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Abstract The physics of the electroweak and strong interac- 
tions in the standard model are reviewed, especially as they 
apply to the tau lepton and to charm and heavy quark physics. 

1. INTRODUCTION 

Charm physics, as all other high energy physics, is now considered 
. . 

- . in reference to the framework of the standard model. The strong and 

electroweak interactions originate in gauge theories with the gauge 

group being SU(3)c x SU(2) x U(l), together with the assignment 

of fermions to triplets if they are quarks and singlets if they are 

-- - leptons under SU(3)c and to left-handed doublets and right-handed 

singlets under the electroweak SU(2). Given 18 or so parameters 

which are put in from outside the standard model, it is in excellent 

shape. Experiment has again and again confirmed its predictions to 

whatever accuracy they can be predicted and measured in a given 

situation. With the beginning of experiments at the 2 factories in 

the near future, the one-loop corrections to the electroweak portion 

of the standard model will be tested to high accuracy. 
- - 
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While aware of the success of the standard model, we are also 

not satisfied with it as a final theory of Nature. It is incomplete. 

Many parameters, such as quark masses and weak mixing angles 

come, as noted above, from outside the standard model. Nor is the 

reason for quark and lepton families or generations explained, let 

alone a connection between quarks and leptons. Why are there 3 

(?) generations ? And then we have the hierarchy problem-how 

is a scale as “small” as the weak scale determined if we start at a 
.-. grand-unified scale or at the Planck scale? 

: 

Therefore we are continually looking for evidence of the physics 

which must exist which is beyond or outside the standard.model. We 

check and recheck with yet higher accuracy the predictions which 

follow from the standard model, hoping to find some hint of what 

lies beyond. 

While working in what is now comparatively “low” energies, there . . 
- 

are possibilities for physics discoveries at BEPC which could point 

beyond the standard model. Some examples which are of topical 

interest at the moment are: 

-- - l Do - Do Mixing - This is a quantity which is small in the stan- 

dard model, which makes it difficult to accumulate enough data 

to make a significant measurement, although present experi- 

ments are approaching the appropriate level.lj2 By the same 

token, this is a good place to look for new physics. Where 

the standard effects are small (or even better, zero) is precisely 

where some new effect might stand out.3 

l Measurement of c + G%V as compared to c -+ SFZU Decays - 
- - Such measurements, if done accurately and combined with 

theoretical analysis, will permit the extraction of the ratio of 
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Kobayashi - Maskawa matrix elements V,JVcs, if not their sep- 

arate absolute values. This allows a check of unitarity of the 

three generation matrix using its second row (see the discussion 

in Section 2 for the first row). 

l r Decays - The search for “forbidden” (in the standard model) 

tau decays such as r + PEe, r + pK”, and r + u7r]7rT- needs to 

be pushed to higher sensitivity. There is an intriguing problem, 

discussed in Section 4, that has arisen in the past few years as 

well of accounting for all the exclusive modes that make up the 

inclusive one-prong decays. 

Both open and bound-charm serve as a laboratory for standard 

model physics as well. To cite a few examples: 

l Charmonium Spectroscopy - Charmonium presents a rich spec- 

trum of narrow levels (see Figure 1) and has many photon and 
. . 

- hadronic transitions which have been studied.4 It is particularly 

-- - 

- 

interesting in comparison to light quark meson spectroscopy of 

ij’q states and of bottomonium (6b states). It is non-relativistic 

enough (v2 /c2 - 0.3) to apply a Schrodinger equation with an 

effective two-body potential, and thus to compare to the much 

more surely non-relativistic bottomonium case (see Figure 2). 

On the other hand, relativistic corrections are surely important 

in a number of cases and the charmonium system provides a 

kind of “bridge” between bottomonium and light quark mesons 

which are intrinsically relativistic by nature. The comparison of 

charmonium to other systems, and particularly bottomonium, 

is something I will stress repeatedly in Section 5, as we learn 

a great deal from this comparison and it gives us confidence in 

applying the lessons we learn in one system to another. 

3 
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I, 

- 

l J/$J + 7 + hadrons and J/q -+ w or 4 + hadrons - These 

decays permit the high statistics study of light hadron spec- 

troscopy and in particular the production of gluonium and “hy- 

brid” (qqg) states5 It clearly will form an essential part of the 

BEPC program. 

l Weak Decays of D+, Do, D$, and A$ - Here we can see the 

interplay of the strong and weak interactions. We are again 

in a somewhat intermediate situation between K decays and 

B decays. In the latter case we expect the “spectator model” 

to work quite well, whereas we already know that there are 

corrections to it for charm, including the phenomena of final 

state interactions, color coherence, weak annihilation and Pauli 

interference which have been extensively discussed.3 - 

2. THE STANDARD MODEL 

- 

-- - 

The standard model for strong interactions, Quantum Chromo- 

dynamics (&CD), involves an unbroken SU(3)c gauge group with 8 

gauge bosons, the gluons. These gauge bosons are coupled to the 

color charge carried by the the gluons themselves and by the quarks 

(and not leptons), which are assigned to the fundamental three di- 

mensional representation of SU(3). 

Electroweak physics, on the other hand, is a gauge theory with 

the group structure SU(2) x U(l), spontaneously broken so as to 

have massive IV+, W-, and 2 vector bosons and a massless photon.6 

Within the gauge theory sector itself there are three parameters: g, 

the SU(2) coupling; g’, the U(1) coupling; and the vacuum expecta- 
- tion value, V, of the Higgs field that is associated with spontaneous 

breaking of the continuous symmetry. 
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We usually do 

defining the weak 

- 

not work in terms of these three parameters. After 

mixing angle through 

cosew = (92 +9g9wy 

and identifying the electromagnetic coupling 

e = gsinew, 

-and the Fermi effective coupling 

(1) 

(2) 

(3) 

- 
with Mw = gv/2, it has been conventional to use CLI = e2/4r, GF 

- and sin2 6~ as the three parameters of the theory. This is related 
. . 

- to the very accurate experimental determinations of the first two, 

o! and GF, leaving sin2 0~ to be pinned down as the characteristic 

parameter expressing the unification of weak and electromagnetic 

interactions. The W and 2 boson masses are related by 

-- - 

Mw = Mzcos8w, (4 

and the W mass itself, using Eqs. (2) and (3) in lowest order, is given 

numerically by 

Mw = 
37.3 GeV 

sinew . (5) 

(Electroweak radiative corrections change this to Mw = 38.65 GeV/ 
- sin Ow.) While up to the present it is sin2 8w that is commonly 

used as the third parameter, Eqs. (4) and (5) make it clear that 
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we could use Mw or Mz. Until their discovery, this made no sense, 

but already the experimental uncertainty on their masses gives a 

comparable accuracy in the determination of sin2 8w to that from 

measurements in low energy neutral current experiments.’ In fact, 

once we enter the era of 2 physics, it is much more appropriate to 

use (Y, GF, and Mz as the three parameters of the electroweak gauge 

theory, since Mz will be fairly easily measured to an accuracy which 

will far exceed its equivalent in other determinations of sin2 8w. 

The fermions in the standard model of electroweak interactions 

are assigned to left-handed doublets and right-handed singlets, thereby 

fixing their couplings to the gauge bosons of the electroweak interac- 

tions. For example, the charged W is coupled to Ev, with gv = -gA = 

g/2& and the 2 is coupled to Du with gv = gA = g/4 cos Ow. 

For the quark sector, there is the additional complication that 

the weak and mass eigenstates are not the same. The Kobayashi - 

Maskawa matrix’ is defined as the matrix transformation that takes 

us from the mass eigenstates of the d, s, and b quarks to the weak 

eigenstates, d’, s’, and b’, the partners in weak doublets of the u, c, 

and t quarks, respectively, which by convention are unmixed: 

(6) 

The 1986 Review of Particle Properties9 gave the following results 

for the magnitudes of those matrix elements that can be measured 

up to the present time: 

- - (1) Nuclear beta decay, when compared to muon decay, gave 

IVudl = 0.9729 f 0.0012 . 

.a - 

= t 
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which included refinements lo which had lowered IVUdj by 0.13%. 

(2) Analysis r1 of hyperon and Ke3 decays yielded 

p&l = 0.221f0.002 . 

- (3) From u and IY production of charm, the CDHS group l2 had 

deduced 

lVcdj = 0.24 f 0.03 . 

(4) By comparing the experimental value l3 for I’( D --+ Ke+u,) 

with the expression that follows from the standard weak inter- 

action amplitude, one derives: 

lf+D(0)~2~Vc,~2 = 0.51f 0.07 . 

where f+” is the form factor for De3 decay which is the analogue 

of f+ for Ke3 decay. With the conservative assumption that 

If;P)l < 19 
IV,,l > 0.66 . 

. . - . 

-- - 

(5) The ratio \VUa/VcbI is obtained from the semileptonic decay of 

I3 mesons by fitting to the lepton energy spectrum as a sum 

of contributions involving b + u and b + c. As more data 

had accumulated, the inadequacy of previous parametrizations 

of the lepton spectrum became clear.6 Using only the lepton 

momentum region beyond the end-point for b + c&l resulted 

in 6 

I’(b -+ u&)/I’(b + c-tti,) < 0.08 , 

which translates to 

Icb/v,bl < o-19 - 

(6) The magnitude of &b itself can be determined if the measured 
- - semileptonic bottom hadron partial width is assumed to be 

that of a b quark decaying through the usual V - A interaction 

7 
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(which from (5) is BR(b + c&l) to within 8%): 

0.037 < l&b1 < 0.053 . 

One can not prove there are three generations from these data, 

but only show consistency with that as a hypothesis. The crucial 

test at present comes from the constraint which unitarity of the 3 x 3 

matrix imposes on the first row: 

. .-. 
(0.9729 f 0.0012)2 + (0.221 f 0.002)2 + (< 0.01)2 = 0.9954 f 0.0025, 

(7) 
with a couple of standard. deviations from unity of the right hand 

side being insufficient to make a fuss about. 

Since the Review of Particle Properties went to press, there have 

been some small shifts in the central values of some of the matrix ele- 

. . ments due to reanalysis and/or new data, such as incorporating newer - . 
charm semileptonic branching ratios in extracting l4 IV,,l. More im- 

portantly, a change15 in the order Zcr2 Coulomb corrections brought 

different experiments into better agreement and raised the value of 

-- - lkl: 
IV&l = 0.9747 f 0.0010, 

to be compared with a very recent result16 

IV&l = 0.9755 f 0.0017, 

which also improves on previous analyses of this quantity, primarily 

in terms of the electron screening correction. l7 The unitarity sum for 

the first row is now 0.9989 f 0.0021 or 1.0004 f 0.0035, depending 

on which new result one uses. One couldn’t ask for better agreement 
- - with three generations. Turning this around, and using unitarity to 

restrict the coupling between the u quark and a new charge -l/3 

.m - 

= c  
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quark results in 

Iv&I 5 0.06. (8) 

This is not very restrictive and, looking at its primary origin in the 

error bar on IVudl, it seems unlikely that there will be a very signifi- 

cant improvement upon it in the future. 

3. WEAK DECAYS OF HEAVY QUARKS 

This is a subject which is comparatively new, but one which is 

already in a fairly mature state experimentally:lP2 we have mea- 

surements of many D meson branching ratios, including Cabibbo 

suppressed nonleptonic modes and the decomposition of the semilep- 

tonic decays into exclusive channels; excellent lifetime measurements . 
exist for both charm and bottom hadrons; a good beginning has been 

made on the study of exclusive decays of the D,, A, and go,+. . . 
- ‘. 

