
HADRONIC AND NUCLEAR PHENOMENA IN 
.- QUANTUM CHROMODYNAMICS* 

STANLEY J. BRODSKY 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94905 

Abstract 

Many of the key issues in understanding quantum chromodynamics involves 
processes at intermediate energies. We discuss a range of hadronic and nuclear 

. . _-. phenomena-exclusive processes, color transparency, hidden color degrees of free- 
dom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, 
hadron helicity selection rules, spin correlations, higher twist effects, and nuclear 
diffraction-as tools for probing hadron structure and the propagation of quark 
and gluon jets in nuclei. Many of these processes can be studied’in electroproduc- 
tion, utilizing internal targets in storage rings. We also review several areas where 

- there has been significant theoretical progress in determining the form of hadron 
and nuclear wavefunctions, including QCD sum rules, lattice gauge theory, and 
discretized light-cone quantization. 

-. . 
1. Introduction 

-. - 

One of the outstanding triumphs of theoretical physics has been the develop- 
ment of quantum chromodynamics. The QCD Lagrangian density, 

FpL” = apA” - YAP + ig[A“, AV] 

describes a renormalizable theory of spin-i quark field and spin-l gluon fields with 
exact symmetry under SU(3)- co or local gauge transformations. According to 1 
&CD, hadrons, nuclei, and their interactions can be described in terms of the 
quark and gluon degrees of freedom. This premise appears consistent with exper- 

iment, particularly in the enumeration of the hadron spectrum and in the whole 
range of high momentum transfer phenomena, where because of asymptotic free- 
dom and factorization theorems for inclusive and exclusive phenomena, the theory 
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has high predictabi1ity.l The general structure of QCD indeed meshes remarkably 
well with the facts of the hadronic world, especially quark-based spectroscopy, 
current algebra, the approximate point-like structure of large momentum trans- 
fer inclusive reactions, and the logarithmic violation of scale invariance in deep 
inelastic lepton-hadron reactions. QCD has been successful in predicting the fea- 
tures of electron-positron and photon-photon annihilation into hadrons, including 
the magnitude and scaling of the cross sections, the complete form of the photon 
structure function, the production of hadronic jets with patterns conforming to 
elementary quark and gluon subprocess, as well as phenomena associated with the 
production and decay of heavy hadrons. Recent Monte Carlo studies incorporating 
some features of coherence (angle-ordering) have been successful in reproducing 
the detailed features of the two-jet (qij) and three-jet (qqg) reactions. All of the 
experimental measurements appear to be consistent with the basic postulates of 
&CD, that the charge and weak currents within hadrons are carried by fractionally- 
charged quarks, and that the strength of the interactions between the quarks and 
gluons becomes weak at short distances, consistent with asymptotic freedom. 

- _ Nevertheless, despite the general acceptance of QCD as the fundamental theory 
of the strong and nuclear interactions, there are very few reliable quantitative QCD 
predictions for the properties of the hadrons and nuclei themselves, e.g. 

(a). The theory predicts hadronic states or resonances for virtually every color 
singlet combination of quarks and gluons. Unfortunately, the only quanti- 
tative tool for determining the QCD spectrum, lattice gauge theory, only 
provides a rough guide. Predictions for exotic color singlet states such as 
gluonium (gg, ggg) or quark-gluon hybrids(gqq, qijqq) are very indefinite. Nu- =-‘ 
clear exotic states such as hidden color resonances and strange nuclei such 
as the di-lambda H also await definitive calculation. - 

(b) There are no reliable calculations of even the simplest properties of hadrons, 
e.g. static properties such as the nucleon magnetic moments. This can be 
contrasted with QED predictions of ten significant figures for lepton gyro- 
magnetic ratios. 

(c) At present there are no reliable calculations in QCD of scattering amplitudes 
or cross sections at low momentum transfer. 

(d) We have no detailed theory of the nuclear force. 

(e) The fundamental processes entailing quark and gluon jet hadronization can 
only be parametrized by elaborate Monte Carlo programs. - - 

In principle, QCD could give just as accurate a description of hadronic phenom- 
ena as quantum electrodynamics provides for the interactions of leptons. However, 
because of its non-Abelian structure, calculations in QCD are much more complex. 
The central feature of the theory is, in fact, its non-perturbative nature which it 
is believed leads to the confinement of quarks and gluons in color-singlet bound 
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.- 
states. Because of the confinement of the colored quanta, observables always in- 
volve the dynamics of bound systems; hadron;hadron interactions are thus at least 
as complicated as the Van der Waals and covalent exchange forces of neutral atoms. 

Unlike atomic physics, the constituents of hadrons are highly relativistic; be- 
cause the forces are non-static, a hadron cannot be represented as a state of fixed 
number of quanta at a fixed time. The vacuum structure of the QCD Hamiltonian 
relative to the perturbative basis is also complex; virtually every local color-singlet 
operator constructed from the product of quark and gluon fields may have a non- 
zero vacuum condensate expectation value. 

At large distances, the gluonic sector of QCD has been shown to be effec- 
tively equivalent to a non-linear sigma model of psuedoscalar mesons, at least for 
large number of colors.2 The resulting topological solitons (Skyrmions) can be 
consistently identified as baryons. It remains to reconcile this representation of 
hadrons at long wavelength with the intuitive concept of the mesons and baryons 
as composites of quark fields at short distances. 

- Despite the complexity of the theory, QCD has several key properties which 
make calculations tractable and systematic, at least in the short-distance, high 
momentum-transfer domain. The critical feature is asymptotic freedom: the effec- 

-tive coupling constant cy8(Q2) w rc h’ h controls the interactions of quarks and gluons 
. . -. , at momentum transfer Q2 vanishes logarithmically at high Q2: 

47r 
a8(Q2) = p log ( Q2 /AtcD) 

(Q2 > A2) . (1) 

