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ABSTRACT 

One loop scalar masses induced by Fayet-Ilipoulos D terms in string theory 

.are calculated directly in the heterotic string theory for an arbitrary compacti- 

- fication which preserves space-time supersymmetry at the string tree level. The 

result is shown to be a total derivative in the moduli space of a torus with two 

punctures, and hence receives contribution only from the boundary of this moduli 

space. 

-- - 
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Investigation of non-renormalization theorems in string theories has been of 

great interest recently[ l-101, since this is intimately connected to the question 

of vacuum stability. It was argued in ref.[ll] that for a class of compactified 

heterotic string theories, consistency of anomaly cancellation with space-time 

supersymmetry requires some of the auxiliary D fields in the theory to develop a 

vacuum expectation value (vev) at one loop order. In this talk I shall show how to 

verify the appearance of such terms through explicit one loop string calculation. 

The results were derived in ref.[12] in collaboration with J. Atick and L. Dixon. 

Similar calculations have been carried out independently by Dine, Ichinose and 

Seiberg[lS]. A string calculation of the anomaly coefficient, which, in turn, may 

be shown to be related to the coefficient of the Fayet-Iliopoulos D-term through 

low energy effective field theory considerations, has been carried out by Lerche, 

Nilsson and Schellekens[l4]. Here-1 shall also give an alternative derivation of the 

results of refs.[12,13], where, unlike refs.[12,13], we may carry out the calculation 

keeping the external momenta strictly on-shell. In this formulation the effect of 

the D-term shows up as a total derivative in the moduli space of a torus with 

. . two punctures, and hence receives contribution only from the boundary of this - 
space. 

If there is a term in the effective action of the form c(~)D(~), it induces a 

mass of the scalar field of the form, 

-- - 

gh c qWa) 
a 

(1) 

Here the sum over a runs all the U(1) gauge generators of the theory, D(“) is the 

auxiliary field associated with the a’th U(1) gauge group, g is the gauge coupling 

constant, qta) is the charge carried by the scalar field under consideration under 

the a’th U(1) gauge group, and h is the chirality of the scalar field, defined 

to be the chirality of the fermionic superpartner of the scalar field. ~(~1’s are 
- 

fhe radiatively generated coefficients. In the absence of a priori knowledge of 

the D-term vertex operator, the most straightforward way of calculating the 
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coefficients c(“) is to calculate the scalar masses to one loop, and then calculate 

the coefficients c(“) from ea.(l). 

The first step in our calculation is to construct the vertex operators for the 

massless scalar fields. Let us denote by Xp, $+ (1 5 p 5 4) the free bosonic fields 

in two dimensions, and their superpartners, associated with the uncompactified 

dimensions. Let b, c denote the reparametrization ghosts, and ,S,r the local 

supersymmetry ghosts. All other two dimensional fields will be denoted by cpi, 

this includes the bosonic and the right-handed fermionic fields associated with 

the compactified dimensions, as well as the 32 left-handed fermions which are 

associated with the gauge group. We shall assume nothing about these internal 

fields cpi, except that they give rise to a super-conformal field theory with the 

correct central charge, and has (2?0) world-sheet supersymmetry, a criteria which 

is intimately connected to the existence of unbroken N = 1 supersymmetry in 

the theory[l5]. This gives rise to the conserved stress-tensors T(z), T(Z), two 

right-handed supersymmetry currents Z’:(z) and a right-handed U(1) current 

_ J(z); 

- . We are now in a position to write down the vertex operator for a general scalar 

field. It was shown in ref.[12] that in the -1 picture[l], the zero momentumvertex 

operator for a general massless scalar field (except the dilaton and its associated - 

axion field) has the form, 
-- - 

V-l(k, z, Z) = e-+(*)f(p(z, .Z))eik’X(z~L) (2) 

where f(cp) is an operator of conformal dimension (f, l), and 4 is a bosonized 

ghost field, defined through the relation[l], 

Y(Z) = e4(z)q(z), p(z) = ~zt(+-4(z)y (3) 

where 7 and c are fermionic fields of conformal dimensions (1,0) and (0,O) re- 

spectively. The BRS?’ current JBRST in this theory may be written as a sum 
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of three terms[ 11, given by, - 