-- - 

On the theoretical side, we have a solid general framework within 

which to calculate these weak decays. In particular, this means 

starting with the electroweak interactions and their gauge group, 

SV) x U(l), and adding the corrections due to the strong interac- 

tions through the use of the renormalization group equation (or an 

equivalent formulation of the same physics), with anomalous dimen- 

sions computed from &CD. 

These calculations are carried out at the quark level. A first 

stage in their application to actual hadrons is simply to neglect any 

other constituent of the decaying hadron aside from the heavy quark. 

In such a spectator model, as it is called, one directly carries over 
- - the quark level calculation to be the hadron level result, with the 

spectator quarks and gluons assumed to arrange themselves into the 
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final state particles together with the quarks (or leptons) coming from 

the heavy quark at no cost or benefit to the overall rate. 

From the present data on charmed particle lifetimes, it is clear 

that there are differences of a factor of two or so between different 

species. lP2 To understand this theoretically, it is necessary to go 

beyond the spectator model and to consider not just what happens 

at the quark level but at the hadron level. In so doing, ideas such 

as annihilation diagrams, interference, color (mis)matching, and final 

state interactions have entered the discussion. 
18 

We give here only an introduction to the subject of the decays of 

hadrons containing heavy quarks. We will work at the quark level, 

where we know quite precisely how to proceed theoretically and the 

results give a semi-quantitative description of the experimental situ- 

- ation as we know it today. The corrections to the spectator model 
. . 

-  ‘. and the detailed analysis of the approaches to a full understanding 
18 

of weak charm decays are found elsewhere. 

l Semileptonic Decays 
-- - 

It is theoretically simplest to start with semileptonic decays of 

the form 

(such as b + cepe) or 

Q + q + me 
- - 

(such as c -+ SEU,) which correspond to a Hamiltonian density of the 

10 
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form 

x = -V,, .$ qyr(l - y5)Q +‘(l - 75)~ (9) 

In Eq. (9) we have used particle names in place of the correspond- 

ing spinor operators and introduced the one factor that does not 

enter into the analogous expression for muon decay, the Kobayashi - 

Maskawa matrix element VQ,. 

The corresponding decay rate can then be easily related to that 

for muon decay, G$mi/192z3: 

F(A) = 1 - 8A2 + A6 - A* - 24A4hA. (11) 
. . 

-  ‘. 

-- - 

Note again the extra Kobayashi - Maskawa factor in front and the 

phase space factor, F(A), which is unity for a massless final quark 

(A = 0). This factor drops off rather quickly, so that F(0.3) = 0.52, a 

value relevant approximately for the c + s and the b + c transitions. 

The electron (positron) energy spectrum is different in the two 

cases. For b + ceDe it is like that in muon decay and gives rise to a 

“hard” spectrum that does not vanish at the high energy end: 

I dr 12 --=- 
rdz 5 

22(2 - x), (12) 

while for c -+ SL?U, (and for t --+ bEue) it vanishes at the two ends 

- - 
1 dr -- 
r dx 

= 12x71 - x) (13) 

.w - 

= - 
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where the scaled energy variable is 

2& x= mif -<l--. 
MQ - Mt 

(14) 
.w - 

Similar results of course hold for decays involving muons or taus. 

l Nonleptonic Decays 

The Hamiltonian density for nonleptonic decays such as Q + 

q + ud has the same basic form, 

GF 
x = -VQ, z fLx7p(1- 75)Qa qrp(l - 7s)dp (15) 

. . 

- ‘I 

as for semileptonic decays, aside from the addition of the color indices 

c1! and /!I which are summed over the three colors to form color singlet 
= - 

-- - currents. The decay rate 

G;M$ 
r(Q + qua = 3 IvQ,12 1g2r3 F (16) 

is also identical to the semileptonic case except for the factor of three 

on the right hand side due to color (we are neglecting the masses 
- - of the u and d quarks, just as we neglected those of the e and u, 

previously). 

12 
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Now let us rewrite the Hamiltonian in a slightly different form: 

‘GF 
N = -v,, -’ 

245 

c+ !TLY7/.4(1 - 75)Qa~iprP(1 - 75)43 

+ qarpp - 75)&q37p(l - 75)QP] (17) 

+ c-~ f!a7/,41- 75)Qaq7p(1 - 75)dp [ 

- qa7& - 75)d2q7p(l - 75)&p] 1 
with c+ = c- = 1 initially.- All we have done is to add and subtract 

a term which is nothing but the original expression with & t) d. 

Moreover, this term would be identical to the original one if it were 

not for the presence of the color indices; without them the interchange 

& t) d is a Fierz transformation under which V - A interactions go 
- . 

into themselves. In the decay rate, the three on the right-hand side 

of Eq. (16) is replaced by 2c$ + cy, which again is no change at all 

when c+ = c- = 1. 

-- - So why make a more complicated expression out of something 

simple? The answer lies in what happens when we turn on the strong 

interactions and add the effects of QCD to the purely weak interac- 

tions that we have considered up to this point. The weak interaction 

will be modified by the presence of strong interaction effects and c+ 

and c- will be renormalized. But they have been carefully chosen 

in this regard, for they only go into themselves under this renormal- 

ization, i. e. the corresponding operators, which are even or odd 
- - under interchange of color indices, do not mix through QCD correc- 

tions. Not only do the strong interactions modify c+ and c- from 

13 
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- 

their initial value of unity, but they introduce new operators into the 

effective Hamiltonian. These so-called “penguin” operators, which 

come in beginning at the one loop level, have a different space-time 

structure than the V - A x V - A structure we have had up to now. 

We proceed to consider each of these effects and their magnitude in 

turn. 

l The Calculation of c+ and c- 

Calculating what happens to c+ and c- under renormalization 

due to QCD is equivalent to studying their behavior as one moves 

from one momentum scale to another. More specifically, at the 

momentum scale corresponding to Mw the weak interactions are 

characterized by the “bare” Hamiltonian density of Eq. (15) and 

c+ = cl = 1. We are interested in what happens when we move 

down to a momentum scale of relevance to a particular hadron, i.e., 
. . 

- . roughly the mass of the decaying heavy quark. 

The study of what happens when one moves from one momen- 

tum scale to another is directly formulated through a renormalization 

group equation. In the case of c+ and c-, they satisfy such an equa- 
-- - tion of the form: 

[ kg + PM-$ - 7*(g) 1 c&I/% 9) = 0, (18) 
where p is some reference scale of momentum (the renormalization 

point) and q is a second scale at which we wish to calculate the 

effective weak Hamiltonian. In this equation, p(g) is the standard 

beta function of the theory, 
- - 

k=P$, 
14 

.a - 
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which characterizes how the coupling changes with a change of scale. 

For &CD, it has the perturbation theory expansion, 

P(g) = ,,g; --+27zf - 33) + . . . (19) 
- 

where nf is the number of quark flavors. Notice that the coefficient 

of g3 is negative as long as 33 > 2nf. In other words, the coupling 

decreases as we increase. the scale of momentum at which we are look- 

ing. This is just the property of asymptotic freedom; the theory of 

QCD becomes more and more like a free field theory as we increase 

the momentum scale. The quantities 7+ are the anomalous dimen- 

sions associated with the operators c*, respectively. They also can 

be calculated in a perturbative expansion, starting in order g2, where 

they originate in graphs where a single gluon is exchanged between - 
fermion lines in the basic four-fermion weak interaction:l’ 

. . 

-  ‘. 7+ = +L + . . . 
479 

92 + . . . 7- = -2z2 

(204 

I, 
-- - Note that if 7* = 0, then the combination of derivatives on the left- 

hand side of the renormalization group equation can be rewritten as 

a total derivative: 

simply expressing the fact that ck does not change under a change of 

momentum scale if the anomalous dimensions are zero. In the case at 
- - hand, as we have just seen, the anomalous dimensions are non-zero 

and the operator coefficients c* change with scale. 

.w -. 

15 



We now proceed to solve this renormalization group equation.20 

The method of solution, that follows looks like it is pulled out of the 

hat, but bear with me. 

We begin by defining the quantity p through an integral: - 

(22) 

-with g(l,g) = g. The quantity g, which is dimensionless, can only 

be a function of the ratio of the momentum scales q and p and the 

coupling g at the reference scale p; it is just the “running coupling” 

that is familiar to all of us. To see this, let us put it in a more 

familiar form by looking at the situation when g is small, so that we 

_ can use the perturbative result for /3(x) = &(2nf - 33) + . . . under 
. . 

- ‘. the integral in Eq. (22). If we take the first term in this expansion 

we obtain on performing the integral, 

(23) 

or 

This is the standard expression for the running of a8 when it is small. 

The definition of 0 in Eq. (22) is perfectly general; it simply 

reduces to the standard form in the small coupling region upon using 

- - lowest order perturbation theory for p(x). Moreover, it is relevant 

to solving our equation since it exactly satisfies the renormalization 

16 
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group equation with zero anomalous dimensions: 

(P$ + P(g)-g) s(!7//w7) = 0, (25) 
as may be seen by applying the differential operator on the left-hand 

side of this equation to both sides of Eq. (22). 

Now we are ready to solve the full equations for ck. The solution 

of Eq. (18) is: 

.-. 
c&/k s> = 41, i?) exp (1 -7=$;y), (26) 

9 
as can be seen directly by-substitution and employing Eq. (25) to- 

gether with the fact that the derivative of an integral with respect to 

its upper limit of integration is just the integrand evaluated at that 

point. 

. . 
- ‘. We go again to perturbation theory to evaluate the integral in 

the exponent of Eq. (26): 

B 

/ 
-++wx = 6 

P(x) 
lnf2 

33-2nf g2’ 
9 -. - 

Therefore, 

c+(q/iw) = c+(lJ) f$ 0 33 -62nf 
, 

and similarly, 

(27) 

(28) 

-12 

. (29) 

We are interested in what happens between a momentum scale 
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which is characteristic of the decaying hadron (which we take to be 

CL) and the weak scale, Mw (which we take to be q). Moreover, if we 

had also taken our reference momentum scale p to be the weak scale, 

our coefficients should make the Hamiltonian density correspond to 

the “bare” density in Eq. (17), i.e., c*(l,ij) = 1. Therefore, 

c+(Mw//-u) = 

and 

6 
33 - 2nf 

-12 

c-(Mw/P,~) = . 

(30) 

(31) 

.* - 

This, finally, is our long-sought result for the coefficients ck (Mw /p, g). 

When we recall that a8(q2) runs down as the momentum scale 

_ goes up, we see that c+(Mw/p,g) < 1 and c-(Mw/p,g) > 1. In 
. . 

-  ‘. fact, there is the simple relation 

c;c-= 1 (32) 

(which is traceable to the factor of -2 between the anomalous dimen- 

sions of the corresponding operators), so that one of the correspond- 

ing terms in the weak Hamiltonian is necessarily suppressed if the 

-- - 

other is enhanced by the effects of &CD. 

0 Penguins 

Before using these results to look at the overall picture of de- 

cays in the spectator model, let us take a brief look at the additional 

operators introduced by &CD, the “penguins”. A set of lowest or- 
- - der graphs which contribute to the existence of “penguin” operators 

relevant to various quark decays is shown in Figure 3. 