-- - [Here /3 = 11 - g nf is derived from the gluonic and quark loop corrections to 
the effective coupling constant; nf is the number of quark contributions to the 
vacuum polarization with rn; 5 Q”.] Th e p arameter AQCD normalizes the value 
of oB (QE) at a given momentum transfer Qi >> A2, given a specific renormalization 
or cutoff scheme. The value of (Y# can be determined fairly unambiguously using 
the measured branching ratio for upsilon radiative decay T(b8) + 7X:’ 

~~~(0.157 MT) = a,(1.5 GeV) = 0.23 f 0.03 . (2) 

Taking the standard MS dimensional regularization scheme, this gives A- = 

il<+ ii MeV. A recent analysis of logarithmic scale-breaking of the isoscalar 
nucleon structure functions F2 (5, Q2) and zF3(z, Q2) from deep inelastic neutrino 
and anti-neutrino interactions in neon by the BEBC WA59 collaboration’ gives 
values for Am in the neighborhood of 100 MeV. In more physical terms, the 
effective potential between infinitely heavy quarks has the form [CF = 4/3 for 

3 



n, = 31,’ 
.- 

V(Q2) 7 -CF 4m(Qi) 
Q2 

(3) 
47r 

av(Q2) = /3 log(Qz/A$) (Q2 za A:) 

where Av = Am e516 N 270 f 100 MeV. Thus the effective physical scale of 
QCD is - 1 f;l. At momentum transfers beyond this scale, cy8 becomes small, 
QCD perturbation theory should begin to become applicable, and a microscopic 
description of short-distance hadronic and nuclear phenomena in terms of quark 
and gluon subprocesses is expected to become viable. 

The above argument is the main basis for the reliability of perturbative calcu- 
lations for processes in which all of the interacting particles are forced to exchange 
large momentum transfer (a few -GeV). Complimentary to asymptotic freedom is 
the existence of factorization theorems for both exclusive and inclusive processes 

- at large momentum transfer which are valid for all gauge theories. In the case 
of exclusive processes (in which the kinematics of all the final state hadrons are 
fixed), any hadronic scattering amplitude can be represented as the product of a 

- hardlscattering amplitude for the constituent quarks, convoluted with a distribu- 
- tion amplitude for each in-going or out-going hadron. The distribution amplitude 

contains all of the bound-state dynamics and specifies the momentum distribution 
of the quarks in each hadron independent of the process. The hard scattering am- 
plitude can be calculated perturbatively in powers of cyd(Q2). The predictions can 
be applied to form factors, exclusive photon-photon reactions, photoproduction, 
fixed-angle scattering, etc. -- - 

In the case of high momentum transfer inclusive reactions (in which final state 
hadrons are summed over), the hadronic cross section can be computed from the 
product of a perturbatively-calculable hard-scattering subprocess cross section in- 
volving quarks and gluons convoluted with the appropriate quark and gluon struc- 
ture functions which incorporate all of bound-state dynamics. Since the distribu- 
tion amplitudes and structure functions only depend on the composition of the 
respective hadron, but not the nature of the high momentum transfer reaction, 
the complicated non-perturbative QCD dynamics is factorized out as universal 
quantities. Recently there has been encouraging progress in actually calculating 
these fundamental quantities, which we shall review in some detail here. Even- 

tually these calculations can be compared in detail with the phenomenological 
parameterization extracted from inclusive and exclusive experiments. 

The central unknown in the QCD predictions is the composition of the hadrons 
in terms of their quark and gluon quanta. Recently several important tools have 
been developed which allow specific predictions for the hadronic wave functions 
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directly from the theory. A primary tool is the use of light-cone quantization 
to construct a consistent relativistic Fock state basis for the hadrons in terms of 
quark and gluon quanta. The. distribution amplitude and the structure functions 
are defined directly in terms of these light-cone wave functions. The form factor 
of a hadron can be computed exactly in terms of a convolution of initial and final 
light-cone Fock state wave functions. We will discuss light-cone quantization in 
detail in these lectures. 

A second important tool is the use of QCD sum rules to provide constraints 
on the moments of the hadron distribution amplitudes.’ This method, developed 
by Chernyak and Zhitnitskii, has yielded important information on the possible 
momentum space structure of hadrons. A particularly important advance is the 
construction of nucleon distribution amplitudes, which together with the QCD 
factorization formulae, predicts the correct sign and magnitude as well as scaling 
behavior of the proton and neutron form factors. A recent analysis by King and 
Sachrajda’ has confirmed these results. 

_ Another recent advance has been the development of a formalism to calculate 
the moments of the meson distribution amplitude using lattice gauge theory. The 
most recent analysis, by Martinelli and Sachrajda,’ gives moments for the pion 
distribution amplitude in good agreement with the QCD sum rule calculation. The 
results from both the lattice calculations and QCD sum rules also demonstrate that 
the light quarks are highly relativistic in the bound state wave functions. This 
gives further indication that while potential models are useful for enumerating the 
spectrum of hadrons (because. they express the relevant degrees of freedom), they 
are not reliable predicting wave function structure. 

Since the intrinsic mass scales of QCD Am, (kl)) , and mq(q = u, d, s) are 
less than a few hundred MeV, quark and gluon degrees of freedom should become 
~evident at momentum transfers as low as a few GeV. The observation of Bjorken 
scaling at Q2 as low as 1 GeV2 supports this argument. At larger momentum 
transfer, one studies logarithmic structure function evolution, the onset of new 
quark flavors, and multi-jet production. However, the dynamics of hadrons and 
nuclei in terms of their light quark and gluon degrees of freedom can be studied 
at moderate energies. 

Several new experimental facilities are in fact being planned which will be able 
to probe QCD effects in the intermediate energy domain. These include 

- -1. The CEBAF accelerator at Newport News, Virginia, which will provide a 
continuous high intensity source of electrons at energies of 4 GeV or higher. 

2. Internal gas targets in PEP. Such a facility will allow a study of electropro- 
duction at e- or e+ energies up to - 15 GeV. Polarized beams and polarized 
proton or nuclear targets are conceivable. The CEBAF and PEP internal 
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target facilities, because of their good duty factor, should allow for a com- 
plete study of the final states in electroproduction channel by channel in the 
energy range where Bjorken scaling and the quark degrees of freedom of the 
nucleon become manifest. 

3. pp facilities such as LEAR and the proposed AMPLE facility at Fermilab, 
which could allow studies of pp annihilation at anti-proton laboratory ener- 
gies up to 10 GeV. 

4. Studies of 77 annihilation at PEP and TRISTAN. The 77 reactions (for real 
and virtual photons from tagged e*) provide some of the cleanest tests of 
&CD. One can test for the scaling laws of QCD in exclusive reactions with 
two large momentum scales, the virtual photon mass and the pi of the reac- 
tion. An interesting feature of QCD is that at large ps, the Q2 dependence 
of each exclusive virtual photoproduction amplitude becomes minimal for 
Q2 < pg. This can be contrasted with the vector meson dominance model 
which predicts a universal fall-off in Q2 at any pi. This feature is due to the 
photon’s point-like direct local coupling to the quark current in QCD. 

One of the most important areas of investigation in electroproduction is the 
-dependence on the nuclear target. The nucleus acts as a background field modi- 

- fying the dynamics in interesting, though possibly subtle, ways. The observation 
. . -. . of non-additivity of the nuclear structure functions as measured by the EMC and 

SLAG/American University collaborations have opened up a whole range of new 
physics questions: 

-- - 

1. What is the effect of simple potential model nuclear binding, as predicted, 
for example, by the shell model? What is the associated modification of 
meson distributions required by momentum sum rules? 

2. Is there a physical change in the nucleon size, and hence the shape of quark 
momentum distributions? 

3. Are there nuclear modifications of the nucleonic and mesonic degrees of free- 
dom, such as induced mesonic currents, isobars, six-quark states, or even 
“hidden color” degrees of freedom? 

4. Does the nuclear environment modify the starting momentum scale evolution 
scale for gluonic radiative corrections? 

5. What are the effects of diffractive contributions to deep inelastic structure 
- functions which leave the nucleon or nuclear target intact? - 

6. Are there shadowing and possibly anti-shadowing coherence effects influenc- 
ing the propagation of virtual photons or redistributing the nuclear con- 
stituents? Do these appear at leading twist? 

7. How important are interference effects between quark currents in different 
nucleons? 9 

6 



It seems likely that all of these non-additive effects occur at some level in 
the nuclear environment. Clearly it will be difficult without further experimental 
clues to sort out all the physical effects. In particular it will be important to 
examine the A-dependence of each reaction channel by channel. We will discuss 
some predictions for the various mechanisms in these lectures. 

.- 

The lectures are organized as follows: In sections 2-13 we present an introduc- 
tory overview to QCD phenomenology, with special emphasis on electroproduction 
at intermediate energy scales. A number of novel effects are discussed such as color 
transparency, formation zone effects, and jet coalescence. Sections 14-16 provide 
a review of the theoretical basis for the predictions, with emphasis on light-cone 
Fock methods. A review of the discretized light-cone quantization method is given 
in section 16. A more detailed discussion of the application of QCD to exclu- 
sive amplitudes and the structure of hadron wave functions is then presented in 
sections 17-21. The important role of QCD helicity selection rules for exclusive 
charmonium decays is discussed -in section 18. Special applications to exclusive 
nuclear amplitudes are presented in section 22. 

2. Testing QCD in Electroproduction - 
An Overview to QCD Phenomenology 

-. . Deep inelastic lepton nucleon scattering has been one of the key testing grounds 
of QCD over the past two decades. Measurements of the nucleon and nuclear struc- 
ture functions have not only tested the short-distance properties of the theory, 

. (such as the scaling properties of structure functions and their logarithmic evolu- 
tion with momentum transfer), but they have also illuminated the nonperturbative 
bound state structure of the nucleon and nuclei in terms of their quark and gluon -. - 
degrees of freedom. For the most part, this information has been obtained from 
single-arm inclusive experiments where only the recoil lepton was detected. 

One of the important potential advantages of an internal target facility in 
an electron storage ring is that the entire final state of electroproduction can be 
measured in coincidence with the scattered electron with close to 47r acceptance. In 
the case of the PEP ring (E(e*) - 15 GeV), measurements can be performed well 
above the onset of Bjorken scaling. Both polarized and unpolarized hydrogen and 
nuclear targets may be feasible, and eventually even polarized electron beams may 
be available. High precision comparisons between electron and positron scattering 
wzld allow the study of higher order QED and electroweak interference effects. 

-The asymmetry in the cross sections for e*p + e*yX can be sizeable,” providing 
a sum rule for the cube of the charges of the quarks in the target. 

At the most basic level, Bjorken scaling of deep inelastic structure functions 
implies the production of a single quark jet, recoiling against the scattered lepton. 
The spectator system- the remnant of the target remaining after the scattered 
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..- 
quark is removed-is a colored 3 system. (See fig. 1.) According to QCD factoriza- 
tion, the recoiling quark jet, together with the gluonic radiation produced in the 
scattering process, produces hadrons in a universal way, independent of the target 
or particular hard scattering reaction. This jet should be identical to the light 
quark jets produced in e+e- annihilation. In contrast, the hadronization of the 
spectator system depends in detail on the target properties. Unlike the quark jet, 
the leading particles of the target spectator system do not evolve and thus should 
not depend on the momentum transfer Q2 [at fixed IV2 = (q + P)~]. At present 
we do not have a basic understanding of the physics of hadronization, although 
phenomenological approaches, such as the Lund string model, have been successful 
in parameterizing many features of the data. 

Spectator 
System 

: P 

. . 4-87 5741A9 
- 

Fig. 1. Struck quark and spectator systems in electroproduction. 

At a more detailed level, ‘the features of the standard leading twist descrip- 
tion are modified by coherent or non-perturbative effects. For example, higher 
twist-power-law suppressed contributions arise when two or more quarks recoil 
against the scattered lepton. At high energies, the quark jet does not change its 
state or hadronize over a distance scale proportional to its energy. Thus inelastic 
or absorptive processes cannot occur inside’ a nucleus-at least for the very fast 
hadronic fragments. We will discuss this target length condition1”‘2 in more de- 
tail below. Nevertheless, a nuclear target can provide an essential tool for studying 
the detailed features of jet hadronization since the fast fragments are expected to 
scatter elastically in the nuclear medium, and the slow particles can interact in- 
elastically and shower inside the nucleus. A review of the QCD predictions for jet 
hadronization can be found in ref. 13. 

- -Many of the novel features expected in QCD are also apparent in QED. It is 
thus often useful to keep a QED analog in mind, replacing the target by a neu- 
tral atom such as positronium. Even in QED where there is no confinement, one 
expects in certain kinematic ‘regions significant corrections to the Bjorken scaling 
associated with positron or electron knockout, in addition to the logarithmic evo- 
lution of the QED structure functions associated with induced photon radiation. 
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For example, at low Q2, the interference between amplitudes where different con- 
stituents are struck become important. Near threshold, where charged particles 
emerge at low relative velocities, there are strong Coulomb distortions, as summa- 
rized by the Sommerfeld14 factor. In QCD these have their analog in a phenomena 
called “jet coalescence” 15 which we discuss below. The Coulomb distortion factor 
must be included if one wants to maintain duality between the inelastic continuum 
and a summation over exclusive channels in electroproduction. 16 

My main emphasis is the next sections, however, is in the study of exclusive 
channels in electroproduction. It is clearly interesting to study how the summa- 
tion of such channels yields the total inelastic cross section. More important, 
each individual exclusive channel can provide detailed information on basic scat- 
tering mechanisms in QCD and how the scattered quarks and gluons recombine 
into hadrons. In certain cases such as Compton scattering and meson electropro- 
duction, we can study new aspects of the light cone expansion for the product 
of two currents, thus extending the renormalization group analysis into a new 
domain. ” The diffractive production of vector mesons at high Q2 can test the 
basic composition of the Pomeron in QCD. Further, as we discuss in section 4, 
measuring exclusive reactions inside a nuclear target allows the study of “color 
transparency ,, 18,19 , the “formation zone” ,11 and other novel aspects of QCD.. 

3. Exclusive Channels in Electroproduction 

In high momentum transfer inclusive reactions, the underlying quark and gluon 
scattering processes lead directly to jet production in the final state. To leading 
order in l/Q2, the cross sections and jet hadronization can be understood at the 

-- - ‘probabilistic level. In contrast, in exclusive electroproduction processes, one stud- 
ies quark and gluon scattering and their reformation into hadrons at the amplitude 

-level. Exclusive reactions thus depend in detail on the composition of the hadron 
wave functions themselves. 

There is now an extensive literature, both experimental and theoretical, de- 
scribing the features of large momentum transfer exclusive reactions. The QCD 
predictions are based on a factorization theorem20-23 which separates the non- 
perturbative physics of the hadron bound states from the hard scattering ampli- 
tude which controls the scattering of the constituent quarks and gluons from the 
initial to final directions. This is illustrated for the proton form factor in fig. 2. 

-Electroproduction of exclusive channels provides one of the most valuable testing 
grounds of this QCD formalism, since the incoming photon provides a probe of 
variable space-like mass directly coupling to the hard-scattering amplitude. 