Jo(z) = c(z)Tmatter 

J&z) = ~(z)Z’;~~~~~(Z) 

b(++)az+> 

(4 

(5) 

J2(4 = ;r’(+(z) (6) 

.-. 

where Tmatter (z) and 5!‘Fatter (z) denote respectively the right-handed stress ten- 

sor and the supercurrent for the matter system, involving the fields Xp, $JP and 

cpi. Using eqs.(2-6) we may construct the scalar field vertex operator in the zero 

picture[ 11, 

h(k, z,z) = [&3RST, 2t(4v-1(4] 

= [g(cp(z, 2)) - ik,q!+(z)f(p(z, f))]eik’X(z~z) (7) 

where, 

9(P) = 2 Jyz(” - -qFmatter(W)f (P(4 (8) . . - . 
In deriving eq.(7) we have ignored total derivative terms, as well as terms which 

do not contribute to the relevant correlator due to ghost charge conservation. 

We may similarly introduce vertex operators for the complex conjugate fields 

-- - in the zero picture, 

po(k, Z, a) = [ij(p(z, z)) - ik,?,bp[z)f”(p(z, z))]eik’X(zsz) (9) 

The scalar mass is then proportional to,* 

J J d2T d2z1d222(VO(k, zl)Fo(-k, z2))e (10) 

The calculation of the scalar mass proceeds in the following steps. (We shall only 

- * Here the subscript e denotes the sum over even spin structures only. Contribution from 
the odd spin structure, i.e. the periodic periodic sector, vanishes identically due to the 
zero modes of @‘ [12]. 
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outline the main steps here, since the details have been given in ref.[12].) 

i) First we show that (g(zr)~(t2)eik’X(z1)e-‘k’x(z2))e vanishes identically. 

This is shown by considering a correlator of the form 

where P+(z) is a particular component of the space-time supersymmetry gener- 

ator in the - f picture, and P-(w) is an operator of conformal dimension (O,O), 

constructed from the ghost fields and the space-time supersymmetry currents, 

such that, 

(11) 

Thus (g(a)i(a)e ik.X(zl)e-ik.X(z2))e is given by the residue of the pole at z = 

w of the correlator (P+(z)P-(w)g(z~)~(z2)eik’X(z~)e-~k’x(z2))~ On the other 

-hand-, using space-time supersymmetry transformation properties of various fields 

one can show that P+(z) d oes not develop any singularity near g(zr) or G(Q). Fi- 

nally note that 
(P+(z)P-(w~~~l)~~~2)e’k’x(Tllei*’x(z2) 

the correlator 

) is periodic as a function of z with pe- 

riods 1 and r. Using complex function theory one can then show that the correla- 

tor (Pf(r)P-(w)g(tr)~(z2)eik.X(zl)e-~k’x(z2)) does not have any pole as a func- 

tion of 2. 

atz=w 

In-other words, the residue of (P+(z)P-(~)g(zr)~(z~)e~~~~(~~)e-~~~~(~~)) 

must vanish. This shows that, 

bI(aM~2)e 
ik.X(zl)e-ik.X(z2) 

)e =O (12) 

t There is a slight complication due to the fact that in defining 

(P+(z)P-(w)g(zl)~(zz)e 
ik.X(al),-ik.X(az)) we sum over all spin structures, whereas we 

are interestedin calculating (g(zl)~(z2)eik’X(al)e-ik.x(z2)) c where we sum over even spin 
- - structures only. However, the contribution to (P+(~)P-(w)g(zr)~(z2)e~~‘~(zr )e-ik’X(z2 1) 

from the odd spin structure may be explicitly shown to be singularity free in the z + w 
limit. 
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ii) We are now left with the correlator, 

/d2r/d2z1/ d2z2k,ky( j(Zl)f”(Z2)~lr(*1)~“(Z2)eik’X(z1)e-~k.x(z2))e (13) 