18 



4 
._ 

On 

strange 

the upper left is a one loop, “penguin” graph relevant to 

quark decay (and in particular, to neutral K decay). Once 

the loop integral is performed this diagram contributes to an effective 

operator whose space-time structure is (V - A) x V, or equivalently 

amixture of (V -A) x  (V -A) and (V - A) x (V + A). The latter 

operator has a structure that is not in the original weak Hamiltonian 

density. Arguments have been made that although its relative coef- 

ficient is small, the corresponding operator has a big matrix element 
__. in K decays and that it contributes a large part of the experimen- 

-tally observed amplitude. I1 This is a subject still very much under 

debate. 22 

i. 

The diagram on the upper right shows a potential “penguin” 

in Cabibbo suppressed charm decays. Estimates generally put its 

strength well below that from ordinary graphs which contribute to 

the same process. 
. . 

- ‘. 

-- - 

In bottom decay, however, it may be possible to have processes 

(Cabibbo suppressed to be sure) where “penguin” diagrams give rise 

to contributions comparable to, or maybe even larger than, those of 

ordinary tree level graphs. 23 The bottom portion of Figure 3 shows 

a possible example. The “penguin” diagram on the lower left con- 

tributes an effective Hamiltonian density: 

whereas the usual spectator diagram (aside from factors of ch, which 

are close to unity) corresponds to 

.w -. 

= c  

GF # = - vub v,, a7p(1- 75)b 37'(1- 75)u. 
fi 

(34 - - 

The “penguin” loses to the spectator graph because of the 

19 
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.-. 

2 ln(m~/m~) that arises from having one loop and the presence 

of the gluon, but it wins because of the Cabibbo (or more exactly, 

Kobayashi-Maskawa) factor VtbVti, which involves zero and one gen- 

eration jumps, as compared to VUbVUs, which involves two and one 

generation jumps, respectively. Depending in part on how small VUb 

is (something still not known), it could well be that the spectator 

graph gives the lesser of the two contributions. Then, for example, 

in the decays. Bd + K+?r- or B, + dK” the “penguin” contribution 

may be dominant. 24 

l Decays in the Spectator Model 

What does all this mean numerically for the decay of the various 

quark flavors? First consider the strange quark. The statement that 

c- > 1 corresponds to the enhancement of the AI = l/2 amplitude 

- in strange particle decay, which is what one desires in order to be in 
. . 

- ‘. accord with experiment. However, it already requires some stretching 

to get a factor of 3 or 4 in the amplitude, while what is needed is 

something like a factor of 20. Another piece of physics, perhaps 

“penguins” (see the discussion above), is required in addition to the 

-- - QCD enhancement of c-. 

For the charm quark, if we set ,!J = m,, we find c- - 2 and c+ - 

l/a. At the quark level the Cabibbo allowed decay channels are c -+ 
- sev,, c + SPV~, and c + S&L. In the spectator model, all charmed 

hadrons would have the same lifetime and the same semileptonic 

branching fraction, which would be identified with that for the charm 

quark as if it decayed in isolation from other hadronic constituents: 

- - 

B&mnileptonic - 
1 

2 + 2c; + c2_ 
- 14%. 

20 
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For the bottom quark, with ~1 = ?nb, the QCD enhancement 

(suppression) of c- (c+) is less than that for charm: c- - 1.5 and 

C+ - 0.8. In this case we have an expanded list of decay channels at 

the quark level: b -+ cepe, b --) c@~, b + crp7, b --) cdii, and b --$ CSE. 

We have neglected decays where the final c quark is replaced by a u 

quark (using the experimental result1 that b + u/b + c is small). 

The corresponding semileptonic branching ratio is 

B-Kemileptonic - 
1 

2.2 + 1.2(2c? + CL) 
-15%, (36) 

where the semileptonic dec.ays involving CFY, and MS have.been given 

an approximate phase space weight which is 0.2 times that for MY,. 

On the one hand, as noted at the beginning of this Section, these 

results do not agree with experiment, e.g., the Do and the D+ life- 

times differ by a factor of two or so, the average B semileptonic . . 
- 

-- - 

branching ratio is about 12%, etc.‘j2 On the other hand, before 

fixing up the shortcomings of the spectator model,18 I emphasize 

that this is not so bad - I only wish that I was able to calculate 

so simply everything else involving strong interactions to a factor 

of two or better in the rate! The spectator model provides a semi- 

quantitative basis for calculating the weak decays of heavy quarks, 

and is the starting point for the improvements needed to obtain a 

detailed understanding when we take into account the effects of the 

other quarks and gluons present in the initial or final state. 

4. THE TAU LEPTON 

- - All the properties of the tau are consistent with its being a third 

generation lepton, i.e., just another copy of the electron and muon, 
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albeit much heavier. 25 The front-back asymmetry measurements in 

-- 

e+e- -+ /J+/..J- determine the gA coupling of the 2 to F7 so as to make 

the tau the lower component of a weak doublet. The other member 

of the SU(2) doublet, the tau neutrino, must be distinct from the 

electron and muon neutrinos. The upper bound on the tau neutrino 

mass has been lowered to 70 MeV, below the mass of the charged 

lepton of the previous generation.26 

The recent measurement of the charged lepton momentum spec- 

trum in leptonic tau decay by the MAC collaboration gives a new 

world average 26 for the Michel p parameter for r decay of 0.73 f 0.07, 

to be compared with the 0.75 expected for a pure V - A coupling of 

the W at the FY, vertex. While much improved over the situation of 

a few years ago, one can exclude only > 47% V +A at 95% confidence 

- level. 

- ‘. 

-- - 

The clean separation of r events at PEP and PETRA has allowed 

the accurate measurement of the distribution of charged-prong mul- 

tiplicity in its decay. The present world average numbers for the in- 

elusive topological branching ratios 26 are 86.8 f 0.3% for one-prong 

decays and 13.1 f 0.3% for three-prong decays of the tau. The five 

-prong branching ratio is - 0.14%, divided approximately equally 

between decays with and without extra neutrals. 

The advent of vertex detectors has given us accurate measure- 

ments of the tau lifetime. Until this year the best measurements 

gave numbers near 0.29 picoseconds. With new measurements from 

ARGUS, CLEO, HRS, and MAC, this number has moved up some- 

26 - - what to 0.305 f 0.009 picoseconds, with the error obtained from 

combining statistical and systematic errors in each measurement and 

22 

,a - 

= c 



then averaging. For later reference we note that 

- 
= BR(7 -+ z+e-De) (1.595 picoseconds). 

.-. 

The present world average lifetime of the tau then corresponds to an 

electronic branching fraction of 19.1 ztO.6%, about 2a from the direct 

measurement (see below). 

l Leptonic Decays 

Neglecting the mass of the electron, the width for the decay r + 

u,e-ii, is 

WC _ I?(7 + u,e-De) = ~ - 
1 

19273 1.595 picoseconds (38) 

. . Taking account of the mass of the muon, we have 
- . 

(39) 

where F(M,/M,) = 0.97. The present world average values for 

BR(r -+ z+e-De) and BR( r + v7p-fiP) among experiments where 

some have assumed, and others not, the factor of 0.97 between them, 

26 are 17.9 f 0.4% and 17.5 zt 0.3%, respectively. 

Note that leptonic decays like r + e?!e, r ---+ epe, r -+ pi?e, etc., 

are forbidden in the standard model, as they involve lepton flavor 

changing neutral currents. The present upper limits on branching 

ratios for such processes have been reduced to the level of a few 

times 10v5 by the ARGUS collaboration. 27 As these are decays which 

involve only charged particles which must reconstruct to the beam 
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energy and the tau mass, the searches (up to now) have been straight- 

forward ones which have turned up no candidates in the correct mass 

and energy bin. The limit essentially depends on the number of tau’s 

produced, a very large sample of which BEPC should get for “free” 

when running above open charm (and therefore tau) threshold near 

the design luminosity. 

l Semi-Hadronic Decays Through the Vector Current 

We are now interested in decays of the form 7 -+ u7 + Wvjrtual, 

where the virtual W- couples through a vector current to quarks, 

and thence to hadrons. Here we may make essential use the fact 

that the vector current in -strangeness non-changing weak processes 

is an isospin rotation of the isovector part of the (vector) current 

of electromagnetism (i.e., the conserved vector current hypothesis, 

CVC). There is consequentially a relation between the tau decay rate 

. . into v7 and a final hadronic state, f-, and an integral over electron- 
- ‘. 

positron annihilation cross sections for production of the correspond- 

ing hadronic final state, f ‘. More precisely, the relation is: 

I-(7- -+ uJ-) 
l?(r- 4 u7e-De) = 

-- - 
M,2 

cos2 8, 
3 . 

27&M; J 
dQ2Q2(M; - Q2)2(M: + 2Q2)q+,-+fo(Q2), 

0 
(40) 

or 

1 
w + w1 = 2cos2 e 

r(7- --+ u,e-De) 
C 

J 
dx(1 - ~)~(l + 2~)~~+;--;~‘, (41) 

P 
0 

- - in terms of the scaled variable x = Q2/M: and the point cross sec- 

tion, apt(Q2) = 47r02/3Q 2. As the vector, strangeness non-changing 

.* - 
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current is even under G parity, the final state f contains an even 

number of pions. 

The simplest and most important example of such a decay is 

r- -+ u,7rT-ro. Here the strength of the weak vector current coupling 

to r-z0 can be related, using CVC, to that of the electromagnetic 

current to 7r+7rr- . 

The 7~ system is very much dominated by the p resonance and an 

approximate result can be obtained28 from computing r- --) u,p- in 

the narrow resonance approximation, with the coupling to the vector 

current extracted from e+e- + p” experiments. A more accurate 

result is obtained by integrating directly over the e+e- + z7r cross 

section using Eq. (41); one predicts2g 

qT- --+ v~~-#) 

p- --+ u7e-De) 
= 1.23, (42) 

with an error which is due principally to the possible overall nor- 

malization error in the measurement of the e+e- cross sections. The 

agreement of Eq. (42) with experiment26 provides a successful test 

of cvc. 

-- - A closely related result follows for the Cabibbo suppressed decay 

r- + z+(Kz)-. Just as the zz system is dominated by the p, we ex- 

pect this decay to be dominated by the K* (890), as is indeed observed 

experimentally. The rate can be obtained from that for r- --+ v/taup- 

by multiplying by tan2 8, due to the strangeness-changing current, a 

factor to correct for phase space, and a correction for SU(3) breaking, 

yielding3’ 

r(7- + v,K*-) 
- - I+- -+ u,e-ii,) 

= 0.064. (43) 

Because of the decay KS0 -+ z + z -, two ninths of these will appear 
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with as three-prong decays. 

A more complicated situation is presented by r- + ~~(47r)-. 