It has been known since 1970 that a theory with underlying scale-invariant 
quark-quark interactions leads to dimensional counting rules24 for large momen- 
tum transfer exclusive processes; e.g. F(Q2) - (Q2)l-” where n is the minimum 
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Fig. 2. (a) Factorization of the nucleon form factor at large Q2 in QCD. (b) The 
leading order diagrams for the hard scattering amplitude 2’~. The dots indicate 
insertions which enter the renormalization of the coupling constant. (c) The leading --‘ 
order diagrams which determine the Q2 dependence of +B(x, Q). 

-- - 
number of quark fields in the hadron. QCD is such a theory; the factorization 
formula leads to nucleon form factors of the form:25 

G(Q2) = 

l+O(as(Q))+O 

W_e review the derivation of this result in section 17. The first factor, in agreement 
-with the quark counting rule, is due to the hard scattering of the three valence 

quarks from the initial to final nucleon direction. Higher Fock states lead to 
form factor contributions of successively higher order in 1/Q2. The logarithmic 
corrections derive from an evolution equation 20’25 for the nucleon distribution 
amplitude. The 7n are the computed anomalous dimensions, reflecting the short 
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distance scaling of three-quark composite operators. The results hold for any 
baryon to baryon vector or axial vector transition amplitude that conserves the 
baryon helicity. Helicity non-conserving form factors should fall as an additional 
power of 1/Q2. Measurementsof the transition form factor to the J = 3/2 N(1520) 
nucleon resonance are consistent with Je = &l/2 dominance, as predicted by the 
helicity conservation rule. 26 A review of the data on spin effects in electron nucleon 
scattering in the resonance region is given in ref. 27. 

It is very important to explicitly verify that 8’2 (Q2)/Fr (Q2) decreases at large 
Q2. The angular distribution decay of the J/Q ---) pp is consistent with the QCD 
prediction X, + Xp = 0. 

The normalization constants unm in the QCD prediction for GM can be eval- 
uated from moments of the nucleon’s distribution amplitude +(zi, Q). There are 
extensive on-going theoretical efforts computing constraints on this nonperturba- 
tive input directly from QCD. The pioneering QCD sum rule analysis of Chernyak 
and Zhitnitskii’ provides constraints on the first few moments of 4(z, Q). Using 

_a. - 

as a basis the polynomials which are eigenstates of the nucleon evolution equation, 
- one gets a model representation of the nucleon distribution amplitude, as well as 

its -evolution tiith the momentum transfer scale. 

The QCD sum rule analysis predicts a surprising feature: strong flavor asym- 
metry in the nucleon’s momentum distribution. The computed moments of the -. . 

. 

distribution amplitude imply that 65% of the proton’s momentum in its 3-quark 
valence state is carried by the u-quark which has the same helicity as the parent 
hadron. (See fig. 3.) A recent.comprehensive re-analysis by King and Sachrajda’ = - 

-. - 

x,=1 

- 

a-85 5207A7 

Fig. 3. QCD sum rule prediction for the 
proton distribution amplitude. 
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has now confirmed the Chernyak and Zhitnitskii form in its essential details. In 
addition, Dziembowski and Mankiewicz 28 have recently shown that the asym- 
metric form of the CZ distribution amplitude can apparently be derived from 
a rotationally-invariant CM wave function transformed to the light cone using 
a Melosh-type boost of the quark spinors. The transverse size of the valence 
wave function is found to be significantly smaller than the mean radius of the 
proton-averaged over all Fock states. This was predicted in ref. 20. Dziembowski 
and Mankiewicz also show that the perturbative QCD contribution to the form 
factors dominates over the soft contribution (obtained by convoluting the non- 
perturbative wave functions) at a scale Q/N B 1 GeV, where N is the number 
of valence constituents. Similar criteria were also derived in ref. 30. Results of 
the similar Jacob and Kisslinger31 analysis of the pion form factor are shown in 
fig. 4. Claims32 that a simple overlap of soft hadron wave functions could fit the 
form factor data were based on wave functions which violate rotational symmetry 
in the CM. 

Fig. 4. Mqdels for the “soft” 
contribution to the pion form fac- 
tor. - The Isgur-Llewellyn-Smith 
prediction32 is based on a wave 
function with Gaussian fall-off in 
transverse momentum but power- 
law falloff at large z. The Jacob- 
Kisslinger prediction31 is based on 
a rotationally symmetric form in 
the center of mass frame. The per- 
turbative QCD contribution calcu- 
lated with cZ6 distribution ampli- 
tudes is consistent with the nor- 
malization and shape of the data 
for Q2 > 1 GeV2. 

01 I I I I c 
0 I 2 3 4 5 

4-87 O* (GcV/c I* 5741A17 

A detailed phenomenological analysis of the nucleon form factors for different 
-shapes of the distribution amplitudes has been given by Ji, Sill, and Lombard- 
Nelsen. 33 Their results show that the CZ wave function is consistent with the 
sign and magnitude of the proton form factor at large Q2 as recently measured 
by the American University/SLAG collaboration.34 (See fig. 5.) The fact that 
the correct normalization emerges is a non-trivial test of the distribution ampli- 
tude shape; for example, if the proton wave function has a non-relativistic shape 
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peaked at xi - l/3 then one obtains the wrong sign for the nucleon form factor. 
Furthermore symmetrical distribution amplitudes predict a very small magnitude 
for Q4GL( Q2) at large Q2. Gari and Stefanis35 have developed a useful model 
for the nucleon form factors which incorporates the CZ distribution amplitude 
predictions at high Q2 together with VMD constraints at low Q2. Their analysis 

_ predicts sizeable values for the neutron electric form factor at intermediate values 
of Q2. (See fig. 6.) 

Measurements of the two-photon exclusive processes 77 + 7r+z- and K+K- 
are in excellent agreement with the perturbative QCD predictions. The analysis is 
based on the factorization illustrated in fig. 7. The data36 (see fig. 8) extend out to 
invariant mass squared 10 GeV2, a region well beyond any significant contribution 
from soft contributions. 

Nevertheless, one can question3’ the consistency of the perturbative QCD 
analysis, particularly for baryon reactions at moderate momentum transfer: 

1. The perturbative analysis of the baryon form factor and large angle hadron- 
hadron scattering depends on the suppression of the endpoint regions xi - 1 
and pinch singularity contributions. This suppression occurs automatically 
in QCD due to Sudakov form factors, as has been shown by Mueller2’ based 

- on the all-orders analysis of the vertex function by Sen. 3g Since these analyses 
require an all-orders resummation of the vertex corrections, they cannot be 
derived by standard renormalization group analysis. In this sense the baryon 
and large angle scattering results are considered less rigorous than the results 
from analysis of the meson form factor and the 77 production of meson 
pairs.37 

Fig. 5. Comparison of perturbative QCD 
predictions and data for the proton form 
factor. The calculation, based on the CZ 
QCD sum rule distribution amplitude, is 
from ref. 33. The prediction depends on 
the use of the running coupling constant 

asa function of the exchanged gluon mo- 
mentum. The data are from ref. 34. 
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Fig. 6. Predictions for the nucleon form factors assuming VMD 
at low Q2 and perturbative QCD at high Q2. From ref. 35. 
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Fig. 7. Application of QCD to two photon production of meson pairs. 
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F.ig. 8. Measurements36 of exclusive two-photon reactions 
compared with the perturbative QCD predictions of ref. 37. 
The predictions are nearly independent of the shape of the 
meson distribution amplitudes. 

2. 

- - 

The magnitude of the proton form factor is sensitive to the x - 1 dependence 
of the proton distribution amplitude, where non-perturbative effects could be 
important. The CZ asymmetric distribution amplitude, in fact, emphasizes 
contributions from the large x region. Since non-leading corrections are 
expected when the quark propagator scale Q”(1 - x) is small, relatively 
large Q2 is required to clearly test the perturbative QCD predictions. A 
similar criterion occurs in the analysis of corrections to QCD evolution in 
deep inelastic lepton scattering. Dziembowski and Mankiewicz2* claim that 
one can simultaneously fit low energy phenomena (the nucleon magnetic 
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moments), the measured high momentum transfer hadron form factors, and 
the CZ distribution amplitudes with a.self-consistent ansatz for the quark 
wave functions. 

A complete derivation of the nucleon form factors at all momentum transfers 
would require a calculation of the entire set of hadron Fock wave functions. (See 
fig. 9.) This is the goal of the “discretized light-cone quantization” approach4’ for 
finding the eigen-solutions of the QCD Hamiltonian quantized at equal light cone 
time r = t + z/c. using a discrete basis. We review this approach in section 15. 
Thus far results have been obtained for the spectrum and wave functions for QED 
and Yukawa field theories in one-space and one-time dimension. The structure 
function of the lowest mass bound state in QED [l+l) as a function of a scaled 
coupling constant is shown in fig. 10. 

. . 
Fig. 9. Representation of electoweak hadron form fac- 
tors in the light-cone formalism. The sum is over all 
charged quark lines and all Fock states tin. 

4 -- - 

3 

2 

0.0 0.2 0.4 0.6 0.8 x 1.0 
5561A6 

- - Fig. 10. The structure function of the lowest mass 
bound state for QED in l+l space-time dimensions, as 
calculated in the DLCQ formalism. 38 
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4. Color Transparency 

The QCD analysis of exclusive processes depends on the concept of a Fock state 
expansion of the nucleon wave function, projected onto the basis of free quark and 
gluon Fock states. The expansion is done at equal time on the light-cone and in 
the physical light-cone gauge. At large momentum transfer the lowest particle- 
number “valence” Fock component with all the quarks within an impact distance 
bl 5 l/Q controls the form factor at large Q 2. Such a Fock state component has a 
small color dipole moment and thus interacts only weakly with hadronic or nuclear 
matter. 18,19 Thus if elastic electron-scattering is measured as a quasi-elastic 
process inside a nucleus, one predicts negligible elastic and inelastic final state 
interactions in the target as Q becomes large. Integrating over Fermi-motion, one 
predicts3’ that the differential cross section is additive in the number of nucleons in 
the nucleus. The primary test of this idea is to study the attenuation of the recoil 
nucleon in quasi-elastic electron-nucleon scattering inside of a nuclear target. At 
large momentum transfers the final state nucleon should emerge from the target 
without suffering elastic or final state scattering. The shape of the transverse 
momentum distribution out of the scattering plane should be determined by the 
Fermi distribution alone. 

A test of this novel effect, “color transparency”, has recently been carried out at 
. . - Brookhaven for large momentum transfer elastic pp scattering in nuclear targets by 

a BNL-Columbia collaboration. a’ The initial results are suggestive of diminished 
absorptive cross sections at large momentum transfer. If these preliminary results 
are verified they could provide a striking confirmation of the perturbative QCD 
predictions. 

-- - The strong spin-asymmetries seen in elastic p-p scattering4’ and the oscilla- 
tions of the data modulating the predicted dimensional counting rule power-law 
fall-off43 suggest possible resonant interference effects with the perturbative am- 
plitude. [See also ref. 29.1 These features evidentially cannot be explained in 
terms of the simplest QCD perturbative contributions.44 (See fig. 11.) It is inter- 
esting to speculate whether one is observing an interference with pinch singularity 
contribution 29 or di-baryon resonances associated with the “hidden color” degrees 
of freedom of the six-quark state. 45 Since the resonant contributions are not cou- 
pled to small valence Fock states, one could expect significant final state corrections 
at energies where the resonances are important. Thus color transparency can be 

-tGd to distinguish mechanisms for hadron scattering. 

In the case of nucleon transition form factors measurable in inelastic electron 
nucleon scattering, the magnitude of the final state interactions should depend on 
the nature of the excited baryon. For example final state resonances which are 
higher orbital qqq states should have large color final state interactions. 
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Fig. 11. Spin asymmetry for polarized pp elastic scattering. From ref. 42. 

Perhaps the most dramatic application of color transparency is to the QCD 
analysis of the deuteron form factor at large momentum transfer. 30’46 A basic 
feature of the perturbative QCD formalism is that the six-quark wave function 
at small impact separation controls the deuteron form factor at large Q2. (We 

-discuss this further in chapter 22.) Thus even a complex six-quark state can have 
negligible final state interactions in a  nuclear target-provided it is produced in 
a  large momentum transfer reaction. One thus predicts that the “transparency 
ratio” ‘du @CA + 4A - l)l/ ;rtk  d -+ ed] will increase with momentum transfer. 
The normalization of the effective number of deuterons in the nucleus can be 
determined by single-arm quasi-elastic scattering. 
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-- 
Other experimental tests of the reduced amplitude formalism are discussed in 

section 23. 

5. Diffractive Electroproduction Channels 
at Large Momentum Transfer 

As a further example of the richness of the physics of exclusive electroproduc- 
tion consider the “diffractive” channel q*p + pop. At large momentum transfer, 
QCD factorization for ;ylusive amplitudes applies, and we can write each helicity 
amplitude in the form: 

- This represents the convolution of the distribution amplitudes 4(z,Q) for the 
m-going and out-going hadrons with the quark-gluon hard scattering amplitude 
G?(7* + kwdp --) (qij),~ + (qqq)P) for the scattering of the quarks from the initial 

-to final hadron directions. Since 2’~ involves only large momentum transfer, it . . - can be expanded in powers of cyg(Q2). The distribution amplitudes +(zi,m) only 
depend logarithmically on the momentum transfer scale, as determined from the 
meson and baryon evolution equations. As we discussed above, the functional de- 

_ pendence of the meson and baryon distribution amplitudes can be predicted from --- 
QCD sum rules. A surprising feature of the Chernyak and Zhitnitskii analysis6 

-- - of the distribution amplitude of helicity-zero mesons is the prediction of a double- 
hump shape of 4~(z,Q) with a minimum at equal partition of the light-cone 
momentum fractions. (See fig. 12.) Th is result has now been confirmed in a 
lattice gauge theory calculation of the pion’ distribution amplitude moments by 

Jig. 12. Theoretical predictions 
for the pion distribution ampli- 
tude. 

1.6 I I I I 
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Martinelli and Sachrajda.8 Similar conclusions also emerge from the wave function 
ansatz of Dziembowski and Mankiewicz. 28 

The main dynamical dependence of the electroproduction amplitude is deter- 
mined by TH. To leading order in a,(&), TH can be calculated from minimally- 
connected tree graphs; power counting predicts .- 

and thus 

to leading order in l/p$ and a,(~$). This prediction is consistent with the di- 
mensional counting rule da/& - S2--n f (O,,) where n = 9 is the total number of 
initial and final fields. The scaling laws hold for both real and virtual photons. As 
shown in fig. 13, the data4’ for 7p + x+n are consistent with the QCD scaling 
law prediction. 

- - 

. SLAC 
0 MIT 
x CIT i 

2 5 IO 20 

6-66 s (GeV2) 5446A5 

Fig. 13. Comparison of pion photopro- 
duction data47 at 8,, = 7r/2 with the 
quark counting rule prediction. 

= - 
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-- The leading contributions at large momentum transfer in QCD satisfy hadron 
helicity conservation26 

A, = A,( + A, . 

This selection rule is an important test of the vector coupling of the gluon in 
QCD. The result is independent of the photon helicity! Furthermore, the leading 
behavior comes from the “point-like” Fock component of the photon. The vector- 

. meson-dominance contribution corresponds to the qij state where the constituent 
momenta are restricted to be collinear to the photon. This region gives a power-law 
suppressed (l/~$)~ contribution to the cross section at fixed O,,. 

The dependence on the photon mass in exclusive electroproduction amplitudes 
in QCD occurs through the. scaling variable Q2/p$. Thus for Q2 < p$, the 
transverse photon electroproduction amplitudes are predicted to be insensitive to 
Q2. This is in striking consequence to the vector meson dominance picture, which 
predicts a universal l/(1 + Q2/&i) dependence in the amplitude. Furthermore, 
since only the point-like component of the photon is important at large pi, one 
expects no absorption of the initial state photon as it penetrates a nuclear target. 

