistic Monte Carlo
event generator. To repeat, the general application of such “exponentiated” event

generators will be taken-up elsewhere.??
V. Conclusion

We have derived a rigorous renormalization group improved version of the
Yennie—Frautschi—Suura program using the renormalization group equation of
Weinberg and 't Hooft. The detailed application of our formalism to the SU,yz x U;
theory for the processes ete™ — Z° — X will be discussed elsewhere.®® We have,
however, illustrated how one would use our formalism by giving an explicit recipe
for the renormalization group improved exponentiation of the popular Monte

Carlo event generator MMG1 in Ref. 10.
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Figure Captions

Fig. 1. Order a radiative corrections to the initial state in ete™ — X in QED:

a) virtual effects; b) bremsstrahlung.
Fig. 2. Virtual photon correction to ete™ — X. This is a typical graph.

Fig. 3. Real photon emission in ete™ — n (y) + X'. This is a typical graph.
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