While this decay proceeds through the vector current and we can 

again relate the decay rate to an integral over e+e- cross sections, 

there are now two possible charge configurations in e+e- annihila- 

tion, 27rr-27rr+ and 7r-7r+27r”, and two in r decay as well, ~,27r-7r+7r 

and v77r-37r”. The constraint of being produced by different I3 com- 

ponents of the same I = 1 weak current forces one linear relation be- 

tween the rates for producing the respective charge states at each 47r 

-invariant mass. As a result, not only can we write the r- + v7(47r)- 

total decay rate as an integral over CY~+~--+~~, but we have separately: 

IyT- -w~T-~K~) 
W  

3 
r(7- + u,e-ve) = 2~ a2MF J 

dQ2Q2(M,2 - Q2)2 
0 

x (M; + 2Q2) ; oe+e-+2s-2,r+ 2 (Q I] 

(43a) 

and 

-- - 
rp- j V,~QT-T+TT~) 

q7- --+ uTe-De) 

M,” 
3 

= 27rdM,8 s 
dQ2Q2(M,2 - Q2)2(M; + 2Q2) 

0 

1 
5 ~e+e--+2r-27+ (Q2) + ue+e-+r+a-2nO 2 (Q I] 

(4 w 

The e+e- cross sections are dominated by the p’ resonance. Very 

rough results may be obtained by approximating the integrand using 
- - a single narrow resonance, but this is somewhat dangerous in that 

the mass (- 1550 MeV) and width (- 300 MeV) of the p’ make 
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the factor (M: - Q2)2(M: + 2Q2) vary strongly over the resonance, 

considerably distorting its shape in r decay. 3o Integrating directly 

over the e+e- cross sections gives: 

- 
r(7- + V,f?-De) 

= 0.055, (444 

-and the sum, 

Wb) 

(444 

The result for the one charged-prong decay r- -+ u77rr-37r” in Eq. 

(44a) is-rather certain as it depends only on the integral over the well 

measured cross section for e+e- -+ 27rr+27r-. The numerical result in 
. . 

- Eq. (44b) is more uncertain because of the poorly measured cross 

section for e+e- -+ 7rrr+7r-27r” above 1.4 GeV, 

- 

although it is in excellent accord with the direct measurement 26 of 

the branching ratio for this process in tau decay. Moreover, a subset 

of these decays arise from the process r- + U,WX-. This has been 

observed in tau decay, 31 permitting a test of CVC by comparing this 

data to that for e+e- + WX’ as a function of invariant w7r mass. 

CVC passes the test successfully.31 

Decays involving more than four pions are very small, as is seen in 

particular for r- + u7(67r)-. In this case we can use the constraints 

that follow from the six pion system having total isospin one: 

- - 
(454 
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l/5 5 f3 = 
2r-f+3d’ 
all (67r)- L 415 , 

115 I f5 = 

3~r--2~r+~r~ 
all (67r)- 2 415 . 

kw 

(454 

From Eq. (45c), 

BR(T- + v7(67r)-) 5 5BR(7- + v,~T-~T+Y~~) 5 0.005 (46) 

and from Eqs. (45a) and (45c), 

i BR(7- + v,7r-57r”) 5 (9/7)BR(F + Y,~T~-~T+T~) 5 0.001 (47) 

- Nor can decays involving eta mesons be appreciable. The simplest 

example proceeding through the vector current in the standard model 

is r + u7v27r. Only wit.hin the past year have data for Q,+,-,~~+~- 

been published which cover the full energy region needed for perform- 

-- - ing -the integral in Eq. (41). Th e cross sections are at most a few 

nanobarns, and carrying out the calculation 32 gives a branching ratio 

for r- + z+~~-7r” of 0.15%. Even taking 5 nb as a generous upper 

limit on the e+e- --+ ~K+K cross section above 1.4 GeV produces 

an upper limit of 0.24%. 

l Semi-Hadronic Decays Through the Axial-Vector Current 

The simplest decay that proceeds through the axial-vector cur- 
- - rent is 7- + v77rr-, which can be precisely calculated because the 

strength of the pion’s coupling to the axial-vector current is directly 
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determined in the leptonic decay of the pion. Exactly the same quan- 

tity, fir cos 8,, is relevant in 7- + u,7rr-: 

- 

q7- + u,r-) = (fir codq2 rni 2 
l?(7- 4 uTe-P,) M72 

127r2 1- - [ 1 w 
= 0.607 . (48) 

The related, Cabibbo suppressed decay, r- + v~K-, also has the 

quantity of relevance, f~ sin 8,) directly measured elsewhere (in the 

dominant decay of the charged kaon), yielding 

I?(T- + uTK-) = (fKsin0,)2 mk 
2 

I?(T- + uTe-De) w 
127r2 1- - [ 1 w 

= 0.0395 . (49) 

The decay r -+ ~~(37~)~ can not be calculated with great accu- 

racy, although it was expected2* to be dominated by the A1 reso- 

nance with a branching ratio of order 10%. Excellent measurements 

- of the decay r- + v,27r-?r+ now exist with a branching ratio 26 of 
. . 

- 6.6 f 0.4% and showing a clear Al resonance in the Jp = l+ partial 

wave, decaying almost entirely through ~rp. 

-- - 

Measurements of the other charge configuration, r- + v77rr-27r” 

are not nearly so good.26 We may gain information on it, however, 

from the constraint of having total isospin one for the (37r)- system; 

it follow that independent of the dynamics 

l/5 I fl = 
7r-27r” 

< 112 , all (37r)- - (504 

and 

l/2 5 f3 = 
27r-7r+ 

< 415. 
all (37r)- - Fob) 

- Thus the number of three-prong tau decays must be greater than 

that of one-prong decays for r- + v7(3r)-. The equality of the two 
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charge configurations occurs when two of the pions are in an isospin 

one state, i. e., precisely the case of relevance where the quasi-two 

- 

body rp channel dominates. The branching ratio for r- + v77r-27ro 

is, if anything, measured26 to be slightly bigger than that for r- + 

v727rr-rr+, but is consistent with equality within the statistical and 

especially the systematic errors of background subtractions. 

Other decays through the axial-vector current are measured to 

be small, like the Cabibbo suppressed decay r + v,(Kr~)-, or can 

be bounded, like r- + u,(57r)-, from the very small number of five- 

prong decays using isospin.30 

l The “Missing” One-Prongs 

Having done all the work of enumerating the decay modes of the 

tau in the standard model, we come to the one outstanding problem. 

. . We have discussed the decays r --+ ureDe, r --+ u~~D~, r --+ u,~, 
- 

-- - 

r -+ u727r, r + u,37r, and r + ur47r, plus a number of smaller modes. 

They occur at the expected rates26’30 and the sum of their exclusive 

branching ratios accounts for almost 90% of tau decays. However, 

there are no modes thought to be of consequence which haven’t been 

included and there is a nagging problem in accounting for all tau 

decays. 26’30’32 In particular, it is difficult to account for all the 

one-prong decays of the tau. 

In more detail, the problem arises as follows. Consider first three- 

prong decays, which are shown in Table I. All the theoretical calcu- 

lations of decay branching ratios are taken from the discussion above 

and are normalized to that for r -+ u,epe, for which we take the 
- world average value of 17.9%. Where theory and experiment can be 

compared, they are in excellent agreement. Moreover, the sum of all 
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the exclusive decays measurements is in agreement with the inclusive 

three-prong branching ratio. 

- 

The agreement between theory (where there is a prediction of 

some accuracy) and experiment (where there is a definite measure- 

ment) is also very good in the case of tau decays involving one charged 

prong, as shown in Table II. Note in particular that aside from the 

leptonic decays (whose branching ratio is used as an input), the excel- 

lent agreement between theory and experiment for the semi-hadronic 

decays r --+ u77r, r --+ u7K, and r- --+ u,7r-7r”. 

The theoretical upper bound on the branching ratio for r- + 

u,7r-27r” comes from Eq. (50) and the measured rate .for r- --+ 

u727r-7rr+ in Table I. Adding one percent for the sum of small modes 

not explicitly written in Table II, the sum of the one-prong branching 

ratios from theory is < 80%, to be compared with the 86.8 f 0.3% 

. . inclusive one-prong branching ratio measured experimentally. We 
- 

have accounted for all the purely leptonic modes and all the modes 

of the form r- -P ur(n~)- of any substance, as well as Cabibbo 

suppressed modes. Where are the remaining of one-prong decays? 

-- - -There is no reason to suspect that they come from the decays 

in Table II for which there are no experimental numbers entered. 

The only two expected to be substantial are r- -+ u,7rr-27r” and 

r- + u,7rr-37r’. The former should occur at the same rate (6.6&0.4%) 

as r- --+ u727r-7r+ (see above). The latter is predicted theoretically 

on the basis of CVC and well measured e+e- cross sections; it should 

be solid. Adding these theoretical branching ratios (and that for 

r + u,~~-~~) to the second column of Table II gives a sum of 78t2% 
- for the branching ratios of the exclusive channels. Although with 

bigger experimental error bars, this is the situation that was already 

,* - 

= c 

31 



TABLE I 

THREE CHARGED PRONG DECAYS OF THE TAU 
Branching Ratio (%) 

Decay Mode Theory Experiment 26 

r- + u,27nr+ 6.6 f 0.4 
r- --+ u,2?r-7r+r” 4.9 5.2 f 0.5 
r- --+ uT(Kr)- 0.3 0.3 f 0.1 
r- y u,K-?r:?r+(r’) 0.22 f 0.14 
r- + u7K-K+TT-- 0.22 f 0.14 

.-. 
r- + ~~2~r-~+3~~ < 0.4 

TOTAL EXCLUSIVE 12.5 f 0.7 
TOTAL INCLUSIVE 13.lf 0.3 

TABLE II 

ONE CHARGED PRONG DECAYS OF THE TAU 

. . 

- ‘. Decay Mode 

-- - 

r- -- + u,e u, 
r- -- 

-+ UTP “p 
r- + u,Tr- 
r- + u77r-7r” 
r- + u,7r-27P 
r- + u77r-37r” 
r- + u,7r-47r” 
r- + u,r-5r” 
r- + uT(K??)- - 
r- + u,(KKr)- 
r- --+ u7r]7r-7ro 
r- + u7K- 
r- + u7(K?r)- 

- - 
TOTAL EXCLUSIVE 
TOTAL INCLUSIVE 

Branching Ratio (%) 

Theory Experiment 26 

17.9 (Input) 17.9 f 0.4 
17.4 17.5 f 0.3 
10.9 10.9 f 0.6 
22.0 22.1 f 1.1 

5 7.0 
1.0 

< 0.1 
< 0.1 

< 0.26 
< 0.5 
0.15 
0.7 0.7 f 0.2 
0.9 1.1 f 0.3 

< 80 
86.8 f 0.3 

32 



4 
. 

noted over two years ago. 30 

- 

A sharpening of the problem has come from the increased accu- 

racy with which many of the main branching ratios are known and 

from measurements of the branching ratio for r + ~+multineutrals, 

which includes r- + u77r-27r”, r- + u77r-37ro, r- --+ urqr-~‘), etc. 

This measurement gives consistently higher values33 than is expected 

theoretically from the sum of the components. (It is difficult to recon- 

struct the individual multi-neutral decay modes.) For a time it was 

suspected that modes involving eta’s were the “missing” modes, 34 but 

this was recently shown to be untenable32 in the standard model. 

In the past few months, the HRS collaboration claimed that there 

. . 

-- - 

were decays involving the eta at the 5% level in exactly the mode, 

r- + u~T-~], that is not expected in the standard mode1.35 (The r]r 

system, which is G  odd, has natural spin-parity and in the standard 

model it must come from the vector current, which is G  even; we have 

by definition a process that involves a second class current.) Within 

the standard model this should happen at a level of roughly o2 in the 

rate when compared to ‘processes arising through the usual first class 

currents and such a decay would be completely negligible.36 O ther 

experiments have since contradicted this result.3’ 

- c  

- 

With other conventional (or even unconventional) modes that 

contribute to one-prong tau decays severely limited, there are two 

possible ways out of the problem. The first is that the branching 
. - ratio for 7 -+ u,eu,, which we took to be 17.9% (and to which we 

normalized all our theoretical predictions), should be M 19%. This 

would scale up all the predicted branching ratios by M 6% and make 

the sum for theory agree with the measurement of the one-prong 

inclusive branching ratio. O f course it is one thing to scale up the 

,a - 
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theory by a common factor, as all the predictions are normalized to 

the single mode r- -+ u7e-De, and another to get all the individually 

measured experimental branching ratios to change, all in the same 

direction! Nevertheless this is what the present world average value 

of the tau lifetime indicates (by 20) is the solution, and it is the 

easiest (purely from the point of view of not straining the standard 

model) way out. 