-The reaction y*n + r-p is a particularly interesting test of color transparency 
since the dependence on photon mass and momentum transfer can be probed. 

The conventional theory4* of shadowing of photon interactions is illustrated in -. 
fig. 14. At large Q2 the two-step amplitude is suppressed and the shadowing effect 
becomes negligible. This is the basis for a general expectation that shadowing of 
nuclear structure functions is. actually a higher-twist phenomena, vanishing with 
increasing Q2 at fixed x. [A recent analysis on shadowing in electroproduction 
by Qiu and Mueller4’ based on higher-twist internucleon interactions in the gluon -- - 
evolution equation in a nucleus suggests that shadowing decreases slowly as Q2 
increases.] Thus we predict simple additivity for exclusive electroproduction in 
nuclei 

$ (7*A + p’iV(A 

Fig. 14. Conventional descrip- 
tion of nuclear shadowing of low 
.$a virtual photon nuclear interac- 
tions. The 2-step amplitude is op- 
posite in phase to the direct con- 
tribution on nucleon N2 because of 
the diffractive vector meson pro- 
duction on upstream nucleon Nr. 

1)) = A $ (7*N + P’N) 

Y” Y” P" RAE 
N2 N2’ NI N,’ N2 N2’ 

I-Step Z-Step 
4-87 5741A5 
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-- 
to leading order in l/p+. (Th e b ar indicates that the cross sections are integrated 
over the nucleon Fermi motion.) This is another application of color transparency. 
What is perhaps surprising is that the prediction holds for small Q2, even Q2 = O! 
Note that the leading contribution in l/p& (all orders in as(p$)) comes from the 
7 --$ qq point-like photon coupling in 2” where the relative transverse momentum 
of the q?j are of order pi. Thus the “impact” or transverse size of the qij is l/m, 
and such a “small” color dipole has negligible strong interactions in a nucleus. The 
final state proton and p” also couple in leading order to Fock components which 
are small in impact space, again having minimal initial or final state interactions. 
If this additivity and absence of shadowing is verified, it will also be important to 
explore the onset of conventionalshadowing and absorption as p$ and Q2 decrease. 

6. Electroproduction of Diffractive Channels and the QCD Pomeron 

Exclusive processes such as virtual Compton scattering, 7*p -+ yp and p” elec- 
- troproduction 7*p + pop play a special role in QCD as key probes of “pomeron” 

exchange and- its possible basis in terms of multiple-gluon exchange. ” At large 
‘photon energy, the diffractive amplitudes are dominated by J = 1 Regge singular- 

_ ities, 

- Recent measurements of 7*p + pop by the EMC group” using the high energy 
muon beam at the SPS show three unexpected features: (1) The p” is produced 
with zero helicity at Q2 2 1 GeV2; (2) the falloff in momentum transfer becomes 
remarkably flat for Q2 2 5 GeV2; and (3) the integrated cross section falls off 
approximately as 1/Q4. 

-- - The most surprising feature of the EMC data is the very slow fall-off in t for 
the highest Q2 data. (See fig. 15.) Using the parameterization ebt’, t’ = It - tminl, 
the slope for 7 2 Q2 5 25 GeV2, EL = ,200 GeV data is b - 2 GeVv2. If 
one assumes Pomeron factorization, then the fall-off in momentum transfer to 
the proton should be at least as fast as the square of the proton form factor,” 
representing the probability to keep the scattered proton intact. (See fig. 16(b).) 
The predicted slope for ItI < 1.5 GeV2 is b - 3.4 GeV2, much steeper than the 
EMC data. The background due to inelastic effects is estimated by the EMC 
group to be less than 20% in this kinematic domain. 

In the vector meson dominance picture one expects: (1) dominantly transverse 
-pTolarization (s-channel helicity conservation); (2) fall-off in t similar to the square 

of the proton form factor (Pomeron factorization); and (3) a l/Q” asymptotic fall- 
off when longitudinal photons dominate. 

The physics of electroproduction is quite different in QCD. At large Q2 >> p$ 
diffractive channels take on a novel character.” (See fig. 16(c).) The transverse 
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Fig. 15. The slope parameter b for the form 
du/dt = Ae bt’ fit to the EMC data (ref. 50) for 

_ pp + pp”p for It’1 2 1.5 GeV2. 

-momentum kT in the upper loop connecting the photon and p” is of order the pho- 
. . ton-mass scale, kT - - Q. (Other regions of phase space are suppressed by Sudakov 

form factors). Thus just as in deep inelastic inclusive scattering, the diffractive 
amplitude involves the proton matrix element of the product of operators near the 
light-cone. In the case of virtual Compton scattering 7*p + 7p’, one measures =-. 
product of two electromagnetic currents. Thus one can test an operator product 
expansion similar to that which appears in deep inelastic lepton-nucleon scattering, 

-- - but for non-forward matrix elements. In such a case the upper loop in fig. 16(c) 
can be calculated using perturbative methods. The p enters through the same dis- 
tribution amplitude that appears in large momentum transfer exclusive reactions. 
Since the gauge interactions conserve helicity, this implies A, = 0, A, = XL inde- 
pendent of the photon helicity. The predicted canonical Q2 dependence is l/Q”, 
which is not inconsistent with the EMC data. 

Since the EMC data is at high energy (E, = 200 GeV, s >> p$) one expects 
that the vector gluon exchange diagrams dominate quark-exchange contributions. 
One can show that the virtuality of the gluons directly coupled to the 7 + p 

transition is effectively of order Q2, allowing a perturbative expansion. The effect 
-is< known feature of the higher Born, multi-photon exchange contributions to 
massive Bethe Heitler processes in QED.15 

The dominant exchange in the t-channel should thus be the two;gluon ladder 
shown in fig. 16(c). This is analogous to the diagrams contributing to the evolution 
of the gluon structure function. If each gluon carries roughly half of the momentum 
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(b) 
Local 

Pomeron 

(cl 
Perturbative 

Pome ron 

4-87 

. . 5741AG - 
Fig. 16. (a) Diffractive electroproduction of vec- 
tor mesons. (b) L ocal pomeron contribution cou- 
pling to one ‘quark. (c) Perturbative pomeron 
contribution. For large transverse loop momen- 

-- - tum k; M Q2 two-gluon exchange contributions 
are dominant. 

transfer to different quarks in the nucleon, then the fall-off in t can be significantly 
slower than that of the proton form factor, since in the latter case the momentum 
transfer to the nucleon is due to the coupling to one quark. This result assumes 
that the natural fall-off of the nucleon wave function in transverse momentum is 
Gaussian rather than power-law at low momentum transfer. 

In the case of quasi-elastic diffractive electroproduction in a nuclear target, we 
expect neither shadowing of the incident photon nor final state interactions of the 
outgoing vector meson at large Q2 (color transparency). 

- 
Thus p” electroproduction and virtual Compton scattering can give essential 

information on the nature of diffractive (pomeron exchange) processes. Data at 
all energies and kinematic regions are clearly essential. 
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7. Exclusive Nuclear Processes in QCD 
-- 

One of the most elegant areas of application of QCD to nuclear physics is the 
domain of large momentum transfer exclusive nuclear processes. Rigorous results 
have been given by Lepage, Ji and myself46 for the asymptotic properties of the 
deuteron form factor at large momentum transfer. The basic factorization is shown * 
in fig. 17. In the asymptotic Q2 + oo limit the deuteron distribution amplitude, 
which controls large momentum transfer deuteron reactions, becomes fully sym- 
metric among the five possible color-singlet combinations of the six quarks. One , 
can also study the evolution of the “hidden color” components (orthogonal to the 
np and AA degrees of freedom) from intermediate to large momentum transfer 
scales; the results also give constraints on the nature of the nuclear force at short 
distances in &CD. The existence of hidden color degrees of freedom further illus- 
trates the complexity of nuclear systems in QCD. It is conceivable that six-quark 
d* resonances corresponding to these new degrees of freedom may be found by 
careful searches of the cy*d --) -yd and r*d + rd channels. 

-- - 

\ / 
P+q 

1-82 
4253*20 

z 

Fig. 17. Factorization of the deuteron form factor at large Q2. 

The QCD analyses suggests a consistent way to eliminate the effects of nucleon 
compositeness in exclusive nuclear reactions. 30’52 The basic observation is that 
foLvanishing nuclear binding energy cd + 0, the deuteron can be regarded as two 

-nucleons sharing the deuteron four-momentum. The y*d + np amplitude then 
contains two factors representing the probability amplitude for the proton and 
neutron to remain intact after absorbing momentum transfers - 

r= (&, - ;pd)2 and ii= (Pn - +pd)2 . 
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Fig. 18. Application of the reduced amplitude 
formalism to the deuteron form factor at large 
momentum transfer. 

The “reduced” amplitude 

n,(y*d + np) = Jqr’d -+ “P) 
JiN(viN(q 

is predicted to have the same fixed angle scaling behavior as 7*M + qij ; i.e., the 
: nucleons are reduced to point particles. We thus predict 

- . to leading order in l/p;. 
-The analogous analysis (see fig. 18) of the deuteron form factor as defined in 

g (i?d + ld) = g lFdQ2) I2 
point 

- 

yields a scaling law for the reduced form factor 

h(Q2) - F&i?‘) 
FIN(~) FIN (y) -G 

i.e., the same scaling law as a meson form factor. As shown in fig. 19, this scaling 
is consistent with experiment for Q2 = p$ 2 1 GeV2. There is also evidence for 
reduced amplitude scaling for 7d + pn at large angles and p$ i2 1 GeV2. We 
thus expect similar precocious scaling behavior to hold for pd + r-p and other 
p&exclusive reduced amplitudes. In each case the incident and outgoing hadron 

and nuclear states are predicted to display color transparency, i.e. the absence of 
initial and final state interactions if they participate in a large momentum transfer 
exclusive reaction. 

.c- 

We give more detailed discussions of the application of QCD to the deuteron 
and the reduced amplitude formalism in sections 22 and 23. 

26 



-- 

6.0 

0. I 

h= 
t kzi- 

100 Llev I 
+ IO LleV ’ 4 

(a) 

01 I I I I I 

0 I 2 3 4 5 6 
2 83 Q2 (GeV2) 44IS12 

Fig. 19. (a) Comparison of the asymptotic QCD 
predictions with experiment using FN(Q~) = 

- [l + (Q2/0.71 GeV2)lS2. The normalization is fit 
at Q2 = 4 GeV2. (b) Comparison of the predic- 
tion [l+ (Q2/mi)]fd(Q2) oc (h Q2)-1-(2/5)(cp/fl) . . - with data. The value rni = 0.28 GeV2 is used. 

8. Electroproduction: A General View 
‘53 The factorization formula 

x &/A(%, Q)Gb/&br Q$c,c(Xc~ Q) 

x 6(s’ + t’ + u’) f $ (ab + cd) 

for the inclusive production processes AB + CX has general validity in gauge 
theory. The systems A,B,C can be leptons, photons, hadrons, or nuclei. The 

-primary subprocess in electroproduction is eq + eq. The electron structure func- 
tion G/,(x, 9) automatically provides the (leading logarithmic) QED radiative 
corrections. The energy distribution of the beam itself plays the role of the 
non-perturbative or initial structure function. (See fig. 20(b).) The subprocess 
7*q + gq corresponds to photon-induced two-jet production. (See fig. 20(a).) This 
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subprocess dominates reactions in which the large transverse momentum trigger 
is a hadron rather than the scattered lepton. Thus one sees that conventional 
deep inelastic eq + eq scattering subprocess is just one of the several modes of 
electroproduction. 

The dominant contribution to the meson semi-inclusive cross section is pre- 
dieted by QCD factorization to be due to jet fragmentation from the recoil quark 
and spectator di-quark.jets. When the momentum transfer is in the intermediate 
range 1 2 Q2 5 10 GeV2, several other contributions for meson production are 
expected to become important in eN + e’MX. These include: 

(1) Higher twist contributions to jet fragmentation: 

dN,r - = &,* (z, Q2) E A(1 - z)~ + 3 
dz 

(2 + 1) . 

The scaling term reflects the behavior of the pion fragmentation function at large 
fractional momentum (2 + 1) as predicted by perturbative QCD (one-gluon ex- 

- change). (S ee fig. 21(a).) The C/Q2 terms4 is computed from the same per- 
turbative diagrams. For large z where this term dominates, we predict that the 
deep inelastic cross section will be dominantly longitudinal rather than transverse 

- R =-a&T > 1. 
. . -. j . 

e 
: P 

7-q -9q -- - 

Fig. 20. Application of gauge theory fac- 
torization to electroproduction. (a) The 
yq + gq subprocess produces hadron jets 
at high pi. (b) The eq + eq produces 
one quark jet and one recoil electron jet 
at high pi. The QED radiative correc- 
tions are incorporated into the electron 
and photon QED structure functions. 
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Fig. 21. QCD contributions to pion electroproduc- 
tion. (a) Jet fragmentation, including leading and l/Q2 
higher twist contributions. (b) Isolated pion contribu- 
tions at order l/Q”. (c) Exclusive production. (d) Pri- . . - r makoff contribution. 

-(2) “Direct” meson production. Isolated pions may also be created by elastic 
scattering off of an effective pion current: (See fig. 21(b).) = - 

-- - 
da 

dQ2dx, = Gr/p(“r) 
er-wlr 

dt7 

dydQ2 er+c,r 
= g 18r(Q2)12(l - Y) . 

Here y = q-p/peep. In the case of a nuclear target, one can test for non-additivity of 
virtual pions due to nuclear effects, as predicted in models” for the EMC effect” 
at small xgj. Jaffe and Hoodbhoyg have shown that the existence of quark ex- 
change diagrams involving quarks of different nucleons in the nucleus invalidates 
general applicability of the simplest convolution formulae conventionally used in 
such analyses. The G,,,(x, Q) t s ructure function is predicted to behave roughly 

-as-(1 - z)~ at large x, as predicted from spectator quark counting rules. 2433 Ap- 

plications of these rules to other off-shell nucleon processes are discussed in refs. 30 
and 56. 

(3) Exclusive Channels. (See fig. 21(c).) The mesons can of course be pro- 
duced in exclusive channels; e.g. 7*p -+ 7~+n, 7*p + pop. Pion electroproduction 
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-- 
extrapolated to t = rni provides our basic knowledge of the pion form factor at 
spacelike Q2. With the advent of the perturbative QCD analyses of large momen- 
turn transfer exclusive reactions, predictions can be given over the whole range of 
large t and Q2. We discussed some of the features of p” electroproduction above. 

(4) Another possible meson production channel is Primakoff production 7*7 + 
7r”, etc., identifiable from very low target recoil events. (See fig. 21(d).) Such 
measurements would allow the determination of the 7 + z” transition form factor. 
This quantity, combined with the QCD analysis of the pion form factor leads to 
a method to determine the QCD running coupling constant (ly8(Q2) solely from 
exclusive measurements. 37 

_ _ 

The above examples make it clear that complete final state measurements are 
necessary for separating the various production channels; detailed study of meson 
electroproduction can yield valuable information concerning basic issues in QCD. 

9. Higher Twist Contributions to Deep Inelastic Scattering 

One of the most difficult aspects of electroproduction phenomenology is the 
separation of logarithmic scaling violations predicted by QCD evolution from the 

_ scale violations induced by power law corrections. The lack of a full understanding 
. . of these higher twist terms has prevented the extraction of reliable values of the -. / . QCD scale AQCD from the data. As we have noted above, shadowing behavior 

in nuclei is likely associated with higher twist contributions. In addition, it is 
not clear whether ordinary Regge behavior of the inelastic lepton scattering cross _ 
section, which is a valid parameterization at fixed Q2, persists into the scaling 

= - 

region or whether it is associated with higher twist dynamical effects. The fact 
-- - that the non-singlet structure functions obey additive sum rules suggests that 

Regge behavior is absent in leading twist. 

In some cases the higher twist effect corresponds to coherent many-particle 
processes which potentially could be identified by study of the final state. As 
an example, consider the processes illustrated in fig. 22. At intermediate Q2 and 
X = XBj N 1 the cross section has the simplified form 

da -= 
dQ2dx 

T%e three terms correspond to lepton scattering off of one, two, or three quarks, 
respectively. The power in l/Q” increases with the number of active quarks: 
(Q2)2(nA-1). The power in (1 - x) counts the number of spectatorss3 required to 
stop as x + 1: (1 - 5) 2nm-1. The “diquark” term gives a large a~ contribution. 54 

The analogous structure in the pion structure function has been confirmed in the 
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“_ 
Drell-Yan reaction zN -+ JL+~-X at large x.‘~ The relative normalization of the 
power-law suppressed terms is uncertain, although the model calculations based 
on tree-graph gluon exchange diagrams performed by Blankenbecler, Gunion, and 
Nason 57 suggests very large coefficients B and C. If this is true for the physical 
situation, then the existence of such terms would make it very difficult to isolate the 

_ logarithmic corrections to scaling, except at very high momentum transfers-where 
unfortunately the sensitivity to the numerical value of Agc~ is small. Internal 