Naively, this correlator will also vanish, since (+‘@‘) - bpV, and k,k,6pv van- 

ishes on-shell. It turns out, however, that the integration over zr produces a 

factor of & from the region of integration zi - 22, and hence the final answer is 

finite in the k -+ 0 limit. In order to get a & singularity we need the integrand 

to have the form, 

(zl - i2)l+k2 (al - j2)l+k2 (14 

We now write down the relevant operator product expansions, 

2k2 
(eik.X(zl)e-ik.X(z2) 

>-I l I 
&(a - z2) 

(15) 

V(4V(z2) - zl T z2 + qz1 - 22) (16) 

- . f(co(a))f”(ro(~2>) - (zl _ z2)tfl _ Z2)2 + - - * + N(Z2J2) 
(a - 22) 

(17) 

where eq.(17) d fi e nes the operator N. It follows from dimensional analysis that 

N must have conformal dimension (1,l). Combining these results we see that in 

order to get a term of the form given in eq.( 14)) we must pick up the leading term 
-- - 

from the right hand side of eq.(16), and the term proportional to N in eq.(17). 

After carrying out the zi integral we see that the scalar mass is proportional to, 

J / 
d2T d2z2(N(z2, Rt))e (18) 

iii) Next we show that N(z, Z) may be written as, 

N(z, a) - c qta) J(z)U@) (a) + Ii+, 2) 
a 

(19) 

where J(z) is the right-handed U( 1) current associated with the (2,0) supercon- 

formal algebra, U(“)(i) is the left-handed U( 1) current associated with the a’th 
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U(1) gauge group, and fi is an operator for which (fi(z,f)), vanishes on the 

torus! Using eqs. (l), (18) and (19) we get, 

,(4 - 
/ 

d2T(J(z)U(a)(z))e (20) 

From this we see that J(z)U(“) (z) may be identified with the vertex operator of 

the auxiliary field D(“). 

.-. 

iv) Using some manipulations involving the space-time supersymmetry gen- 

erators of the theory, it can be shown that, 

(J(z)U(~)(Y))~ - (Im~)-“(~-2e-~e~((U~a~(~)))pp G (I~T)-~F(T,T) 

(21) 
where, 

(22) 

_ The subscript PP denotes the fact that we put periodic boundary condition on 
. . - the.right-handed fermions along both cycles of the torus, while summing over all 

spin structures for the left-handed fermions with appropriate weights. 

iii) Finally one can calculate ((U(“)(Z)))~, using the operator formalism, - 

-- - (23) 

where the trace is taken over all states with periodic boundary conditions on 

the internal fermions. LFnt) and Lint) are the Virasoro generators of the in- 

ternal conformal field theory. F( int) counts the number of internal right-handed 

fermions. PGso denotes the appropriate GSO projection operator in the left- 

handed sector. If Ggnt) denotes the generator of (1,0) supersymmetry for the su- 

perconformal field theory involving the fields cp, then the contribution to the trace 
- - 

$ This is shown by using a trick very similar to the one used for showing the vanishing of 
(g(zl)~(z2)eik.X(zl)e-ik.X(z2))~. 
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from any state ] n > and Gitit) (int) ] n >~cancel each other, since Go commutes 
with Ltnt), Et”“) , ~GSO and U(“)(Z), but anti-commutes with (-l)F(i”‘). Thus 

only the states satisfying Gtnt) = 0 (+ Lent) = (Gcnt))2 + $ = $) contribute to 

the correlator. This completely determines the r dependence of ((U(a)(~))),,, 

and from eq.(21) we see that F(~,F) must be independent of 7. 