Second, there is the possibility of something new. This is the 

direction in which the directly measured branching ratios, and par- 

ticularly that for r -+ r- + multineutrals, points. But what? It is 

hard to find a scenario for-this situation which is not very contrived 

(especially if it is not to be in conflict with other existing experi- 

ments). 

The experiments necessary to decide between these two possi- 

bilities are hard as well. I suspect that although the puzzle has 

been sharpened considerably in the past year, it will take some ad- 

ditional measurements over the next several years by detectors well- 

instrumented for detection of neutrals to resolve it. 

-- - 5. HEAVY QUARK SPECTROSCOPY 

The spectroscopy of heavy quark systems is the showcase of our 

understanding of hadron physics. It is sometimes even advertised as 

the “hydrogen atom of strong interactions”. 

We do indeed have a fundamental gauge theory of the strong 

interactions in Quantum Chromodynamics (&CD). This theory in 

principle explains the vast body of data that has been accumulated 
- - over the past dozen years. 38 However, as we will soon see, the connec- 

tion between the fundamental theory and experimental observables 
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L- 

- 

is not (yet) as it is for the electroweak gauge theory, SU(2) x U(1). 

The situation we confront is essentially non-perturbative, and the 

underlying gauge theory is one-step-removed from detailed numeri- 

cal confrontation with experiment. 

What we have at present to accompany the data is more like a 

phenomenology, inspired or backed-up by &CD. At times it gives us 

an asymptotic form. At other times it gives an expression for the 

general structure of some quantity, with free parameters or hadronic 

matrix elements contained within it. While these latter are deter- 

mined by QCD in principle, for the moment they are often only 

approximately calculable (at best). So we take a peek at the data 

and ‘adjust’ the parameters, thereby learning something about the 

nature of the solution of &CD. Then we predict additional quantities - 
and iterate the whole process again. 

. . This is then a place where theory and experiment intertwine; 
- 

-- - 

basic theory, models inspired by theory, and experiment meet and 

influence one another. It is quite different from the situation in the 

electroweak theory where there is a well-defined and clean set of 

perturbative predictions to compare with experiment. In one sense 

this is frustrating, as one would like clean and decisive tests of the 

underlying theory. In another sense, this is what makes it exciting 

and makes the subject still worth pursuing: the interplay between 

theory and experiment is interesting in itself, and we often learn 

things which are applicable either as techniques or as results in other 

areas as well. 

i 

In fact, progress has been made and continues to be made.3Q 
- - Eventually, one has every reason to believe that we will be able to cal- 

culate the “potential” from first principles, presumably using lattice 
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techniques. Everything then will be predicted starting from the QCD 

Lagrangian. We have come a long way in this direction already,40 

and perhaps in a Charm Symposium of a few(?) years hence we may 

well no longer need to give such a talk on this subject. 

l The Spin Independent Potential 

Let’s start with the nonrelativistic, spin independent potential. 

Even the use of the word potential is a bit loose for we are starting 

with a strong interaction bound state problem and extracting from 

it an effective two-body, non-relativistic potential. The problem at 

hand is intrinsically a relativistic field-theoretic one in .which the 

qij sector, for example, is coupled to what happens in the qq@, qij 

+ gluon, etc., sectors as well. Some justification for the success of 

the “naive,” non-relativistic approach have recently been given, 41 

but simultaneously questions have been raised as to the effect of 

what is being neglected, and how it changes the relationship between 

parameters in the underlying theory and the effective potential.42 

There is even a whole,’ well-developed approach to understanding 

some of the same body of data through QCD sum rules. 43 

With these questions in mind, we shall proceed to think in terms 

of a two-body potential obtained by expanding in powers of v2/c2. 

Indeed, such an expansion does make some sense, for the smallness 

of v2/c2 in a system composed of a heavy quark and heavy antiquark 

encourages us to think in terms of a non-relativistic potential with 

spin-dependent terms which arise first in order v2/c2 and give rise 

to splittings which are smaller than those between levels of the spin 

independent potential. In the cases at hand v2/c2 is - 0.4 for the low- 

lying charmonium states and 5 0.1 for the low-lying bottomonium 
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states. Still, when we go to compare with the calculated energy 

levels with experiment we need to bear in mind that predictions from 

alternate potentials that differ by 10 or 20 MeV are not necessarily 

significant in favoring one potential over another. We may in any 

case be making (especially for charmonium) approximations to the 

exact theory in “deriving” a non-relativistic potential which render 

the resulting model incapable of discriminating differences at this 

level. 

We have good theoretical guidance in two opposite regimes. At 

short distances, or equivalently large momentum scales, there is the 

property of asymptotic freedom. The running coupling becomes 

smaller as we decrease the distance scale at which we work, and the 

effective potential approaches the lowest order one gluon exchange 
- 

result, 

. . V(r) + - 4 : 
- . 

as r ---) 0. 

(51) 

-- - 

Note the additional factor of $ compared to the usual Coulomb 

interaction; this arises from color. It is so pervasive that it is worth a 

short derivation, so here it is again. 44 We want the additional factor 

due to color. It arises from a normalized color singlet quark-antiquark 

wave function, S,,/fi in the initial and final state, a color SU(3) 

matrix X$/2 at each quark-gluon vertex, and a color sum over the 

gluons, Ijab, in the gluon propagator. The sum over indices 

trace: 

(eight) 

gives a 
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The trace of $g is just f , as befits the generators of a Lie alge- 

bra (or, as may be checked for the case of the X matrices of SU(3) 

directly); thus the ubiquitous factor of 4/3. 

- 
That’s one regime. The second regime where we have very solid 

theoretical input is at the other extreme, as r + 00, and we have 

confinement of the quarks. From relatively general theoretical argu- 

ments we know that the potential behaves as a linear function of the 

distance: 

V(r) + kr. (53) 

There is a corresponding physical picture of a “color-electric flux 

tube” joining the quarks. As you pull the quarks apart, the flux tube 

is increased in length, at the cost of an increase in energy per unit 

length given by the constant k. The value of k is about 0.2 GeV2. 

Given those two regimes we might hope to construct the full po- 
-. tential. The simplest possibility is to simply add together terms with 

the correct functional dependence in the two asymptotic regimes. 

This is basically the Cornell potential,45 

V(r) = +E + 
(2.34 GkV-‘)2 ’ 

with the two coefficients having been adjusted to fit the charmonium 

spectrum, although the model does a quite adequate job in describing 

bottomonium as well. 

In the late 70’s Richardson combined the two behaviors in one 

form. 46 Here is his potential in configuration space, 

V(r) = 87r 
33 - 2nj 

*(dg), (55) 

.- - 

= c 
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with 

f(t) = IL - 4 
mdq 

s 

e-G 
p en2(q2 - 1) + x2 ’ (56) 

1 

- where it looks like two terms. What’s going on is more transparent 

in momentum space where it can be written as one term: 

.- - 

4 127r 1 
‘(‘“) = - 3 33 - 2nf q2h(l + q2/A2)’ (57) 

As q2 goes to infinity, this expression becomes precisely $cxS/q2, as 

-required from one gluon exchange. In the other limit of q2 -+ 0, one 

obtains something proportional to l/q4. This may be an unfamil- 

iar behavior in momentum space, but if you Fourier transform back 

to configuration space, this is just a potential which is linear in r. * 
It is by no means guaranteed that you will get the “right” coeffi- 

cient to fit the data. Richardson, along with others 47 who proposed 

modified versions of this potential, showed that you do in fact get a 

very reasonable, even excellent, description of the data, especially for 

bottomonium. . 

-- - Finally, Martin has proposed the potential48 

V(r) = (5.82 GeV) (i G;v-1)o-104. (58) 

This potential, with the absurd power of 0.104, lacks fundamental 

motivation (as Martin knew very well). We will use it as a kind of 

straw man, for it also does quite a credible job of fitting the charmo- 

nium and bottomonium data. But why? 

- - The reason can be seen in Figure 4. Here you can see the var- 

ious potentials for comparison purposes. In particular, aside from 
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being displaced vertically from one another a little bit (which you 

are free to remove by adjusting the quark mass), they all have about 

the same behavior between 0.1 and 1 fermi. This can be seen even 

better looking at the inset, where r is given on a logarithmic scale 

and the potentials have been shifted slightly relative to one another - 

vertically, as discussed above. Also shown are the mean radii of the 

psi, upsilon, etc. These are all between 0.1 and 1 fermi, and that’s 

why the different potentials all can fit the data; the wave functions 

for these states mostly (but not entirely) live in this region where the 

potentials coincide. 

Thus, where our theoretical insight is best and tells us-something 

very well-defined for the behavior of the spin independent potential, it 

is mostly irrelevant to the present data. Conversely, the experiments - 
up to now mostly tell us about a region where theory does not have 

much to say about the spin independent potential. In fact, one can 

invert the data to obtain a potentia14’ which describes what happens 

from 0.1 to 1 fermi. Within errors, it coincides with what we have 

just seen in Figure 4. ’ 

-- - Even without a particular potential and detailed calculation, we 

can get a good qualitative idea of what the spectrum of states will 

look.like. In Figure 5a is the familiar spectrum due to a Coulomb 

potential, which is what we have at short distances. The ground 

state with !? = 0 is labelled 1s; its radial excitation (labelled 2s) is 

degenerate in the case of a Coulomb potential with the first set of 

!J. = 1 states (labelled IP), and so on. As an example of a confining 

potential which we want at large distance, Figure 5b shows the levels 
- - of a three dimensional harmonic oscillator, which is more familiar 

than a linear potential and turns out also to be a special “boundary” 
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case from the point of view of the ordering of levels. What will happen 

when we combine the two? For the energy levels we will naturally get 

something in between Figures 5a and 5b. This is shown in Figure 5c. 

The ordering, starting at the bottom, is lS, 1P (between the 1S and 

2S as for the harmonic oscillator, but closer to the 2S, as it would be 

degenerate with it for the Coulomb potential), 2S, 1D (above 2S as for 

Coulomb, but close to it, as it would be degenerate for the harmonic 

oscillator), etc. You can therefore get a qualitative understanding of 

the spectrum from quite general considerations. 

There is a theorem5’ which is quite useful in this regard and 

puts the qualitative ordering discussed above on a rigorous footing. 

It states that if o"V(r) > 0 f or all r, something which is true for 

all suggested potentials, then Ens > E(,+r)P. Related theorems are 
- 

provable for the ordering of levels with other angular momenta.51 

Each of the potentials discussed above can give a quantitative un- 
- 

-- - 

derstanding of the levels of charmonium (Figure 1) and bottomonium 

(Figure 2) to 30 MeV or better. Even the statement that one flavor 

independent potential can fit both systems is nontrivial. The agree- 

men-t between theory and experiment, which is shown in Schindler’s 

lectures,38 I regard as quite spectacular. It includes not just en- 

ergy levels, but wave functions at th,e origin for the nS states as 

well. Where there is a disagreement, it is difficult to know whether 

to blame it on the potential or on corrections due to relativistic or 

other effects which have been left out. 