target experiments may be able to confirm the different contributions by studies of 
the recoil and spectator systems as functions of Q2 and x together with separation 
of UL and 0~. 

e . 

: P 

Leading Twist 

. . 

- ‘. 

: P 

-- - 
Higher Twist 

- - 4-87 5741A7 

Fig. 22. Leading and higher twist contributions 
to deep inelastic lepton scattering due to multi- - 
particle hard scattering subprocesses. 
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10. Formation Zone Phenomena in Deep Inelastic Scattering 
-- 

One of the remarkable consequences of QCD factorization for inclusive reac- 
tions at large pi is the absence of inelastic initial or final state interactions of 
the high energy particles in a nuclear target. Since structure functions measured 
in deep inelastic lepton scattering are essentially additive (up to the EMC de- 

- viations), factorization implies that the q~ -+ p+p- subprocesses in Drell-Yan 
reactions occurs with equal effect on each nucleon throughout the nucleus. At 
first sight this seems surprising since one expects energy loss from inelastic initial 
state interactions. 

In fact, potential inelastic reactions such as quark or gluon bremsstrahlung 
induced in the nucleus which could potentially decrease the incident parton energy 
(illustrated in fig. 23) are suppressed by coherence if the quark or gluon energy 
(in the laboratory frame) is large compared to the target length: 

Eq W2 LA 

Here b2 is the difference of mass squared that occurs in the initial or final state 
collision. This phenomenon has its origin in studies of QED processes by Landau 
and Pomeranchuk. The QCD analysis is given by Bodwin, Lepage and myse1f.l’ 
Elastic collisions, however, are still allowed, so one expects collision broadening of 
the initial parton transverse momentum. Recent measurements of the Drell-Yan 
process ?rA --) p+p-X by the NA-10 groups8 at the CERN-SPS confirm that 
the cross section for muon pairs at large transverse momentum is increased in a 
tungsten target relative to a deuteron target. (See fig. 24). Since the total cross 
section for lepton-pair production scales linearly with A (aside from relatively small 
EMC-effect corrections), there must be a corresponding decrease of the ratio of 
the differential cross section at low values of the di-lepton transverse momentum. 
This is also apparent in the data. 

Fig. 23. Induced radiation from the propaga- 
tion of an antiquark through a nuclear target in 
massive lepton production. Such inelastic inter- 
actions are coherently suppressed at parton en- 
ergies large compared to a scale proportional to A 

lth< length of the target. 5446A12 

These results have striking implications for the interaction of the recoil quark 
jet in deep inelastic electron-nucleus scattering. For the quark (and gluons) satisfy- 
ing the length condition, there should be no extra radiation induced as the parton 
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* Fig. 24. The ratio a(71--W -+ pL+p-X)/~(rr-D + 
p+p-X) as a function of the pair transverse 
momentum. From ref. 58. 

. . 
- traverses the nucleus. Thus gluon radiation of the type illustrated in fig. 25 should 

be suppressed. However, low energy gluons, emitted in the deep inelastic electron- 
quark collision, can suffer radiative losses, leading to cascading of soft particles in 
the nucleus. It is clearly very’important to study this phenomena as a function of =‘-- 
recoil quark energy and nuclear size. 

-- - 

-Fig. 25. Propagation of the struck 
quark through a nuclear target. Induced 
gluon radiation (inelastic final state inter- 
actions) is suppressed at high quark ener- 
gies. Elastic scattering in the final state 
however is not suppressed. 

/ . 
A 

J 9’ 4-87 5741A3 
- 

- 

c 

It should be emphasized that the absence of inelastic initial or final state 
collisions for high energy partons does not preclude collision broadening due to 
elastic initial or final state interactions. The elastic corrections are unitary to 
leading order in l/Q and do not effect the normalization of the deep inelastic 
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cross section. Thus we predict that the mean square transverse momentum of the 
recoil quark and its leading particles will increase as A1i3. 

The transverse momentum of the recoil quark reflects the intrinsic transverse 
momentum of the nucleon wave function. The EMC effect” implies that quarks 
in a nucleus have smaller average longitudinal momentum than in a nucleon. (See 

- fig. 26.) Independent of the specific physical mechanism underlying the EMC e 
effect, the quarks in a nucleus would also be expected to have smaller transverse 
momentum. This effect can counteract to a certain extent the collision broadening 
of the outgoing jet. 

. . _-. ANL-P-16,567 

0 0.2 0.4 0.6 0.8 . 
4-87 X 5741A19 

Fig. 26. Ratio of nuclear and nucleon structure 
-. - functions. The theoretical curves are from the 

pion current calculation of Berger and Coester, 
ref. 55. 

Unlike the struck quark the remnant of the target system does not evolve 
with the probe momentum Q. However, since the quantum numbers of the spec- 
tator system is 3 in color, nonperturbative hadronization must occur. Since the 
transverse momentum of the leading particles in the spectator jet is not affected 
by the QCD radiative corrections, it more closely reflects the intrinsic transverse 
momentum of the hadron state. 

- 
- It is also interesting to study the behavior of the transverse momentum of the 

quark and spectator jets as a function of XBj. For XBj - 1, the 3-quark Fock 
state dominates the reaction. If the valence state has a smaller transverse size 20 

than that of the nucleon, averaged over all of its Fock components, then we expect 
an increase of (k:) in that regime. Evidence for a significant increase of (k:) in 
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the projectile fragmentation region at large quark momentum fractions has been 
reported by the SFM group ” at the ISR for pp --$ di-jet +X reactions. 

11. Diffraction Channels and Nuclear 
Structure Function Non-Additivity 

One unusual source of non-additivity in nuclear structure functions (EMC ef- 
feet) are electroproduction events at large Q2 and low x which nevertheless leave 
the nucleus completely intact x < (~/MLA). In the case of QED, analogous pro- 
cesses such as 7*A + h+pL-X yield nuclear-coherent contributions which scales as 
Aeff = Z2/A. (See fig. 27(a).) Such p recesses contribute to the Bjorken-scaling, 
leading-twist cross section.” In QCD we expect6r the nuclear dependence to be 
less than additive for the analogous gluon exchange contributions (see fig. 27(b)) 
because of their diffractive coupling to the nucleus. One can identify nuclear- 
coherent events contributions by-observing a rapidity gap between the produced 
particles and the recoiling target. An interesting question is how the gluon mo- 

- mentum fraction sum rule is modified by the diffractive contributions. 

e, 
. . 

- 
= P.+ Coherent 

(0) QED 
Leading 
Twist 

7( e’ 

% 9 Coherent 

- - 

(b) q’ 
QCD 

Leoding 
Twist 

5741A4 

Fig. 27. Leading twist contributions to deep inelastic- 
lepton-nucleus scattering that leave the target intact. 
(a) QED example. (b) QCD example. 
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12. Studying “Jet-Coalescence” in Electroproduction 
-- 

What happens if two jets overlap in phase-space? Certainly independent frag- 
mentation of the jets will fail because of coherent effects. For example, in QED 
there are strong final state interactions when two charged particles are produced 
at low relative velocity. In the case of particles of opposite charge Zre, -&e, the 
QED Born cross sections are corrected by the factor14 : 

2%z&a!/v 
d = a' 1 - exp(2rZlZ2a/v) 

which increases the cross section dramatically at low relative velocity v. We expect 
similar effects in QCD when two jets can coalesce to attractive color channels 
(ZlZZQ + cFCr8 for qfj color singlets). In the case of electroproduction, the low 
relative velocity enhancements provide a simple estimate of the increase of the 
ep -+ eX cross section at low values of W2 = (q+p)2, beyond that given by simple 
duality arguments. 

Gunion, Spper and 11’ have recently proposed this jet coalescence mecha- 
nism as an explanation of the observed leading particle correlations seen in charm 
hadroproduction experiments and the anomalously large cross sectione2 observed 
at the SPS for C-N + A+(csu)X at large XL. [The hyperon momentum was 
135 GeV/c.] In the case of heavy quark electroproduction e.g. 7*g -+ SS, cc, 
one predicts an enhancement of the cross section when the produced quark is at 
low rapidity relative to the target fragmentation region. The correction to the - 
rate, integrated over relative rapidity, is found to vanish only as a single inverse 
.power of the heavy quark mass, and thus may give significant corrections to charm 
production rates and distributions. 

The Sommerfeld factor also can be used to estimate the behavior of exclusive 
-amplitudes near threshold. For example, the production of meson pairs in two 
photon annihilation can be modeled16 by calculating the differential cross section 
in QCD tree graph approximation (as in fig. 7), and then multiplying by the QCD 
version of the Sommerfeld factor appropriate to the relative velocity and color 
correlation of each quark pair. Further discussion may be found in ref. 16. 

- - 
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13. Summary on Electroproduction 

Electroproduction at intermediate energies on an internal target in a storage 
ring such as PEP could allow the study of many fundamental phenomena in QCD: 

(a) A primary goal is the channel-by-channel reconstruction of the final state 
in electoproduction in order to understand in detail the final state hadronization 
of both the quark and nucleon spectator jets in a regime where Bjorken scaling 
is manifest. Such studies can also provide checks on the effect of the higher-twist 
coherent contributions to electroproduction cross sections. The hadronization of 
the target jet is a still largely unexplored phenomenon. 

(b) The dynamics of individual exclusive electroproduction amplitudes can be 
probed as a function of all kinematic energy and angle variables including the 
virtual photon’s mass and polarization. As we have discussed, such processes can 
often be analyzed systematically in perturbative QCD, providing detailed checks 
on both QCD dynamics and hadron wave functions. The diffractive reactions also 
allow the study of the non-forward matrix elements of the same operator product 

- entering the near the light-cone analysis of deep inelastic structure functions. 

- -(c) A nuclear target provides a unique probe of short-distance QCD dynam- 
ics. The basic subprocesses can be studied in a background nuclear field. In 

-particular, one wants to study the sources of nonadditivity in the nuclear target 
channel by channel. This includes tests of various shadowing mechanisms, effects 
of modification of mesonic degrees of freedom, the predicted “color transparency” 
of quasi-exclusive amplitudes at large momentum transfer inside a nucleus, and 
the propagation of quark jets through the nuclear medium. Further, as discussed 
in ref. 30, one can use large x measurements to probe nuclear matter in the far 
off-shell domain. We also note that exclusive channels which involve the scatter- 
ing of light nuclei at high momentum transfer probe the NN interaction at short 
distances. 

(d) Given sufficient luminosity, internal target experiments could allow the 
study of strange and charm particle electroproduction near threshold. By com- 
paring electron and positron beam experiments, one can probe” virtual Compton 
scattering; the sum of the quark charges cubed can be obtained from the ratio of 
the e*p --) e*y + X cross sections. Polarized proton and nuclear targets allow the 
study of detailed effects of spin via correlations with final state properties. The 
combination of polarized target and polarized electron beams allow measurements 

of-the spin dependent structure functions and their sum rules, 63 checks of helicity 
selection rules, and the separation of different electroproduction channels. 

Although there have been extensive tests of many aspects of electroproduction 
over the past decade, there are still many phenomena still not fully explored. 
The distinction between logarithmic and power-law scale breaking effects is still 
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“_ in a confused state. Shadowing, diffraction, the interrelation with vector meson 
dominance, the structure of the (non-evolved) spectator jet system, Regge behavior 
in non-singlet structure functions, and other phenomena at the boundary between 
perturbative and non-perturbative effects; all are central topics in hadron and 
nuclear dynamics, ideally studied in electroproduction. 

14. QCD ON THE LIGHT-CONE 

.- - 

A key problem in the application of QCD to hadron and nuclear physics is how 
to determine the wave function of a relativistic multi-particle composite system. 
It is not possible to represent a relativistic field-theoretic bound system limited to 
a fixed number of constituents at a given time since the interactions create new 
quanta from the vacuum. Although relativistic wave functions can be represented 
formally in terms of the covariant Bethe-Salpeter formalism, calculations beyond 

- ladd er approximation appear intractable. Unfortunately, the Bethe-Salpeter lad- 
der-approximation is often inadequate. For example, in order to derive the Dirac 
equation for the electron in a static Coulomb field from the Bethe-Salpeter equa- 

. . - tion for muonium with mp/me + 00 one requires an infinite number of irreducible 
kernel contributions to the QED potential. Matrix elements of currents and the 
wave function normalization also require, at least formally, the consideration of 
an infinite sum of irreducible kernels. The relative-time dependence of the Bethe 5 

Salpeter amplitudes for states with three or more constituent fields adds severe 
complexities. -- - 

A different and more intuitive procedure would be to extend the SchrZidinger 
wave function description of bound states to the relativistic domain by developing a 
relativistic many-body Fock expansion for the hadronic state. Formally this can be 
done by quantizing QCD at equal time, and calculating matrix elements from the 
time-ordered expansion of the S-matrix. However, the calculation of each covariant 
Feynman diagram with n-vertices requires the calculation of n! frame-dependent 
time-ordered amplitudes. Even worse, the calculation of the normalization of a 
bound state wave function (or the matrix element of a charge or current operator) 
requires the computation of contributions from all amplitudes involving particle 
woduction from the vacuum. (Note that even after normal-ordering, the inter- 
action Hamiltonian density for QED, HI = e : 37p$Aa :, contains contributions 
btdtat which create particles from the perturbative vacuum.) _ 

. Fortunately, there is a natural and consistent covariant framework, originally 
due to Dirac,‘I (quantization on the “light front “) for describing bound states in 
gauge theory analogous to the Fock state in non-relativistic physics. This frame- 

-- 

38 



work is the light-cone quantization formalism in which 

Each wave function component &, etc. describes a state of fixed number of 
quark and gluon quanta evaluated in the interaction picture at equal light-cone 
“time” r = t + Z/C. Given the {&}, virtually any hadronic property can be 
computed, including anomalous moments, form factors, structure functions for 
inclusive processes, distribution amplitudes for exclusive processes, etc. 

;.. 

The use of light-cone quantization and equal r wave functions, rather than 
equal t wave functions, is necessary for a sensible Fock state expansion. It is also 
convenient to use r-ordered light-cone perturbation theory (LCPTh) in place of 

- covariant perturbation theory for much of the analysis of light-cone dominated 
processes such as deep inelastic scattering, or large-p* exclusive reactions. Light- 
cone quantization and perturbation theory are developed in detail in the following 

- sections. 
. . - 

15. Quantization of Gauge Theory on the Light-Cone65 

One of the most important advantages of quantizing a gauge theory on the 
light-cone (or light-front, as originally termed by Dirac) is the existence of a con- 
~sistent Fock state basis with only positive metric quanta: in A+ = 0 gauge there are 
no ghosts either of the Gupta-Bleuler or Faddeev-Popov kind. In QCD, hadronic 
matrix elements, including structure functions and electroweak transition ampli- 
tude have a straightforward representation in terms of a physical Fock basis of 
positive metric quarks and gluons. The light-cone quantization procedure of field 
theory is given in detail in Ref. 20. Here we only review the essential points. 

The gauge field A“ is a traceless 3 x 3 color matrix (Ap G Ca AaVu, 
~Tr.(ZY!‘*) = l/2@', [Ta,Tb] = ~c~*~Z’~, . . .), and the quark field 11, is a color 
triplet spinor (for simplicity, we include only one flavor). At a given light-cone 
time, say r = 0, the independent dynamical fields are ++ s A++ and A: with 

t conjugate fields it/~+ and i?+At, where A* = 7’7*/2 are projection operators 
(A+A- = 0, A$ = A*, A+ + A- = 1) and a* = a0 f d3. Using the equations of 
motion, the remaining fields in l can be expressed in terms of $+, AL: 
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A+=O, (5) 

2 A- = - 29 
;a+ & ’ Ai + (;a+)2 id+Ay, A: 

I 
t + 2$+ Ta t,b+ Ta 

> 