Since the final answer must be modular invariant, F(F) must be a modular 

.- 

function of weight zero. Using eqs.(21) and (23), and using the fact that the state 

with lowest Ecnt) eigenvalue (=0) does not carry any U(“) (1) charge, one can 

show that F(T) is bounded by a constant as Im r + 00. This, in turn, implies 

that F(T) must be a constant. Hence we may evaluate it by calculating its value 

as Im r + 00. In this limit it receives contribution only from the massless 

states, and may be written down sxplicitly in terms of the massless spectrum of 

the theory. The final result for the coefficient of the D-term is, 

~(~1 = 9 c n;qfa)h; 
1927r2 i 

- .. 
where ni is the number of massless fermionic (or bosonic) states carrying U(“) (1) 

charge qia) and chirality h;. 

This concludes our discussion of the calculation of the D tadpole generated 

-- - at one loop order in the string theory. The implication of these results on vacuum 

stability and supersymmetry breaking has been discussed in ref.[ 121. In calculat- 

ing this tadpole we ran into a dimension (1,l) operator which could be interpreted 

as the vertex operator of an auxiliary D field. As was shown in ref.[12], these 

vertex operators do have the correct space-time supersymmetry transformation 

properties in order to be interpreted as the vertex operators for the auxiliary 

D fields. In ref.[12] we also constructed the vertex operators of the auxiliary F 

fields for a general scalar super-multiplet. 
- - 

The existence of a one loop D-tadpole is expected to induce a two loop 

dilaton tadpole proportional to C, c(~)c(~). Recently it has been shown that 



such a contribution is indeed present, and arises as a boundary term in the 

moduli space of genus two Riemann surface[l6]. 

In the calculation of the scalar masses that I have described so far, the exter- 

nal momenta were kept slightly off-shell, and were set to zero only at the end of 

the calculation. I shall now give an alternative derivation of eq.(18), by setting 

the external momenta to be on-shell from the very beginning. A considerable 

simplification occurs when we set the external momenta to zero, however, now 

we have to be careful not to throw away any total derivative terms from the ver- 

tex operators. The reason is the following. Typically, if we are calculating a two 

point correlation function of the form (VI (k, zl)V2(-k, Q)), then the correlator 

behaves as Cm,n (Zl -z2)-m-k2 (& -Z2)-n--2Cm n, , where the sum over m and n 

runs over a fixed set of numbers, reflecting the conformal dimensions of operators 

present in the theory. If a correlator can be written as a total derivative of an- 

other correlator, then, after integration over zi, we may express the contribution 

as a boundary term at ~1 = 22. (A suitable regularization scheme is to integrate 

-over the region I zr - ~2 12 E, and take E + 0 at the end of the calculation). If 
. . 

- . we allow k2 to be non-zero, then, by suitable analytic continuation we may go to 

a region in the k2 space where the boundary terms are zero. However, if we set 

k2 = 0 from the very beginning, then we loose this freedom, and must include 

the contribution from the boundary terms. (Of course, we still have to regularize 

-- - the amplitude by subtracting off terms which diverge as E + 0, but should keep 

the finite terms). As we shall see, this procedure gives the same answer obtained 

above by continuing k2 away from zero. 

The first step in our calculation is to construct the vertex operators for the 

massless scalar fields at zero momentum, but now being careful about not to 

throw away the total derivative terms. Using eqs.(4-7) we get, 

VO(Z) = [QBRsT,X(+-~(Z)I 

= 2az(c(,)S(z)e-~(z)f(co(z)) + 9W)) (25) - - 

We may similarly introduce vertex operators for the complex conjugate fields in 
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the 0 picture, with j and g replaced by /” and 6 in eq.(25). 

Naively one would think that the scalar mass may be calculated from the 

correlator (Vied), on the torus.* However, on the torus, each of the fields 

b and c has a zero mode, and hence we must soak up these zero modes in a 

BRST invariant way. Soaking up the b zero mode may be done in the standard 

way, by introducing a factor of s qo(z)b(z)d2z s +Io(w)Z(a)d2w in the correlator, 

_- 

. where qo(z) denotes the Beltrami differential dual to dr, r being the Teichmuller 

parameter. It was proposed in ref.[l] that a BRST invariant way to remove the 

c zero mode is to remove the z integration over the location of one of the vertices, 

and multiply the vertex by the product c(z)E(z): This gives a BRST invariant 

vertex, provided the original vertex ?o satisfies, 

[QBRsT,Po(z)] = ~,(c(z)?o(z)) (26) 

and, 

. . 
- . [QBRST,C(Z)] = c(z)azc(z) (27) 

Here, however, the vertices V,, ?o that we have introduced satisfy, 

[QBRsT,~o(z)] = [QBRsT,~o(z)] = 0 (28) -- - 

H and so c(z)Vo(z) or c(z)Vo(z) do not give -BRST invariant vertex operators. 