When and how will we be able to distinguish between potentials? 

The answer appears to be that toponium will provide the crucial sys- 

- .- tern. In Figure 6 is shown the spectrum of toponium52 corresponding 

to mt in the range of 40 to 50 GeV. There are 10 or more nS states 
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below open top threshold; near that threshold there is one state per 

100 MeV. 

More important for the physics at hand, aspects of the spectrum 

of states and of the wave functions at the origin are now sensitive to 

the behavior of the potential at short distances. The values of the 

wave function at the origin are shown in Figure 7, with that for the 

ground state corresponding to a width into electron-positron pairs, 

which is proportional to the square of the wave function at the origin, 

of about 9 keV (from the one photon intermediate state alone). This 

is larger than one would expect from a naive extrapolation from the 

psi and the upsilon by about a factor of two. We are beginning to 

see the effect of the l/r term in the potential pulling in the wave 

function. Higher levels are affected less, as seen in Figure 7, for on 

average they live at larger distances. 

. . The same physical effect is shown in Table III, with the t quark 
-. . 

-- - 

mass assumed to be 50 GeV. Notice in particular how much the 

energy of the 1S level is pulled down by the Cornell potential (3 

GeV below 2 mt). This is to be compared with 1.7 GeV for the 

Richardson and 1.4 GeV for the Martin potentials. Correspondingly 

the radius of the 1S state is much smaller for the Cornell potential 

and the 2S to IS difference much bigger. Even more dramatic is the 

comparison of the wave function at the origin for the 1S state, where 

the Cornell result is about 3 times that for Richardson and 9 times 

that for Martin. Remember, the predicted electron-positron width 

goes like these numbers squared! 

Before leaving this subject, we should note that this same prop- 
- - erty makes toponium a fairly sensitive place to look for extra short 

range forces. A good example is the presence of an extra term in the 
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TABLE III 

CHARACTERISTICS OF TOPONIUM STATES 

FOR VARIOUS POTENTIALS 

ELS < r1s > &!S - hs WglS 

Potential (GeV) (fermi) (GW ( GeV3i2) 

“Cornell” 97.1 0.028 2.2 23.3 

“Richardson” 98.3 0.048 1.0 8.5 

I “Martin” 1 98.6 1 0.084 1 0.5 1 2.7 

potential due to neutral Higgs exchange with enhanced couplings.53 

This changes both the wave functions and the ordering of the energy 

levels in a characteristic fashion, and allows it to be distinguished 

from a simple change in the strength of the l/r piece of the strong 

interaction potential. 

. . 

- ‘. l The Spin Dependent Potential 

Now we turn to the spin dependent potential. In its full glory it 

has the form: 

-- - VsD(r) = ($+G) (!Y&+2y) 

(59) 

+ 3m;m2a - $2 V4(r) 

.w - 

= c 

- - 

as given by Eichten and Feinberg 54 and discussed pedagogically by 
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Eichten 55 and by Peskin. 56 The term V(r) is the spin independent 

potential we discussed previously. The other terms involving VI, V2, 

V3, and Vi are not necessarily simply related to V(r). As can be seen 

particularly clearly in Michael Peskin’s lectures,56 these extra terms 

originate in expectation values of color electric and magnet fields 

which are different than those that enter in the spin independent 

potential; they are new objects. 

Although the situation is more complicated than one might have 

hoped, at least initially it was possible to entertain the idea that all 

the new spin dependent terms are of short range. This hope was 

dashed when it was shown- that 57 

V(r) + K(r) = V2(79. (60) - 

- Since V has a long range confining part, so must either VI or V2. 
. . - Let us use Eq. (60) t o eliminate VI from the spin dependent 

potential. It now reads: 

$1 * i $2 * lc 2m2 + 3 -dV(r) 
rdr 

+ 2 dw9 
rdr -- - 1 2 

+ ($1 + $2) . i dVz(r) 
mlm2 rdr (61) 
1 

+ 
6mum. 

Ss’,.?$.j:-2,!&.& Vi(r) > 

+ 3mrm2 si - s’, V4(+ 

- - Could it now be that the remaining new potentials V2, Vi, and V4 are 

short range? 
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Not only is there no information to contradict this possibility, 

but it is supported by the results of recent lattice gauge theory 

calculations, 58’5g the results of some of which22 are shown in Figures 

8, 9, 10, and 11. We see that VI (which we have eliminated from Eq. 

(61)) is not short range, but V2 looks completely different; it is very 

short range, and similarly for V3 and Vi. All of this is done on a 

163 x 32 lattice. It should be regarded as a qualitative result, but an 

important step toward-the more quantitative results we can expect 

in the future. 

- 

Let us now go back to the spin dependent potential in the equal 

mass case relevant to quarkonium. We rewrite it a little bit, combin- 

ing the first two terms: 

. . 
- + & (62. fs’- P - 22. ,?) Vi(r) 

+ +& (2 s’.s’-- 3) Vi(r). 

-- - -Now, to get a simple physical picture of what is happening, let us 

forget for a moment the previous discussion about the spin dependent 

and spin independent potentials being independent entities. Let us 

consider what we would obtain from a (relativistic) four-fermion in- 

teraction arising from the exchange of a vector and a scalar between 

a quark and the antiquark of equal mass. In momentum space this 

is represented by an interaction: 

L. - F(q2) iium + i3( q2) fi7,uti7’lv. ant - (63) - - 

If we do an expansion in powers of v2/c2, the static limit is the spin 
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independent potential v + s, and the spin dependent terms give the 

Breit-Fermi potential, which in configuration space is: 

Vso(r) = $ dv(r) + ds(r) - 
rdr 

+ 4dv(7) 
rdr > 

1 
+- 6$&&/&~ --- 

)( 
dv (4 d2v(r) 

12m2 
(64 

rdr d2r 

+ & (2 if--s”- 3) pJ2 v(r). 

The term -(dv(r) + ds(r))/ d r r in the first line is due to the familiar 

Thomas precession, and it is followed by usual spin-orbit, tensor (on 

the second line), and spin-spin (on the third line) interactions, each 

with a coefficient related to v(r) or s(r). 

Now we are in a position to compare what is in Eq. (64) to the 

generic decomposition in Eq. (62) involving VI, V2, and V’. First, the 

. . spin independent potential V is here given by the sum of the vector - 
and scalar potentials, v+s. Second, the spin dependent potentials V2. 

V3, and V4 are all expressible in terms of derivatives of only the vector 

part of the potential, v. Hence, if v is related to gluon exchange and 

its associated l/r behavior, then the potentials V2, V3, and Vi are all -- - 
short range in character. 

This encourages us to make the following division: the scalar term 

is long range and associated with quark confinement, while the vec- 

tor term is short range (we include l/r behavior as short range) and 

associated with gluon exchange. From the short range Coulomb-like 

piece one obtains the spin dependent terms we are long accustomed 

to in atomic physics: a spin-orbit interaction (minus the piece due 
- - to Thomas precession), a tensor interaction, and a spin-spin inter- 

action. As you go to long range, the confining interaction, which 
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f , 
is Lorentz scalar in character, becomes dominant. The associated 

physical picture6’ has a color flux tube that connects the quark and 

antiquark, and as they rotate around each other the flux tube rotates 

along with them. Consequently there are no spin dependent forces 

generated from this part of the potential, aside from the Thomas 

term which comes in with a minus sign and is generated from the 

spin rotation associated with Lorentz transforming from the center- 

of-mass to the quark or antiquark rest frame. So we get a simple 

way of understanding all the terms in Eq. (64). From now on we 

will take this identification of v and s seriously. Occasionally we will 

slip over to the stronger assumption that s(r) oc r and v(r) oc l/r, 

even to the point of thinking that we know the respective constants 

of proportionality. 

l The Spin-Spin Interaction 

. . The spin-spin interaction, which in the equal mass case takes the 
- 

form 

1 
vss = - 

6m2 
2 s’.s’- 3 > 

v2 v(r), 

-- - 
is the analogue for the color forces of QCD of the interaction which 

gives rise to the hyperfine splittings between atomic levels. If we are 

brave enough to follow this analogy further and insert a l/r behavior 

for v(r), then since o”(l/r) = -47rb3(7’), the spin-spin interaction is 

of very short range! 

This delta function at the origin can be tested by noting that 

for quarkonium p-wave states, whose wave function at the origin 

vanishes, the expectation value of the spin-spin interaction should be 
- - zero. Therefore the center-of-gravity of the three states with total 

quark spin one and J = 0, 1, and 2 should be the same as the mass 

.a - 

= t 
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of the J = 1 state with quark spin zero: 

5Mvi-3Md-Mo =M 
9 spin singlet - (66) 

- 
(The p-wave states with total quark spin one are split in mass by the 

spin-orbit and tensor interactions, and the weighted average is just 

such as to cancel out these contributions). 

For charmonium, the left-hand side of Eq. (66) is 3525.38 MeV, 

and an experiment in the last days of the ISR found a few candidate 

events with an average mass of 3525.4 f 0.8 MeV.61 For the bottomo- 

nium system, the corresponding values for the center-of-gravity are 

9900.2 MeV for the 1P states and 10,261.6 MeV for the 2P states.38 

It would be very interesting to measure the mass of the correspond- 

ing singlet p wave states for bottomonium. There is a little bit of 

. . evidence from the CLEO experiment, studying 7r7r transitions from 
- 

-- - 

the 3s resonance, for a state a little below the 1P center-of-gravity.62 

As the lib system is more non-relativistic than EC, the agreement with 

Eq. (66) should b e excellent. Otherwise, the agreement in the charm 

case was an accident, and we had better take a close look at our 

assumptions on the short range nature of the spin-spin interaction. 

Let us specialize to a system that,consists of one heavy and one 

light quark. The assumption that v(r) behaves as l/r still gives a 

delta function at the origin in the part of the potential that gives the 

spin-spin interaction. Furthermore, the physical origin of this term in 

a quark color magnetic moment interacting with an antiquark color 

magnetic moment is still correct, and so it still depends inversely 
- - on the product of the quark mass and the antiquark mass (see the 

coefficient of Vi in Eq. (59)). F or example, the mass difference of the 
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ground state vector and pseudoscalar states should behave as 
I, 

M(3S1) - M(‘So) cc IW I2 
m;??Zj . (67) 

If we use the fact that the spin-spin splitting is small and that in 
- 

terms of constituent masses, 

M(3S,) - M(‘So) - rni + mj, (68) 

then we can rewrite Eq. (17) in terms of mass squared, 

M2(3S1) - M2(lSO) oc mkrmT lQ(0)12 CTC I*(O) 12//4j (69) 

and get a result that depends on the reduced mass of .the quark- 

antiquark system. 

One the other hand, in a system composed of a heavy and a light 

quark we have a atomic hydrogen-like situation with the heavy quark 

. . playing the role of the nucleus and the light quark primarily living at 
- 

“large” distances. The corresponding wave function is determined by 

-- - 

the long distance part of the potential which behaves as kr. However, 

for a potential which behaves as r fl, the Schrodinger equation yields 

a scaling law that makes 63 

p(o)12 oc p,f? 