a? - = i- + (ia+) {[ t id+A’,, A; + 2++ T” T,L~+ Ta I > 
, 

with p = 7O and Gil = 7”q. This result is a special feature of light-cone gauge: 
field operators do not appear in the denominator. Furthermore AA+ = 0 is consis- 
tent with the equation of methods and does not need to be enforced as a special 

- constraint on the Hilbert space. 
- To quantiie QCD, we expand the fields at r = 0 in terms of creation and 
annihilation operators, 

.  .  

- .  ’ 

-. 

+‘dt(&, A) u+(k, A) eika2} , 7 = z+ = 0 

- 

A;(x) = 
/ 

dk+ d2k 
' C { a(!~, A) ey (A) eBikez + c-c} , 

k+ 167r3 x 
7 = z+ = 0 , 

k+>O 

with commutation relations (b = (k+, cl)): 

{ b(k, A), bt (p, A)} = { d(le, A) 3 dt (p, xr, } - 

- - = 16~’ k+ S3& - p) 6Xx, , 

{b,b}.={d,d}=...=O, 

(6) =-- 

(7) 

where X is the quark or gluon helicity. These definitions imply canonical com- 
mutation relations for the fields with their conjugates (r = z+ = y+ = 0,~ = 
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(z-,q), . . .): 
-- 

[A’(g), a+Ai(g)] = i6ij63(a:-y) . 

The creation and annihilation operators define the Fock state basis for the 
theory at r = 0, with a vacuum IO) defined such that b IO) = d IO) = a IO) = 0. One 
can construct the energy momentum tensor TpC” and the conserved four momenta: 

py = ; 
/ 

dz-T+Y(z-,T = 0) , 

The evaluation of states with r is governed by the light-cone Hamiltonian, HLC = 
P-, conjugate to r. The Hamiltonian can be readily expressed in terms of ++ and 
A;: 

H,x=Ho+V, (9) 
- _ > .* where 

- c/ dk+ d2 kL .- J(k, 4 a&, 4 k? - cc+ + bt (le, A) b(k, 4 
A 167r3 k+ 

colors = - 

-- - X 
k:+m2 

k+ + dt (Ic, A) b(lc, A) k’ ,‘+“’ + constant 

(10) 
is the free Hamiltonian and V the interaction: 

V = /d3z (2, Tr (iapp pP,ZV]) - $Tr (p,p] FP,&]) 

(11) 

with?=?-+$+ (+$asg + 0) and ip = (O,i-, AL) (-+ AIL as g, + 0). The 
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-- 
Fock states are obviously eigenstates of HO with 

In : kz, kli) . (12) 

It is equally obvious that they are not eigenstates of V, though any matrix element 
of V between Fock states is trivially evaluated. The first three terms in V corre- 
spond to the familiar three and four gluon vertices, and the gluon-quark vertex 
[fig. 28(a)]. Th e remaining terms result from the substitutions (S), and represent 
new four-quanta interactions containing instantaneous fermion and gluon propa- 
gators [fig. 28(b)]. Th e instantaneous gluon exchange contribution is analogous 
to the Coulomb interactions. The instantaneous fermion exchange contribution is 
analogous to the “seagull” term in scalar electrodynamics. 

(b) . . 

3-63 . 4507A26 

-- - 
Fig. 28. (a) Basic interaction vertices in QCD. 
(b) “Instantaneous” contributions. 

All terms conserve total three-momentum k = (k+, LL), because of the integral 
over ; in V. Furthermore, all Fock states other than the vacuum have total 
k+ > 0, since each individual bare quantum has k+ > 0. Consequently the Fock 
state vacuum must be an eigenstate of V and therefore an eigenstate of the full 
light-cone Hamiltonian. 

Light-Cone Perturbation Theory 

We define light-cone Green’s functions to be the probability amplitudes that a 
-state starting in Fock state 1;) ends up in Fock state ]f) a (light-cone) time r later 

(fli) G(f, i; T) E (fle-i*~cr/21i) 

14r e-iEr/2 G(f, i; E) (fli) , 27r 

= - - 

(13) 

.-i - 

42 



where Fourier transform G(f, i; c) can be written 

w w9 ii 4 = (f / ~ _ Hi; + io+ 1 i) 

1 1 1 = 
e-H~c+i0+ + E - Ho + iO+ 

V 
c - Ho + iO+ 

1 
V 

1 
V 1 

+ TV - Ho + iO+ TV - Ho + iO+ E - Ho + iO+ 
+ i. 

’ ’ ’ I) 
(14 

The rules for ?--ordered perturbation theory follow immediately from this expansion 
when (c - Ho)-l is replaced by its spectral decomposition in terms of Fock states: 

1 N dk+d2k 
c/n 

a li = In : JCii, Xi) (n : &ii, Ail 
E-Ho+iO+ no 167r3 k? I E - JJ(kf + mz)i/k, + iO+ (“) n i i 

-- - 

where the sum is over all states n intermediate between two interactions. To 
calculate G(f -.* , t, c) perturbatively then, all r-ordered diagrams must be considered, 
the contribution from each graph computed according to the following rules: 

1. Assign a momentum kp to each line such that the total k+, kl are conserved 
at each vertex, and such that k2 = m2, i.e., k- = (k2 + m2)/k+. With 
fermions associate an on-shell spinor 

u(h,X)=l( 
){ 

x(T) x =t 
m k++prn+Zl.zl 

x(l) x =I 

or 

where x(t) = l/fi(l,O,l,O) and x(l) = l/fi(O,l,O,-1)‘. For gluon 
lines, assign a polarization vector &‘ = (0, 2E” . gl/k+, Z”) where Z’(f) = 
-l/&(l,i) and Cl(J) = l/fi(l,-i). 

2. Include a factor 8(k+)/k+ for each internal line. 

- 3. For each vertex include factors as illustrated in fig. 29. To convert incoming 
into outgoing lines or vice versa replace 

in any of these vertices. 
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Vertex Factor 

’ g{(Pa-Pb)‘+a.Eb 

+ cyclic permutations) 

;x; g2{Eb’Ec~:,.E~+E~.EcEb’E~} 

Color Factor 

Tb 

icabc 

icabe icede 

Tb Td 

;cabe ;ccde 

iccde Te 

Te Te 

3-83 4507A25 

-- - Fig. 29. Graphical rules for QCD in light-cone perturbation theory. 

4. For each intermediate state there is a factor 

1 
c- C k- +iO+ 

interm 

where c is the incident P-, and the sum is over all particles in the interme- 
diate state. 

- 2. Integrate s dk+d2k1/16r3 over each independent k, and sum over internal 
helicities and colors. 

6. Include a factor -1 for each closed fermion loop, for each fermion line that 
both begins and ends in the initial state (i.e. v.. . u), and for each diagram 
in which fermion lines are interchanged in either of the initial or final states. 
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As an illustration, we give a representative contribution 

W,f - k,+) 
+&qq* k,+--k? 

I 
.a - 

- !ib, A) U(a) n(d) /&a - kb, A) u(C) 

(times a color factor) to the qq + qg Green’s function. (The vertices for quarks and 
gluons of definite helicity have very simple expressions in terms of the momenta 
of the particles.) These same rules apply for scattering amplitudes, but with 
propagators omitted for external-lines, and with e = P- of the initial (and final) 
states. 

- Finally, notice that this quantization procedure and perturbation theory 
(graph by graph) are manifestly invariant under a large class of Lorentz trans- 
formations: 

l.^ boosts along the 3-direction - i.e. p+ -+ Kp+, p- + K-‘p-, pl --+ pl for 
-. . each momentum; 

2. transverse boosts - i.e. p+ + p+, p- ---) p- + 2~1 - 91 + p+Qy, pl + 
pl + p+Ql for each momentum (Sl, like K, is dimensionless); = - 

3. rotations about the S-direction. 

It is these invariances which lead to the frame independence of the Fock state -- - 
wave functions. A comparison between r-ordered and time-ordered perturbation 
theory is given in Table I. 

16. Discretized Light-Cone Quantization 

Is it possible to solve the light-cone equation of motion HLCQ = M2XQ for 
QCD, at least in an approximate form. 7 Recently H. C. Pauli and I have taken 
a direct approach of attempting to diagonalize the light-cone Hamiltonian on a 
free particle discretized momentum Fock state basis. Since Hm, P+, FL, and the 
conserved charges all commute, HLC is block diagonal. By choosing periodic (or 

anti-periodic) boundary conditions for the basis states along the negative light- 
cone 

$(z- + L) = *+(z- - L) , 

the Fock basis becomes restricted to finite dimensional representations. The eigen- 
value problem thus reduces to the diagonalization of a finite Hermitian matrix. To 
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Table I. Comparison Between Time-Ordered and r-Ordered Perturbation Theory 

Equal t Equalr=t+z 

_ k” = de (particle mass shell) k- = ,w (particle mass shell) .-. - 

C L conserved C gl, k+ conserved 

Mab=vab+~vUC~ o 1 
L k -xc k”& 

V 
UC Mab = vab + c VUC V 

C c c, k--h= k- +ie cb 

n! time-ordered contributions k+ > 0 only 

Fock states in Fock states g,(~~i, zi) 

; 5 j+p=o 2 = k+ n jFF 9 iEl 3 =l., 5 L*i=O 
i=i = i=i 

(0 < 2i < 1) 

. . - ‘. E =P” - 2 ki” 
i=1 

d42-g~ :“)i - 

-- - 

see this, note that periodicity in Z- requires 

ki+ = F 
n 

ni , c ni=K. 
i=l 

The dimension of the representation corresponds to the number of partitions of 
the integer k as a sum of positive integers n. One can easily show that P- scales 
as L: we define P- E 2r LH . The eigenstates with P2 = M2 at fixed P+ and 

-@+= 0 thus satisfy 

KH IQ) = M2 IQ) , 

.P. 

independent of L (which corresponds to a Lorentz boost factor). Unlike conven- 
tional space-time lattices, L in DLCQ does not impose a physical scale on the 
theory. 
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For a finite resolution K, the wave function is sampled at the discrete points 

k+ ni 2;=&=jf= 
K-l 

K 

The continuum limit is clearly K + 00. 

The commuting operators K, Q and H = Ho + V are given by 

K = C n(@,bn + dL&) + n(aian) 
n=l 

Q = C(bLbn - &dn) 
n=O 

-. , 

HO = C 2 (bib, + d!dn) + z a:an 
n=l 

VA c 
7r 

b&-@, 6n-mPL + . . . 

n,m,k,L=O 
(n - m)2 

I have only displayed one fermion anti-fermion (abelian) interaction, corre- 
sponding to instantaneous gluon exchange. The Q = 0 Fock state basis states are 
of the form 

-- - b:dkai IO) = In; m; 4!) 

(n+m+l-= K) h w ere IO) is the perturbat,ive vacuum. (Spin, color and trans- 
verse momentum for any number of dimensions are represented as extra internal 
variables.) We then solve 

HK IS) = M2 IX&) 

on the free particle basis 

p!) = cc; Ii) . 
i - - 

We also take the kl as discrete variables on a finite Cartesian basis consistent with 
the ultraviolet cutoff. 

The eigenvalues of H projected on the discrete light cone basis give not only 
the bound state spectrum, but also all of the multi-particle scattering states with 
the same quantum numbers. 
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The simplest application of DLCQ to local gauge theory is QED in one-space 
and one-time dimensions. Since 
degrees of freedom. The fermion 

J&92 
7r 

A+ = 0 is a physical gauge there are no photon 
anti-fermion interaction 

(n y l)2 - (k -‘m)2 1 
is simply 

There are also induced mass terms from pairwise contractions of the normal- 
ordered Hamiltonian. Explicit forms for the matrix representation of HQED are 
given in ref. 38. 

Schwinger has shown that massless (QED) r+r is equivalent to a free boson 
theory. In the light-cone formalism we can demonstrate the solution explicitly. 
One defines66 bilinear operators in the fermion fields an and ai which have normal 
boson commutation rules. Then for Q = 0 

H = m2 e i (bkbn + dkdn) + f 2 t .;a, . 
n+l n=l 

-Thus for m2 = 0 (or g2/7r >> m2), HQED is equivalent to free boson theory with 
. . rnt = g2/r. -. 

For the general case m2 # 0, (QED) r+r can be solved by numerical diagonal- 
ization. The complete spectrum (normalized to the ground state mass) for K = 16 
is shown as a function of coupling constant in fig. 30. Since the physics can only =-- 
depend on the ratio m/g, it is convenient to introduce the parametrization -- - “=/TTY& 
which maps the entire range of m and g onto the finite interval 0 5 X 2 1. 

Figure 10 shows the structure function for the ground state of (QED)r+r 
as a function of A. In the weak binding limit g + 0 or (m + oo), the structure 
function becomes a delta function at equal partition of the constituent momentum, 
as expected. 

In the strong coupling limit g + oo (m + 0) the structure function becomes 
fl& This is consistent with the interpretation of the Schwinger boson as a point- 
like composite of a fermion and anti-fermion. The contribution to higher Fock 
states to the lowest mass structure function is strikingly small; the probability of 

- non-valence states is less than 1% for any value of A. 

The basis of the discretized light cone quantization method (DLCQ) for solving 
field theories is thus conceptually simple: In general, one quantizes the independent 

48 



0 

K = J6, full space 

I 1 I ! I I * 

0.0 0.2 0.L 0.6 0.8 h 1.0 
5561A6 

-. . 

-- - 

Fig. 30. Spectrum of QED in one-space and one- 
time dimension for harmonic resolution K = 16. 
The ratios Mi/Mr are plotted as a function of the 
scaled coupling constant X = 1. The Schwinger 
limit is X = 1. (From ref. 38.) 

fields at equal light cone time r and requires them to be periodic in light cone space 
~with period 2L. The commuting operators, the light cone momentum P+ = FK 
and the light cone energy P- = &H are constructed explicitly in a Fock space 
representation and diagonalized simultaneously. The eigenvalues give the physical 
spectrum: the invariant mass squared M2 = PP,. The eigenfunctions give the 
wave functions at equal r and allow one to compute the current matrix elements, 
structure functions, and distribution amplitudes required for physical processes. 
All of these quantities are manifestly independent of L, since M2 = P+P- = HK. 
Lorentz-invariance is violated by periodicity, but reestablished at the end of the 

-c&ulation by going to the continuum limit: L --+ 00, K + 00 with P+ finite. 
In the case of gauge theory, the use of the light cone gauge A+ = 0 eliminates 
negative metric states in both abelian and non-abelian theories. 

As we have discussed above, the application of DLCQ to a gauge invariant 
abelian field theory like QED2 is straightforward. For any given resolution K 



the number of contributing Fock states is finite because of the positivity of the 
light cone momenta and the Pauli principle. (in the case of massless fermions). 
No unexpected problems appear in the calculations. QED2 in A+ = 0 gauge is 
much simpler than the scalar Yukawa field theory, since the transverse degrees of 
freedom and therefore the photons are absent in l+l dimensions. One can see 
immediately in the DLCQ approach that QED2 has an arbitrary msss scale. This 

- scale can be adjusted by (re)normalizing the lowest mass to an arbitrary but fixed 
value. 

We have also established precise agreement between the DLCQ results and the 
exact solutions of the Schwinger model proper at any resolution K, as well as in 
the continuum limit. This result gives further evidence that quantizing a system 
at equal light cone time is equivalent to quantizing it at equal usual time. 

In the case of the massive Schwinger model (QEDs), we established the exis- 
tence of the continuum limit numerically; for sufficiently large resolution K the 
results become independent of K. The essential criteria for convergence is that 
the intrinsic dynamical structure of the wave functions is sufficiently resolved at 

L the rational values z = n/K, n = 1,2, . . . . K - 1 accessible at a given K. Unlike 
the case in the usual space-time methods, the size of the discretization or lattice 
length scale L, is irrelevant. 

-. . 
In the large K limit, the eigenvalues agree quantitatively with the results 

of Bergknoff 66 and with those of a lattice gauge calculation by Crewther and 
Hamer.67 This result is important in establishing the equivalence of different com- 
plementary nonperturbative methods. 

We also verified numerically that different Fock space representations yield the 
same physical results. In particular we solved the QED2 spectrum in the space 

-- - corresponding to the solutions of the free, massive Dirac equation (in/pa,+rn~)$~ = 
0 as well as of the massless equation i7@‘d,$~ = 0. We only found convergence 
-problems for the very large coupling regime X near 1 . 

Even for moderately large values of the resolution, DLCQ provides one with a 
qualitatively correct picture of the whole spectrum of eigenfunctions. This aspect 
becomes important for the development of scattering theory within the DLCQ 
approach. For example we have found the rather surprising result that the lowest 
eigenfunction has virtually no components of 12f; 2f3 and higher particle Fock 
states (i.e. no ‘sea quarks’). 

There are a number of important advantages of the DLCQ method which have 
-eriGged from this study of two-dimensional field theories. 

(1) The Fock space is denumerable and finite in particle number for any fixed 
resolution K. In the case of gauge theory in 3+l dimensions, we expect that photon 
or gluon quanta with zero 4-momentum decouple from neutral or color-singlet 
bound states, and thus need not be included in the Fock basis. The transverse 
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momenta are additive and can be introduced on a Cartesian grid. Hornboste168 has 
developed methods to implement the color degrees of freedom for the non-Abelian 
theories. 

-- 

(2) Unlike lattice gauge theory, there are no special difficulties with fermions: 
e.g., no fermion doubling, fermion determinants, or necessity for a quenched ap- 
proximation. Furthermore, the discretized theory has basically the same ultravi- 
olet structure as the continuum theory. We emphasize that unlike lattice calcula- 
tions, there is no constraint or relationship between the physical size of the bound 
state and the length scale L. 

(3) The DLCQ method has the remarkable feature of generating the complete 
spectrum of the theory; bound states and continuum states alike. These can be 
separated by tracing their minimum Fock state content down to small coupling 
constant since the continuum states have higher particle number content. In lattice 
gauge theory it appears intractable to obtain information on excited or scattering 
states or their correlations. The wave functions generated at equal light cone time 
have the immediate form required for relativistic scattering problems. 

(4) DLCQ is basically relativistic many body theory, including particle number 
creation and destruction, and is thus a basis for relativistic nuclear and atomic 
problems. In the non-relativistic limit the theory is equivalent to many-body 

-Schrodinger theory. 
- 