(Multiplication by E(Z) does not suffer from this problem). 

We propose the following alternative scheme. Instead of multiplying ?o(z) 

by c(z), we multiply p-i(z) by c(z), and then picture change to get a new vertex 

* Here the subscript e denotes the sum over even spin structures only. Contribution from 

- the odd spin structure, i.e. the periodic periodic sector, vanishes identically due to the 
- zero modes of $J. 

t In the previous calculation we integrated over the location of both the vertices, but 
divided by an explicit factor of Im T in writing down the correlator given in eq.(21). 
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cc. Thus, 

Co(z) = E(Z)[Q BRST, 2t(+(4b (z)] 

(29) 

Finally, we must soak up the zero mode of 5 by inserting a factor of s et(~) 

in the correlator. The scalar mass term is then proportional to, 

I= Jd2~Jd2Z1(V~(Z~)~~(ZZ) / d2w?O(Wl)b(W1) 
_- 

Jd2wtrSo(tsr2)b(@2)/ q+3))e 

. . - - . / J d2r d2z1&, (c(zl)r(zl)e-“(“l)r((P(zl))~(~2)~~(z2)~(z2)~(~(z2) 

-- - 

As shown before, the first term on the right hand side of eq.(30) vanishes 

identically:The second term is a total derivative in zi, and it receives contribution 

only from the boundary at zr = ~2. In order to evaluate the second term, we 

first do the zr integral, restricted to the region 1 zr - z2 12 E. This gives, 

I = - d2r da1 (E(zl)e-~(“l)f(u3(z~))e”‘” 
J f 

C 

- 
where ( ) ’ denotes that we have explicitly performed the integration over the c 

and the b zero modes,. thus removing the ghost insertions from the correlator. C 
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denotes a contour of radius c-around the point ~2. We now take the E + 0 limit, 

and throw away all terms which diverge as cP(p > 0) in this limit, keeping only 

the finite terms. In other words, inside the integral, we should take the zi + z2 

limit, and keep only those terms which diverge as (~1 - 82)-l in this limit. In 

order to do this, first let us note that the correlator involving the t, q and r#~ 

fields gives [ 71, 

_- - ?e) 
/ 

qqw3 - z2) 19 [Q (w3 - a) 

Imr d2w3wvw~3 - 4 4 (to3 - z2) 

(32) 

in the sector with spin structure 6. 

This integral becomes 8V6 ‘c --Ml in the limit zr -+ ~2. Furthermore, the integrand 
- 

is periodic as a function of ws with periods 1 and 7, and remains invariant under 

-the transformation zr c-) ~2, ws + -ws + zi + ~2. As a result, the integral must 
. - . be symmetric under the interchange zi * ~2. This gives, 

/ 

d3w3 
~(~(zl)e-0(z1)e~(Z2)q(z2)E(w3))6 

-- - = [1+ O((Zl - Z2)2)l$~~) 
(33) 

Finally, we use the operator product expansion given in eq.(17). Combining 

these results we see that in order to get a term of order (~1 - 82)-l in (31), we 

must pick up the leading term from the right hand side of eq.(33), and the term 

proportional to N in eq.(17). This shows that the scalar mass is proportional to, 

- - J d2+‘J(zz, ~2))e 

which is precisely eq.(I8). 
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This particular derivation, combined with the results of ref.[16], indicates 

that the effect of the vacuum expectation values of the auxiliary fields on physical 

scattering amplitudes is reflected as an obstruction to integration by parts in the 

moduli space, and gives rise to boundary terms. 
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