Therefore, corresponding to the case at hand with p = 1, 

IQ(0)12 CC Puij, 

and substituting this into Eq. (69), one finds”4’65 

M2(3Sl) - M2(lSo) - const. (70) 
- .- 

This relation is compared to experiment in Table IV. The input 
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masses come from the Particle Data Tables 66 except for the F - F* 

mass splitting where the new result from the Mark III experiment is 

used. 67 

- TABLE IV 

GROUND STATE VECTOR - 

PSEUDOSCALAR MASSE DIFFERENCES 
Y 

Mass2 Difference Experimental value66’67 in GeV2 

M,2-M; 0.57 

ML. - M; 0.56 

M&.-MA 0.55 

Ms. - M; 0.55 

- M&-M; 0.55 

-. . 

-- - 

The p - r difference is thrown in for good measure, even though 

it involves only light quarks. Even the K* - K case should not be in 

Table IV, for the strange quark is not all that heavy. Of course, they 

are in Table IV because they all agree magnificently with each other, 

so much the more so now that we have the new data on the F’ - F 

mass difference. Equation (70) works far better than it should, as 

not only are the “heavy” quarks involved not all that heavy, but 

even the statement that the wave function at the origin squared is 

proportional to the reduced mass is only approximate. Such superb 

agreement must be an accident. 

Now let us return to systems with two heavy quarks. There the 
- -- wave functions are not determined by the linear part of the potential 

and Eq. (70) should not hold. (It doesn’t!) But here we can be 
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braver yet and insert v(r) = -4rra,/r into Eq. (65) and sandwich it 

between ground state vector and pseudoscalar meson wave functions 

to obtain68 

- 
M(3S1) - M(lSo) = y 1’z;i2 (1 + o(%)) , (71) 

where even the next order QCD corrections have been calculated. If 

we take the measured splitting between the T+!J and qe and invert Eq. 

(71) to find CY,, the resultz231 is 0.3 .to 0.4. This is perhaps a little 

bit too big, not to be regarded as very significant at this time. 

l The Spin-Orbit and Tensor Interactions 

Spin-orbit terms give rise to the fine structure in the old atomic 

physics terminology. In the case of equal constituent masses they 

take the form . . 
- . 

if-L’ vs.0. = - 2m2 (724 

and 
-- - 

1 
VTensor = 12m2 

dv(r) d2v(r) . (72b) 
rdr d2r > 

If we take the spin-orbit and tensor interactions and calculate 

their contributions to the 3P~ state masses, we get6g 

M(3P2) = $f + a - 2b/5 

- -- 

M(3P~) = A? - a + 2b 

(734 

(3 
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M(3P~) = G - 2a - 4b, (734 

where the matrix elements a and b are defined as 

1 - a= - 
2m2 

-$+3$, 
> 

(744 

b= &($-$). w 

We can summarize the relative values of the matrix elements in terms 

of one number by forming the ratio 

r = M(3P2) - Mu = ~2 - yb 
M(3P~) - M(3f’o) a+6bm (75) 

If only the spin-orbit term contributes, r = 2, while if the Coulomb- 

. . like vector part of the potential v(r) is present, r = 0.8. As one turns 
- 

-- - 

on the scalar term, s(r), the matrix element a decreases, as does r. 

If you look at the experimental numbers,38 updated with recent 

data, particularly from CUSB,70 one finds38 for charmonium rXc = 

0.50 f 0.02, and for bottomonium rxa = 0.67 f 0.05 and rx; = 0.70 f 

0.20, for the 1P and 2P states, respectively. All these values are 

smaller than would result from solely a Coulomb-like vector term, 

and point toward a non-negligible scalar term. Moreover, the detailed 

predictions from taking the vector term as -$cr,/r and the scalar 

term as kr give quite good agreement 71 with the data, particularly for 

bottomonium (recall that one expects some corrections, particularly 

for charmonium). The case is getting fairly good for a substantial 

part of the long range, confining part of the potential being scalar 

rather than vector. 
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For mesons composed of a heavy quark and a light antiquark or 

vice versa the physical situation is different, as we discussed previ- 

ously in considering the spin-spin interaction. The light quark lives 

at larger distances, so that the Thomas term, -ds(r)/rdr, can “beat” 

the net vector term, Sdv(r)/ d r r, and the effect of the spin orbit in- 

teraction, (Vs.o.), can be reversed in sign. This would result in an 

inversion of spin multiplets72 compared to atomic physics, charmo- 

nium, and bottomonium where the higher spin state lies higher: the 

ordering would now be M(3Po) > M(3P~) > M(3P2). This idea 

-might be testable in the 3P charm meson states, labelled here D** ‘s. 

A candidate state, the D**(2420), 1 a ready has been found and must 

be J = 1 or 2, as it decays to D*T. If this multiplet is inverted, the 

J = 0 state, which decays to DT, will lie at a higher mass than the 

D** (2420). 

0 Conclusion 
-. 

-- - 

In this brief and incomplete review of the spectroscopy of heavy 

quark systems, we have seen that we have a good qualitative pic- 

ture of the nature of the spin-independent forces. That, plus some 

phenomenological potentials inspired by fundamental theory, carry 

us a long way. For the spin-dependent effects we even have a semi- 

quantitative understanding, as they are more sensitive to the short 

distance part of the potential and we have more insight and more 

tools to help us sort things out. 

Eventually, we want a quantitative calculation of both the spin- 

independent potential V(r) and the spin-dependent potentials V2 (r), 

V3(r), and V4(r), from &CD. This will likely come in due time from 
- .- improvements in computer power and in technique over the present 

lattice calculations. 
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In the meantime, to clarify the emerging picture, we need more 

data. We need to find or confirm the ‘PI states of charmonium 

and bottomonium. We need to find the ~a. We need to find the 

other D**‘s. And maybe best of all, we need to see the spectrum of 

toponium. - 

6. RADIATIVE TRANSITIONS 

As in our earlier discussion of charmonium spectroscopy, we as- 

sume that we are dealing with heavy quarks for which the non- 

relativistic, two-body bound state regime is a good approximation of 

reality. Radiative transitions between levels then occur preferentially 

through the emission of photons in the lowest multipole consistent 

with the spin and parity of the initial and final hadronic states. 

The various radiative transitions for charmonium are shown in 
. . 

-. Figure 12 and those for bottomonium in Figure 13. Transitions of 

the form 3P --) 3S+7 or 3S + 3P+7 are electric dipole in character, 

while 3S + lS +7 transi ’ tlons are magnetic dipole. The correspond- 

-- - 

ing rates behave as 

I’E~ oc e$(2Jf + 1) k; I < fl?li > 12, (76) 

and 

I’M~ CC ei(2Jf+!) k: I < fla’/2M~li > 12, (77) 

respectively. 

- - Table V summarizes 38 the situation for electric dipole transitions 

of the type 23Sr + 7 13P~, i. e., $’ -+ 7 XJ. One sees that the simple 
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TABLE V 
L 

RADIATIVE TRANSITIONS 38 FROM THE $I TO THE x STATES 

$1 + 7x0 20.1 f 4 45 16 19 

v --+ 7x1 18.6f4 40 23 31 

ti’ --+ 7x2 16.8f4 27 22 27 

non-relativistic model predicts widths (I’NR) which are consistently 

about a-factor of two bigger than the experimental widths. 

There are two explanations for this discrepancy, both of which put 

theory and experiment in rough accord. One is in terms of coupled- -. . 
channel effects (of the charmonium bound states to the open charm 

states above threshold), whose predictions 45 are indicated as I’cc 

-- - 

in Table V. A second explanation comes from relativistic effects, an 

example73 of which is given in Table V as rREL. Both effects should 

be considerably less in the bottomonium system. This is indeed the 

case, as shown in Table VI, where the experimental widths for the 

transitions ‘Y’ + 7 Xb are compared to the predictions, scaled to 

the correct photon energies, of one specific (relativistic) mode1,74 

although a number of theoretical models all give comparable results 

for these widths. 38 

Within the experimental errors, there is good agreement between 
- .- theory and experiment - certainly there is no factor of two discrep- 

ancy here. A similar conclusion holds for the T” + 7 xi transitions.70 
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TABLE VI 

RADIATIVE TRANSITIONS~~ FROM THE T’ TO THE xb STATES 

I rEzperiment I 
r Mozhay-Rosner I 

Transition (kW (keV) 

.T’ + 7XbfO 1.3 f 0.4 1.0 

I r’ -+ 7Xb.l 1 2.0f0.5 1 2.1 

I 2.050.5 1 

,. This agreement for the more non-relativistic bottomonium case al- - 
lows us to conclude that we are on the right track for charmonium. 

Another indication of this comes from the 13P~ + 7 13S1, i.e., . . - x -+ 7q!~ transitions in charmonium shown in Table VII. 

TABLE VII 

RADIATIVE TRANSITIONS~~ FROM THE x STATES TO THE $ -- - 

r Ezperiment rNR kc rREL 

Transitio (keV) (keV) (keV) (keV) 

E7$ [ 95 f 37 1 121 1 117 1 128 1 

Xl + rll, 5 252 250 240 270 

x2 + 7+ 429+270 -169 362 305 347 
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Although the experimental widths in Table VII are not pinned 

down with high accuracy (because the total widths of the x states are 

not accurately known), all the calculations are in rough agreement 

with each other and with the data. The reason that the relativistic 

corrections have such a small effect here, but a large effect in the 

case of II,’ --+ 7 XJ, is shown in Figure 14. We see that the matrix 

element for 2s + 1P electric dipole transitions involves a cancella- 

tion which is sensitive -to the position of the node in the 2s wave 

function, something which is shifted by the relativistic corrections. 73 

-This does not occur for matrix elements for 2P + IS transitions, 

which are relatively insensitive to corrections. 

- 

The situation for magnetic dipole transitions between charmo- 

nium levels is shown in Table VIII. We recall that the $J + 7qe and - 
$J’ ---) 7~: transitions involve a flip of the quark spin, but the same 

-- - 

spatial wave function in the initial and final states in a non-relativistic 

picture. This makes the calculation rather unambiguous, aside from 

deciding what value to assign to the charm quark mass in the expres- 

sion for the magnetic dipole matrix element. Within their respective 

errors, theory and experiment are in rough agreement. 

The transition T/J’ --+ 7~~ on the other hand is of the form 23Sr -+ 

llSo; and involves a 2S- 1s wave function overlap which is zero in the 

non-relativistic limit. Indeed, there is a factor of 175 from the kt fac- 

tor favoring this transition over $J -+ 7~~; yet Table VIII shows they 

have roughly the same width. There must be an order of magnitude 

suppression in the matrix element. As such, the absolute prediction 

of the rate is very sensitive to relativistic and other effects; the the- 

oretical prediction for this transition in Table VIII has intentionally 

been left blank, although it is possible to obtain agreement45’73 with 
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TABLE VIII 

MAGNETIC DIPOLE RADIATIVE TRANSITIONS FOR CHARMONIUM 

.a -  

~Ezperitnent heory 

Transitio (kW (kW 

1 q!) 4~5'~ 1 0.8 f0.24 1 - 2 

I $'+7rl,' I 0.4- 2.9 I - 1 

I V-7% 1 0.6f0.13 1 

the experimentally measured decay rate. Nevertheless, the strong 

suppression of the matrix element observed experimentally should 

be taken as one more indication that the underlying picture of a 
-. bound, non-relativistic CC system is a good first approximation to 

the physics of charmonium. 