The immediate goal is gauge theory in 3+1 dimensions. Even in the Abelian 
case it will be interesting to analyze QED and the positronium spectrum in the 
large cy limit. Whether the non-Abelian theory can be solved using DLCQ - 
considering its greater number of degrees of freedom and its complex vacuum and 
symmetry properties is an open question. The studies for Abelian gauge theory 

-- - in l+l dimensions do give some grounds for optimism. 

17. Exclusive Reactbns as Tests of 
QCD and Hadron Wave Functions 

Even if we do not have as yet complete information on the hadronic wave 
functions in QCD, it is still possible to make predictions at large momentum 
transfer directly from the theory. Many of the results (such as meson form factors 
and 77 annihilation into meson pairs) can be proved rigorously, in the sense that 
they can be demonstrated to arbitrary order in perturbation theory. Other results 
re@ire an all-orders resummation. 

The processes which are most easily analyzed are those in which all final par- 
ticles are measured at large invariant masses compared to each other, i.e. large 
momentum transfer exclusive reactions. This includes form factors of hadrons and 
nuclei at large momentum transfer Q and large angle scattering reactions such 
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as photoproduction 7p + hn, nucleon-nucleon scattering, photo-disintegration 
7d -+ np at large angles and energies, etc. A key result is that such amplitudes fac- 
torize at large momentum transfer in the form of a convolution of a hard scattering 
amplitude 7’~ which can be computed perturbatively from quark-gluon subpro- 
cesses multiplied by process-independent “distribution amplitudes” 4(x, Q) which 

- . contain all of the bound-state non-perturbative dynamics of each of the interacting .-. - 
hadrons. To leading order in l/Q the scattering amplitude has the form6’ 

Here 2” is the probability amplitude to scatter quarks with fractional momentum 
0 < zj < 1 from the incident to final hadron directions, and ~~~ is the probability 
amplitude to find quarks in the wave function of hadron Hi collinear up to the 
scale Q, and 

[do] = fi dxjb (1 - 2 Xk) 

j=l k 
(17) 

The key to the derivation of this factorization of perturbative and non-perturbative 
dynamics is the use of the Fock basis ($J~(x~, gli, Xi)} defined at equal r = t + z/c 
on the light-cone to represent relativistic color singlet bound states. Here Xi are 
the helicities; xi E (k~+kf)/(p”+pa), (Cy=r xi = l), and LLi, (CF& gli = 0), are 
the relative momentum coordinates. Thus the proton is represented as a column 
vector of states $cIpQQ, tiqqqg, $q,r(l~q . . . . In the light-cone gauge, A+ = A0 + A3 = 0, 
only the minimal “valence” Fock state needs to be considered at large momentum 
transfer since any additional quark or gluon forced to absorb large momentum 
transfer yields a power-law suppressed contribution to the hadronic amplitude. 

= 

The factorization of large momentum transfer exclusive amplitudes can be un- 
derstood as follows: the 2’~ amplitude in leading order is the minimally-connected 
quark-gluon matrix element taking the valence quarks from the initial to final di- 
rections. It arises by iterating the gluon-exchange kernel in each wave function 
wherever large relative momentum occurs. The distribution amplitude is the coef- 
ficient in the wave function remaining after the iteration of the kernel, analogous 
to-the wave function at the origin in non-relativistic quantum mechanics. All 
intermediate states in 2” have constituents with relative transverse momentum 
larger t&an the momentum transfer Q. All the integrations up to Q are contained 
in 4(x, 9). 

The hard scattering amplitude T~(xi,Q,6~~) has dimensions [LlnS4 where n 
is the total number of incoming and outgoing field lines. At large momentum 

-- 
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transfer Q is the only relevant scale: 

n-4 

f (Xi 9 &m) - 

- This gives the main source of power-law behavior of the amplitude. One can 
check the power fall-off explicitly in A+ = 0 gauge for tree graphs: each interme- 
diate fermion line gives 1/Q2, each gluon propagator gives Q” since its numerator 
couplings cancel its denominator. The result is the same for instantaneous gluon 
exchange. Since all intermediate states have ki > Q2, one can calculate TH pertur- 
batively in powers of the running coupling constant; the leading power of cyg(Q2) 
is given by the number of exchanged gluons. The minimum number (valence) Fock 
state dominates the amplitude in A+ = 0 gauge. (This is not true in covariant 
gauges .) 

The scale a2 is set by the minimum virtuality of the propagators in TH; e.g. 
for form factors a2 = min{xiyi}Q2 where 

ij 1 > il and the light-cone fractions for 
- _ 

the initial and final state. The endpoint region where zi =- 0 is thus potentially 
dangerous. In some processes, such as meson form factors or 77 -+ Mm, the 

.meson distribution amplitude falls sufficiently fast such that such regions give 
power-law suppressed contributions. In other processes such as hadron-hadron 
scattering one must deal with Landshoff pinch singularities. Mueller21 has shown 
that the Sudakov vertex form factors which appear when a quark or a gluon leg 
is close to the mass shell suppress near-on-shell contributions so that the leading 
power analysis is modified by a small residual fractional power law correction. The 
Sudakov form factor also eliminates possible anomalous contributions from end- 

-- - point regions of integration in the calculation of baryon form factors. In the case 
of the F’(Q2) and 77 + Mz processes, formal proofs of QCD factorization can 
also be given using operator product expansions and the renormalization group. 

The momentum dependent of 4(x, Q) comes from the sensitivity to the upper 
limit of interaction of the transverse momentum integrals. This arises from the 
gluon exchange kernels which give integral of the form 

i?n Q2/A2 
Nen 43492 - 

- - 
One can use the iterative structure of the wave function equation in A+ = 0 gauge 
to sum the logarithmic dependence in the form of a sum of terms with anomalous 
dimension factors (en Q2/A2)--7n where the 7n are determined by ‘perturbative 
QCD. 
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18. Helicity Selection.Rule in QCD 

Since 4(x, Q) involves axially- symmetric kl integrations, L, = 0 to leading or- 
der in l/Q”, and the sum of the valence quark helicities equals that of the hadron. 
Furthermore, since QCD is a vector theory, quark helicity is conserved between ini- 
tial and final states in the hard-scattering amplitude. Thus QCD predicts hadron 
helicity conservation: 

c XH=EXff 
initial final 

at large momentum transfer. Notice that this result is independent of photon 
or lepton helicity in photoproduction or electroproduction amplitudes and holds 
to all orders in oyB (Q2). Th us an essential feature of the perturbative QCD is 
the prediction of hadron helicity conservation up to kinematical and dynamical 
corrections of order m/Q and ($$)“” /Q where Q is the momentum transfer or 
heavy mass scale, m is the light quark mass. Here ($4) is a measure of non- 
perturbative effects ascribed to chiral symmetry breaking of the QCD vacuum. 
Applying this prediction to pjj annihilation, one predicts A, + A, = 0, i.e., S, = 
-Jz -e fl is the leading amplitude for heavy resonance production. Thus the $J is 
expected to be produced with Jz = fl, whereas the x and qc cross sections should 
be suppressed, at least to leading power in the heavy quark mass. 

-19. Helicity Selection Rule and Exclusive Charmonium Decays 

The helicity selection rule may be relevant to an interesting puzzle concern- 
ing the exclusive decays of J/t,b and $J’ 

- 
--+ p?r, K*K and possibly other Vector- 

-- - Pseudoscalar (VP) combinations. One expects J/$(+‘) to decay to hadrons via 
three gluons or, occasionally, via a single direct photon. In either case the decay 
~proceeds via IQ(O) 12, where U(0) is the wave function at the origin in the non- 
relativistic quark model for CE. Thus it is reasonable to expect on the basis of 
perturbative QCD, that for any final hadronic state h, we have: 

B ( V  + h) 

B(T)’ -+ e+e-) 

Qh E B( J/$ ~ h) r B( J/lc, + e+e-) = os135 * o’o23 . 

Usually this is true, as is well documented in ref. 70 for pj?r”, 27r+27rr-7r” X+T-w, 
and 37r+37rr-7r”, hadronic channels. The startling exceptions occur for pr ind K*K 

-where the present experimental limits 70 are 
:; 

Q  

pr < 6.0063 and QK.z < 0.0027 . 

Recently San Fu Tuan, Peter Lepage, and 171 have proposed an explanation of the 
puzzle by assuming (a) the general validity of the perturbative QCD theorem72 
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that total hadron helicity is conserved in high momentum transfer exclusive pro- 
cesses, but supplemented by (b) violation of the QCD theorem when the J/$ 
decay to hadrons via three hard gluons is modulated by the gluons forming an 
intermediate gluonium state 0 before transition to hadrons. In essence the model 
of Hou and Soni takes over in this latter stage. 

- Since the vector state V has to be produced with helicity X = fl, the VP 
decays should be suppressed by a factor l/s in the rate. The $’ seems to respect 
this rule. The J/$ does not and that is the mystery. Put in more quantitative 
terms, we expect on the basis of perturbative QCD7’ 

Qp* = B(J/t,b + pm) BW ---) prr) - [MJ,@+,]6 

assuming quark helicity is conserved in strong interactions. This includes a form 
factor suppression proportional to [MJ,+/M+I]~. The suppression (3) is not large 
enough, though, to account for the data- the exponent would have to be greater 

- than 23 to explain it. 

_ One can question the validity of the QCD helicity conservation theorem at the 
charmonium mass scale. Helicity conservation has received important confirmation 

-in J/t,b -+ pi where th e angular distribution is known experimentally to follow 
[l + cos2 61 rather than sin2 8 for helicity flip. The helicity theorem also works 74 

for -J/$ --+ ?y”wo where the three gluons exchange is replaced by a highly virtual 
photon exchange [7(q2),q2 >> 0] in this isospin violating process. The $J’ decays 
clearly respect hadron helicity conservation. It is difficult to understand how the 
J/t,l~ could violate this rule since the J/$J and $’ masses are so close. Corrections 

-- - from quark mass terms, soft gluon corrections and finite energy corrections would 
not be expected to lead to large J/$ differences. It is hard to imagine anything 
other than .a resonant or interference effect that could account for such dramatic 
energy dependence. 

A relevant violation of the QCD theorem which does have significance to this 
problem, is the recognition that the theorem is built on the underlying assumption 
of short-range “point-like” interactions amongst the constituents throughout. For 
instance J/$( cc + 3g has a short range E l/m, associated with the short time -) 
scale of interaction. If, however, subsequently the three gluons were to resonate 
forming a gluonium state 0 which has large transverse size E ~/MH covering an 
extended (long) time period, then the theorem is invalid. Note that even if the 
gluonium state 0 has large mass, close to MJ/$, its size could still be the standard 
hadronic scale of 1 f m ,  just as the case for the D-meson and B-mesons. 

We have thus proposed, following Hou and Soni, that the enhancement of 
J/t,b + K*K and J/ll, + pr decay modes is caused by a quantum mechanical 
mixing of the J/$ with a Jpc = l-- vector gluonium state 0 which causes the 
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breakdown of the QCD helicity theorem. The decay width for J/+ + p?r(K*K) via 
the sequence J/$J --+ 0 + plr(K*K) must be substantially larger than the decay 
width for the (non-pole) continuum process J/$ + 3 gluons + pn(K*K). In the 
other channels (such as pi& pj%r’, 27rr+27rr-7r”, etc.), the branching ratios of the 0 

- - must be so small that the continuum contribution governed by the QCD theorem 
dominates over that of the 0 pole. For the case of the $’ the contribution of the 
0 pole must always be inappreciable in comparison with the continuum process 
where the QCD theorem holds. The experimental limits on Qpr and QK.z are 
now substantially more stringent than when Hou and Soni made their estimates 
of MO, I’odpr and I’03K.x in 1982. 

It is interesting, indeed, that the existence of such a gluonium state 0 was 
first postulated by Freund and Nambu” based on 021 dynamics soon after the 
discovery of the J/$J and $’ mespns. In fact Freund and Nambu predicted that 
the 0 would decay copiously precisely into pr and K*K with severe suppression 
of decays into other modes like e+e- as required for the solution of the puzzle. 

Final states h which can proceed only through the intermediate gluonium state 
satisfy the ratio: 

. . B($‘+ e+e-) (M.T/$ -Mo)~ + i I’8 
- Qh = B(J/+ + e+e-) (M+t - Mo)~ + 1 r2 ’ 

4 0 

We have assumed that the coupling of the J/$ and $J’ to the gluonium state scales 
as the e+e- coupling. The value of Qh is small if the 0 is close in mass to the 
J/+. Thus we require 

-. - 
(MJle - Mo)~ + a I’; 2 2.6 Qh GeV2 . 

The experimental limit for QK.z then implies 

PJ/tl, - Mo)~ + a r; I 112 
2 80 MeV 

This implies 1 MJ,$ - MO I< 80 MeV and I’0 < 160 MeV. Typical allowed values 
are 

- - MO = 3.0 GeV , l?o = 140 MeV 

or 
MO = 3.15 GeV , ro = 140 MeV . 

Notice that the gluonium state could be either lighter or heavier than the J/+. 
The branching ratio of the 0 into a given channel must exceed that of the J/+. 
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It is not necessarily obvious that a Jpc = l-- gluonium state with these 
parameters would necessarily have been found in experiments to date. One must 
remember that though 0 --) pr and 0 + K*K are important modes of decay, at 
a mass of order 3.1 GeV many other modes (all be it less important) are available. 
Hence, a total width I’0 E 100 to 150 MeV is quite conceivable. Because of 
the proximity of MO to MJ/+, the most important signatures for an 0 search 
via exclusive modes J/t,b + K*Kh, J/~/J --) prh; h = EW,~, v’, are no longer 
available by phase-space considerations. However, the search could still be carried 
out using $’ + K*Kh, +’ --) plrh; with h = 7~7r, and q. Another way to search for 
0 in particular, and the three-gluon bound states in general, is via the inclusive 
reaction $J’ + (AT) + X, where the 7rx pair is an iso-singlet. The three-gluon 
bound states such as 0 should show up as peaks in the missing mass (i.e., mass 
of X) distribution. 

Perhaps the most direct way to search for the 0 is to scan jjp or e+e- anni- 
hilation at fi within - 100 MeV of the J/v), triggering on vector/pseudoscalar 
decays such as ?rp or KK*. 

-. . 

The fact that the px and K*K channels are strongly suppressed in $J’ decays 
but- not in J/t) decays clearly implies dynamics beyond the standard charmonium 

-analysis. As we have shown, the hypothesis of a three-gluon state 0 with mass 
within E 100 MeV of the J/T/J mass provides a natural, perhaps even compelling, 
explanation of this anomaly. If this description is correct, then the $’ and J/t) 
hadronic decays are not only confirming hadron helicity conservation (at the $’ 
momentumscale) but are also providing a signal for bound gluonic matter in QCD. 

20. Further Remarks on Nucleon Form Factors -- - 

Let us now consider the implications of the perturbative QCD helicity selection 
rule specifically for the nucleon form factor. .At large Q2, the baryon form factor 
can be systematically computed by iterating the valence Fock state wave function 
equation of motion wherever large relative momentum occurs. To leading order 
the kernel is effectively one-gluon exchange. The sum of the hard gluon exchange 
contributions is the gauge invariant amplitude 7’~. The residual factor from the 
wave function is the distribution amplitude 4~ which plays the role of the wave 
function at the origin in the analogous non-relativistic calculation. Thus we obtain 
the form: [See fig. 2(a)] 

- - 

EdQ2)  = ] I ~ Y ]  jk] &yjr Q)Tr+i, yj, Q)h+i, 9) _, (18) 

0 0 

where to leading order in cy8(Q2), 2’~ is computed from 3q + 7* + 3q tree graph 
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amplitudes: [fig. 2(b)] 

(19) 

and 

d~(zi,Q) = /i d2kl] *(xi, k’,i)e(k:i < Q2)  
(20) --. - 

is the valence three-quark wave function [fig. 2(c)] evaluated at quark impact 
separation bl - 0(9-l). Since 4~ only depends logarithmically on Q2 in QCD, 
the main dynamical dependence of FB(Q~) is the power behavior (Q2)-2 derived 
from scaling of the elementary propagators in 2’~. Thus, modulo logarithmic 
factors, one obtains a dimensional counting rule’6 for any hadronic or nuclear 
form factor at large Q2 (X = X’ = 0 or l/2) 

N 1 1 1 * FIN-9 Q4 Fr - 92, Fd- gla, 

. . where n is the minimum number of fields in the hadron. As explained above, - 
total hadronic helicity is conserved at large momentum transfer for any QCD 
exclusive reaction. ” The dominant nucleon form factor thus corresponds to Fl (Q2) 
or GM(Q~); the Pauli form factor F2(Q2) is suppressed by an extra power of Q2. - 
In the case of the deuteron, the dominant form factor has helicity X = X’ = 0, 
corresponding to dm. The general form of the logarithmic dependence of 

-- - F(Q2) can be derived from the operator product expansion at short distance or 
by solving an evolution equation for the distribution amplitude computed from 
-gluon exchange [fig. 2(c)], th e only QCD contribution which falls sufficiently small 
at large transverse momentum to effect the large Q2 dependence. 

The distribution amplitude for a baryon is determined by an evolution .equa- 