7. HADRONIC TRANSITIONS 
-- - 

The most remarkable fact about hadronic transitions between 

onium states is that they have such small widths. After all, the 

ordinary hadrons (pions, etas) emitted in such decays have a low 

combined invariant mass; these are strong interaction processes in a 

regime where the running coupling is large. The reason 56 for the 

small widths emerges when we consider these transitions as occurring 

through the emission of gluons which later manifest themselves as 
- -- ordinary hadrons. Each gluon “sees” the color carried by the quark 

and antiquark in a heavy Q Q  system. However, the system as a 
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whole is a color singlet. As its size shrinks to zero, a gluon will “see” 

no net color; the amplitude for the transition will also go to zero. 

- 

Not only does this give us a simple understanding of the small 

rates for such processes, but it suggests an expansion in the size of 

the system, i. e., a multipole expansion, 75-79 in which the leading 

term (proportional to the total color charge) is zero. The first non- 

zero term involves the emission of two gluons and is of dipole - dipole 

character, with the form 78 

ME~-E~ oc S: < !@,I? - E 
1 

E; - Hg - iD 
7%$-l@;>, (78) 

where the index CY runs over the eight gluons, the Hamiltonian Hg 

describes the intermediate state where the QQ system is in a color 

octet state, and D is the time component of the covariant gauge 

. . theory derivative. The explicit occurence of two powers of r in Eq. 
-. j . 

(78) shows how the small size of heavy onia enters the amplitude and 

makes it small. For Ml - Ml transitions, the transition amplitudes 

are small because l/M& is small. 

: 
-- - It is very difficult to calculate absolute rates in this situation, 

as we know neither the spectrum of Hs nor the amplitude for the 

two gluons to turn into specific final hadrons. We can still maintain 

predictive power, but avoid these issues, by taking ratios of ampli- 

tudes. A prime example is provided by the processes $’ + T,!J~~K 

and T’ + TKK. We have the additional piece of luck that the phase 

space available for the ~7r system is almost the same in these two pro- 

cesses. Thus everything in the expressions for the respective ampli- 
- .- tudes is nearly the same except the expectation value of the two pow- 

ers of r that occur in the dipole - dipole matrix element. Therefore, 

.a - 

= c 
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one expects 75,79 

with the right-hand-side found7’ to be - 16 from calculations using 

explicit bound state wave functions for the $’ and T’. The present 

data for the left-hand-side are in good accord with this number.38 

This agreement is an important verification of the basic idea that 

these hadronic transitions are small because of the small size of the 

onium system; the T ’ --+ -T transition is smaller because the bot- 

tomonium system is smaller. 

Botfomonium hadronic transitions are shown in Figure 15 (the 

charmonium transitions were contained in Figure 12). Table IX con- 

. . tains an abreviated selection of predictions for hadronic transitions in 
- . 

the bottomonium system, many of them obtained7’ by using the cor- 

responding charmonium transition rate together with the multipole 

expansion to relate their amplitudes. 

-- - The 7~ transitions among the Y family have been partly dealt with 

above, and are in general accord with experiment. The transition 

T’ --+ TV is particularly interesting because it is of Ml - Ml type, 

scales like l/M;, and should be detectable at the predicted rate. 

There are 9 possible transitions between the 2P and 12’ states, but 

only 3 independent amplitudes in the multipole expansion. Thus 

there are 6 relations among the rates, which, however, are disap- 

pointingly small for experimental testing. The last transition in the 
- .- Table is the best way to find the lPr state, and may have already 

been observed (see Section 4). 
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TABLE IX 

PREDICTIONS FOR HADRONIC TRANSITIONS 
BETWEEN BOTTOMONIUM LEVELS 

- Hadronic Transition 

Y’ + Y 7r7r 
Y’+Yq 
y” --+ y ?T+?T- 
y” -+ y’ r+r- 
23PJ + 13PJ 7r7r 
23PJ -+ 13P.p 7r7r 
13D1 + T rn 
T” + lP1 7r7r 

Branching Ratio (%) 

Theory78’7g Experiment 38 

25 - 30 
0.04 

2-5 
2-3 

0.1 - 0.3 
- 0.01 

20 keV/P 
<l 

27.4 f 1.5 
< 0.2 
4.5 f 0.8 
3.1 f 2.0 

_a - 

There are also a number of hadronic transitions in the charmo- 

-. 

nium system that have small branching ratios, but may well be ob- 

servable. Among them are: $” + qc w involving three gluons (and 

very small?) ; q!+’ + $KT, which must occur at least through the 

-- - 

23Sr component of the $‘I; 13D2 + $7r7r and 11D2 + vc7r~, which 

involve narrow charmonium states above 00 (into which they can 

not- decay) but not DO* threshold; and 7: + qc ~7r, which should 

5 c 

have approximately the same width (- 100 keV) as $’ + $KK, but 

a much smaller (- 2%) branching ratio because of the much larger 

width of the 7:. 

8. CHARM PRODUCTION ABOVE OPEN 

CHARM THRESHOLD 

Once we cross open charm threhold at 3.73 GeV, a wealth of 
- .- interesting new phenomena occur in e+e- annihilation. We still have 

the continuation of the charmonium levels, the 33Sr, 43Sr, . . . and 
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13D1, 23D1, . . . states with Jp = l-. In addition, there may be 

“mixed” states 80 of the form Ecg with these quantum numbers. These 

have been actively looked for in the bottom 81 system without success, 

but they may well be lurking in the region above 4 GeV in the center- 
- of-mass for charm. 

In addition to this there may be “charm molecules” with the 

quark content of t%ijq, or more accurately, (Eq) (qc), as these are quasi- 

bound states of 00, 6D*, etc., just above their thresholds.82 Even 

without resonant states there may be enhancements in various chan- 

nels just above their respective thresholds. 

The continuum itself rapidly becomes fairly complicated. Even 

restricting ourselves to production of two-body or quasi-two-body 

final states, we have: 

l DD, DO* + D*D, o*D*, DD**, . . . where D** indicates an 

-. L = 1 charm state which decays to rD and/or rD*; 

a o,D8, o,D,* + o,“D8, DfDz, D,D,**,... where the Of* indi- 

cates and L = 1 charm-strange state that decays to mrD, (a 

suppressed strong interaction decay) or, if allowed, to D K 
-. - and/or D* K; 

l n,n,, ccc,, Iz:,c;, . . . including the production of a lowest L = 1 

charmed baryon with a mass of - 2500 MeV, which may be 

forbidden to decay strongly,83 and therefore has the dominant 

decay Ai + 7 A,; 

The interplay of the continuum and the resonances is a whole sub- 
- .- ject in itself.84 A representative decomposition from one calculation45 

of the part of the charm production cross section that involves D 

62 

_- - 



4 
._ 

mesons is shown in Figure 16. Note in particular the valleys in par- 

titular channels produced by overlaps of wave functions with radial 

nodes. For comparison, one set of experimental measurements 85 of 

the total e+e- annihilation cross section into hadrons is shown in 
- Figure 17. 

With all this in mind, let us start from open charm threshold 

and make our way 

questions: 

l The $“(3.77) 

upward in energy, highlighting some of the open 

is a “D factory” which dominantly decays to 00 

and is dominantly a 3D1 state with a small admixture of 3Sr. 

How big are decays like $” + $CJM and $J” --+ 7 X of the $J” 

into other charmonium states? 

l As noted before, the 3D2 and ‘D2 states should be narrow as 

they likely lie near the $“, are forbidden to decay into DD, and 

are probably below threshold for decay into DO*. They are not -. 
directly produced in e e + -, but could be found in pp experiments 

and have interesting decays into other charmonium states. 

-- - 

l There is a local maximum in the cross section around - 3.96 

GeV, not far above oD* threshold (see Figure 17). Is this 

indeed some sort of enhancement associated with DO*, or is 

it associated with i?,,Ds threshold, which we now know is also 

very nearby? 

l The ti(4.03) is a clear peak (see Figure 17) with a major de- 

cay into D*D* even though this channel has just opened, but 

its character as a 3S charmonium level, charm molecule, or 

something else remains to be settled. - -- 

_- - 
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l The $(4.16) is another peak. It is at too low an energy to be 

the 4S state. Does it have anything to do with D8Dg* threshold 

which is just below it? 

- 
l There is a long valley in the cross section with a minimum at 

- 4.3 GeV. Is there no enhancement above AIDS threshold, 

which lies in this region? 

l The ti(4.415) would seem to be a good candidate for the 4S 

state of charmonium. Does it decay to DO**? 

l Charmed baryon threshold is at - 4.57 GeV, and experiments 

just above this energy have the capability of making an absolute 

branching ratio measurement for the A, if enough decays can 

be “tagged”. At energies above - 5 GeV, the charmed-strange 

baryons (a,) should be produced, as well as C,, Cz, and other 

excited charmed baryons. The production and weak decays of 

charmed baryons is a subject that has barely been touched. -. 

k 
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FIGURE CAPTIONS 

-- 

1. The spectrum of charmonium. 

2. The spectrum of bottomonium. 

3. Set of lowest order “penguin” graphs contributing to strange 
quark decay (upper left), Cabibbo suppressed charm quark de- 
cay (upper right), and Cabibbo suppressed bottom quark de- 
cay (lower left). Also shown is a spectator graph which also 
contributes to Cabibbo suppressed bottom quark decays 
(lower right). 

4. Comparison of the shape of the Corne1145 (dotted curve), 

Richardson46’47 (solid curve), and Martin 48 (dash-dot curve) 
potentials. The inset shows the same comparison with the po- 
tentials displaced slightly on the vertical scale and a logarithmic 
horizontal scale, along with the mean radii of some charmonium 
and bottomonium states. 

5. The spectrum of energy levels in the case of the Coulomb po- 
tential (a), the three dimensional harmonic oscillator (b), and 
a hybrid of the two (c). 

6. The spectrum of nS states of toponium obtained52 from the 
Richardson potential with mt in the range of 40 to 50 GeV. 

7. The value of the wave function at the origin for toponium nS 
states obtained 52 with the Richardson potential and mt in the 
range of 40 to 50 GeV. 

8. Results of a lattice Monte Carlo calculation5’ of the spin- 
dependent potential -dVl/d r as a function of radial distance 
in units of the lattice spacing, a. 

9. Results of a lattice Monte Carlo calculation5’ of the spin- 
dependent potential dV2/d r as a function of radial distance in 
units of the lattice spacing, a. The solid points are before, and 
the open points after a correction for lattice artifacts described 
in Ref. 59. 

10. Results of a lattice Monte Carlo calculation5’ of the spin- 
dependent potential V3 as a function of radial distance in units 
of the lattice spacing, a. The solid points are before, and the 
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open points after a correction for lattice artifacts described in 
2, Ref. 59. 

11. Results of a lattice Monte Carlo calculation5’ of the spin- 
dependent potential -Vi as a function of radial distance in 
units of the lattice spacing, a. The solid points are before, and 

- the open points after a correction for lattice artifacts described 
in Ref. 59. 

12. Radiative and hadronic transitions between charmonium 
levels. 

13. Radiative transitions for bottomonium. 

14. The lS, 2S, and 1P wave functions showing the relative 
position of their nodes. 

15. Hadronic transitions between bottomonium levels. 

16. Decomposition of the charm cross section involving D mesons 
into its component channels according to Ref. 45. 

17. The total cross section for e+e- annihilation into hadrons in 
units of the point cross section from Ref. 85. The arrows point 
to the positions of the 3S and 4S charmonium states in two 

-. theoretical calculations. 
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