tion which can be derived from the Bethe-Salpeter equation at large transverse 
momentum projected on the light-cone: 69 

a 
Q2 -gp + F) 4(zi, Q )  = y l[dy] V(si,Yi) 4(YivQ) 3 (23) 

- - 

.e- 

where GF = (n: - 1)/2n, = 4/3, cfj = (n, + 1)/2n, = 2/3, /? = ll- (2/3)nf, 
and V (Sip yi) is computed to leading order in (Y8 from the single-gluon-exchange 
kernel. The evolution equation automatically sums to leading order in a8(Q2) all 
of the contributions from multiple gluon exchange which determine the tail of the 
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valence wave function and thus the Q2-dependence of the distribution amplitude. 
The general solution of this equation is 

4(Xi, Q) = x1x2x3 7 (24 

where the anomalous dimensions 7% and the eigenfunctions Jn(zi) satisfy the char- 
acteristic equation: 

. _-. X1X2X3 (-'Y.+ T) &(Xi) = s][d!/] V(Xi,yi)Jn(yi) - 

0 

(25) 

In the large Q2 limit, only the leading anomalous dimension 70 contributes to the 
form factor. 

A useful technique for solving the evolution equations is to construct com- 
- pletely anti-symmetric representations as a polynomial orthonormal basis for the 

distribution amplitude of multi-quark bound states.45 In this way one obtain a 
distinctive classification of nucleon (N) and delta (A) wave functions and the 

_ corresponding Q2 dependence which discriminates N and A form factors. The 
-. . anti-symmetrization technique is presented in detail in ref. 45 for nuclear systems. 

.The result for the large Q2 behavior of the baryon form factor in QCD is 
then 6,69,78 

FB(Q~) = 

-. - 
(26) 

where the 7n are computable anomalous dimensions of the baryon three-quark 
-wave function at short distance and the d,,, are determined from the value of the 
distribution amplitude 4B(X, Q$) t g a a iven point Qi and the normalization of 2’~. 
Asymptotically, the dominant term has the minimum anomalous dimension. The 
dominant part of the form factor comes from the region of the x integration where 
each quark has a finite fraction of the light cone momentum; the end point region 
where the struck quark has x N 1 and spectator quarks have x - 0 is asymptoti- 
cally suppressed by quark (Sudakov) form factor gluon radiative corrections. 

In Table II we give a summary of the main scaling laws and properties of 
-large momentum transfer exclusive and inclusive cross sections which are derivable 

starting from the light-cone Fock space basis and the perturbative expansion for 
&CD. 

As shown in fig. 31, the power laws predicted by perturbative GCD are con- 
sistent with experiment. 7g The behavior Q4G~(Q2) - const at large Q2 pro- 
vides a direct check that the minimal Fock state in the nucleon contains three 
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Table II. Comparison of Exclusive and Inclusive Cross Sections 

Exclusive Amplitudes Inclusive Cross Sections 

Measure 4 in 77 -+ MZ 

c Ai=XH 
iEH 

a4(~, 8) 
a log Q2 = a8 / [dyl v(z, Y) 4(Y) 

- -Km Q~oo 4(2, Q) = g Xi ’ cflavor 
. ’ 

Gb, 8) = c / [%+I Id=]’ Id? (=,b) I” 
n 

Measure G in & -+ U 

c hZAH 
iEH 

Evolution 

W=, 8) 
a log Q2 = a8 

/ 
dy P(=/Y) G(i) 

Q5mm G(X, Q) = ‘(=) c 

Power Law Behavior . . 
- ‘. 

$(A + B +C+D)+ f (&.?7L) -& (AB --) CX) Cr c (;;2T!%;1 f(hn.) 

%Ct = na + nb + nc + nd 

-- - 
TH : expansion in cr8(Q2) db : expansion in as(Q2) 

Complications 

End point singularities Multiple scales 

Pinch singularities Phase-space limits on evolution 

High Fock states Heavy quark thresholds 
Higher twist multi - particle processes 
Initial and final state interactions 



quarks and that the quark propagator and the qq + qq scattering amplitudes are 
approximately scale-free. More generally, the nominal power law predicted for 
large momentum transfer exclusive reactions is given by the dimensional counting 
rule M - Q4+~o* F(B,,) where ?ZTOT is the total number of elementary fields 
which scatter in the reaction. The predictions are apparently compatible with 

. experiment. ” As discussed above, for some scattering reactions there are contribu- ..-. _ 
tions from multiple scattering diagrams (Landshoff contributions) which together 
with Sudakov effects can lead to small power-law corrections, as well as a com- 
plicated spin, and amplitude phase phenomenology.” As shown in fig. 8, recent 
measurements of 77 --+ vr+7~-, K+K- at 1 arge invariant pair mass are consistent 
with the QCD predictions. 82 In principle it should be possible to use measurements 
of the scaling and angular dependence of the 77 + M&f reactions to measure the 
shape of the distribution amplitude d~(x,Q).In addition, it has been recently 
shown that the Q2 dependence of virtual processes such as 7*7 + T+T- (mea- 
sured in tagged ee + ee7r7r collisions) depends in detail on the x-dependence of 
the pion distribution amplitude. 

‘. 

. IO0 1 I I I I I 3 
.- . 

Pion, n=2 

iTI-/- =- Proton, n=3 

Helium 4, n= 

- - 

lo-4 1 I I I I I I 
0 2 4 6 

Q2 (GeV2) 

Fig. 31. Comparison of experiment with the 
QCD dimensional counting rule (Q2)+‘F(Q2) - 
const for form factors. The proton data extends 
beyond 30 GeV2. 

A serious challenge to QCD is not only to get the correct power law scaling 
for the proton form factor correct (Fl - l/Q”, F2 - 1/Q6) but also to obtain 
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the correct sign and magnitude of the l/Q” coefficient. This is highly non-trivial: 
a non-relativistic 3 quark wave function invariably gives a negative sign for this 
coefficient (i.e., it predicts a zero at finite space-like q2 for Fr(Q2) and GM(Q~) 
and too small magnitude. This challenge appears to be successfully met by the 
QCD sum rule analysis of the proton distribution amplitude. 

The requirement that the nucleon is the I = l/2, S = l/2 color singlet 
representation of three quark fields in QCD uniquely specifies the si permutation 
symmetry of the proton distribution amplitude:83 

4;(xi, p> CX 5 b-hut + UtUldT - 2utdlut] ’ +(x1x2x3) + ‘?h(x3x2xl)] 

WlfLT - “t@tl ’ & h [h(x3x2xl) - h(xlx2x3)] 

The neutron distribution amplitude is determined by the substitution &, = 
L +(u + d). Moments of the nucleon distribution amplitude can be computed 

from the correlation function of the appropriate local quark field operators that 
carry the nucleon quantum numbers. 

The model wave function proposed in Ref. 83, consistent with the derived 
-. . moments, is 

t$~(xlx2x3) = &sympt - [11.35(~; + z”,) + 8.82~9 - 1.68~3 - 2.94 - 6.72($ - x:)] 
= - 

where &symt = 120 ~1~2x3. The renormalization scale is p s 1 GeV. The normal- 
-- - ization of the nucleon valence wave function is also determined: 

f~(p = 1 GeV) = (5.2 f 0.3) x 10m3 GeV . 

A striking feature of the QCD sum rule prediction is the strong asymmetry implied 
by the first moment: 65% of the proton momentum (at Pz + 00) is carried by the 
u quark with helicity parallel to that of the proton. [See fig. 3.1 The two remaining 
quarks each carry - 15 to 20% of the total momentum. 

The distribution amplitudes based on QCD sum rules are strikingly different 
from the symmetric forms derived in the Q2 + 00 limit. This is in analogy 

&-the case of deep inelastic structure functions which only approach the formal 
limit of a b-function at x = 0 at a momentum transfer scale very remote from 
the experimentally accessible range. The implication that the nucleon and pion 
valence wave functions are broad in longitudinal momentum also suggests a broad 
transverse momentum distribution (small radius) and indicates that quarks bound 
in light hadrons are highly relativistic. 
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The striking shape of the CZ wave function is due to the fact that only the 
first few eigensolutions to the nucleon evolution equation are used as a basis. Since 
one is so far from full evolution, there is no compelling reason why this should be 
correct. The essential feature of the sum rule predictions is the strong asymmetry, 

“V 

- together with the value of f~ which give perturbative predictions for the proton .._ _ 
and neutron form factors consistent both in sign and magnitude with experiment. 
(See fig. 5.) Th ese main features of the QCD sum rule calculation for the nucleon 
distribution amplitude have recently been confirmed by King and Sachrajda.7 

It has also been suggested that the relatively large normalization of Q4GK(Q2) 
at large Q2 can be understood if the valence three-quark state has small transverse 
size, i.e., is large at the origin. 84 The physical radius of the proton measured from 
Fr (Q2) at low momentum transfer then reflects the contributions of the higher Fock 
states qqqg, qqqijq (or meson cloud), etc. A small size for the proton valence wave 
function (e.g., _R,P,, - 0.2 to 0.3 fn) can also explain the large magnitude of (k:) of 
the intrinsic quark momentum distribution needed to understand hard-scattering 

- inclusive reactions. The necessity for small valence state Fock components can’ be 
. . - demonstrated explicitly for the pion wave function, since $J~~/~ is constrained by 

sum rules derived from zr+ + @Y, and rr” + 77. One finds a valence state radius 
R& - 0.4 fm, corresponding to a probability P:q - l/4. = - 

-- - As shown by Carlson, Gari, and Stefanis” , the proton and neutron form 
factors, the axial-vector nucleon form factor, and the leading N - A transition 
form factor can all be related to the shape of the nucleon distribution amplitude. 
Measurements of these form factors will provide severe tests on the applicability 
of the QCD sum rule predictions. 

We have emphasized that dimensional counting rules give a direct connection 
between the degree of hadron compositeness and the power-law fall of exclusive 
scattering amplitudes at fixed center of mass angle: M - Q4+F(Bcm) where n is - 

the minimum number of initial and final state quanta. This rule gives the QCD 
prediction for the nominal power law scaling, modulo corrections from the logarith- 
mic behavior of os, the distribution amplitude, and small power-law corrections 
from Sudakov-suppressed Landshoff multiple scattering contributions. For pp one 
predicts: 

63 



da - dn (pp -+ BB) N & fBB(cod,t.npT) 
T 

The angular dependence reflects the structure of the hard scattering perturbative 
2’~ amplitude, which in turn follows from the flavor pattern of the contribut- 
ing duality diagrams. For example, a minimally connected diagram such as that 
illustrated in fig. 32 is approximately characterized as 

111 !. *: THM---. 
t2 s u * 

-- - 
6-86 5446A7 

Fig. 32. A perturbative contribu- 
tion to the hard scattering ampli- 
tude in nucleon-nucleon collisions. 

Comparisons between channels related by crossing of the Mandelstam variables 
places a severe constraint on the angular dependence and analytic form of the 
underlying QCD exclusive amplitude. For example, it is possible to measure and 

compare 

FP-+TY : 7P-+7P : 77-+FP 

Fp-+ ^I”O :  7p -+ #p :  TOP --) 7P ’ 

SLAC measurements” of the 7p + +?I cross section at (?CM = z/2 are Consistent 
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with the normalization and scaling (see fig. 13.) 

We thus expect similar normalization and scaling for g @p + 77r”); all angle 
- measurements up to s 5 15 GeV2 appear possible given a high luminosity jj beam. 

The dimensional counting rules give the leading power behavior of exclusive 
amplitudes and are essential features of the theory. They appear to be reason- 
ably well verified by experiment including the recent series of measurements of 
meson-nucleon reactions done~ at BNL.41 By comparing the magnitude and angu- 
lar dependence of various meson-nucleon cross sections in the power-law scaling 
regime, one can establish that quark interchange amplitudes rather than flavor- 
independent gluon exchange diagrams appear to dominate at large momentum 
transfer. 

In the case of pp elastic scattering, the fixed angle data on a log-log plot (see 
; fig. 33) appears consistent with the nominal s-“f(6CM) dimensional counting 

production. H-owever, as emphasized by Hendry, the slOdcr/dt cross section ex- 
hibits oscillatory behavior with pi. Even more serious is the fact that polarization 

_ measurements (see fig. 11) show significant spin-spin correlations (ANN), and the 
. . single spin asymmetry (AN) is not consistent with predictions based on hadron he- - 

licity conservation rule discussed above. Such predictions are expected to be valid 
for the leading power behavior. Recent analyses of these effects have been given 
by Farrargl and Lipkin.g2 It is likely that there are significant non-leading power - 
law contributions. in the accessible energy range. Clearly, pp ---) pp data in the 
large-angle large-energy regime will be very helpful in clarifying these fundamental 

-- - issues. 
The simplest exclusive channels accessible to a jijp facility are j~p + e+e-, 

-p+p-, r+r- which to leading order in a! provides a direct measurement of the 
Dirac and Pauli time-like proton form factor. The eCM angular dependence can 
be used to separate Fz and Fr and check the basic prediction, 

F2(4/&(4 - M2/s . 

Perturbative QCD predicts asymptotic scaling of the form 

- s2Fl(s) -  f (hs)  .  

-  

A high luminosity p facility could push time-like measurements of both form factors 
well beyond those available from e+e- storage rings. Since the normalization is 
similar to that of pp + 77, one should be able to measure the proton form factors 
out to center of mass energy squared as large as s - 10 GeV2. 
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Fig. 33. Comparison of proton-proton scattering at fixed 6,, with the dimensional 
counting prediction. The best fit is sSg*‘. 

21. Studying the Comp$on Amplitude in pjj and 77 Annihilation =-. 

Another important example of an exclusive process in QCD is the process 
-- - pp + 77 or 77 -+ pp as illustrated in fig. 34. We can write to leading order in 

VP& 

1 1 

hipp-+77(&,flCM) = 
/ / 

[dx] [4&#+m) TH(WQ + WQ + 77h~(YGd 
0 0 

- - 

Y 

+ 

E P 

Y 

= 

6-66 5446A2 

Fig. 34. Application of QCD factorization to pp 
annihilation into photons. 
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where &(x,p~) is the anti-proton distribution amplitude and TH - af(p$)/(p$) 
gives the scaling behavior of the minimally connected tree graph amplitude for the 
two-photon annihilation of three quarks and three antiquarks collinear with the 
initial hadron directions. (See figs. 35 and 36.) QCD thus predicts 

Fig. 35. Example of a lowest order perturbative 
contribution to TH for the process pp -+ 77. . 
-=br-l . . - .. 
4-H 

-- - 

I. 

Fig. 36. Leading diagrams for 7 + 7 --) $i + p - - calculated in refs. 24 and 25. 

,-. -- 

The complete calculations of the tree graph structure of both 77 --N Mg and 
. 77 + BB amplitudes has now been cqmpleted. One can use crossing to compute 

TH for pji + 77 to leading order in aa from the calculations reported by 
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Farrar, Maina, and Nerig3 and Gunion and Millers.g4 Examples of the predicted 
angular distributions are shown in figs. 37 and 38. The region of applicability of 
the leading power-law results is presumed to be set by the scale where Q4G~(Q2) 
is roughly constant, i.e. Q2 > 4 GeV2. (See fig. 6.) The available data are too 
close to threshold for a meaningful test. 

As discussed above, the model for the proton distribution amplitude proposed 
by Chernyak and Zhitnitskii based on QCD sum rules leads to normalization and 
sign consistent with the measured proton form factor. (See fig. 5.) The CZ proton 
distribution amplitude yields predictions for 77 + pp in rough agreement with the 
experimental normalization, although the production energy is too low for a clear 
test. It should be noted that unlike meson pair production the QCD predictions 
for baryons are highly sensitive to the form of the running coupling constant and 
the endpoint behavior of the wave functions. 

. . 

-  ‘. Fig. 37. QCD prediction for the 
scaling and angular distribution 
for 7 +7 --, p+p calculated by Far- 
rar et al. g3 The dashed-dot curve 
corresponds to T = 0.0016 and 

-- - a maximum running coupling con- 
stant CX~~ = 0.8 The solid curve 
corresponds to $ = 0.016 and 
a maximum running coupling con- 
stant (yrncrz = 0.5 The dashed curve 
corresponds to a fixed a8 = 0.3. 
The results are very sensitive to 
the endpoint behavior of the pro- 
ton distribution amplitude. The 
CZ form is assumed. 

- - 
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Fig. 38. QCD prediction for 
the scaling and angular distribu- 
tion for 7 + 7 + p + p calculated 

- by Gunion, Sparks, and Millers.g4 
CZ distribution amplitudes are as- 
sumed. The solid and running 
curves are for real photon annihila- 
tion. The dashed and dot-dashed 
curves correspond to one photon 
space-like, with $ = 0.1. 

G- 
5 
d I 
5 

b- -o- 
*t 

102 

IO’ 

IO0 

10-l I ’ ’ ’ 1 ’ 1 ’ 1 ’ I 
0 0.2 0.4 0.6 0.8 1.0 

S-86 cosecm 6446b.14 

The 7*7* + BB and Mi@ amplitudes for off-shell photons have now been 
calculated by -Millers and Gunion. g4 The results show important sensitivity to 
the form of the respective baryon and meson distribution amplitudes. The conse- 

. . - quences of lgg) mixing in singlet mesons in 77 processes is discussed in ref. 95. 
- ‘. 

It is possible that data from pp collisions at energies up to 9 GeV could greatly 
clarify the question of whether the perturbative QCD predictions are reliable at 
moderate momentum transfer. An important check of the QCD predictions can =-. 
be obtained by combining data from pp + 77,77 + pp with large angle Compton 
scattering 7p --) yp. This comparison checks in detail the angular dependence and 

-- - crossing behavior expected from the theory. Furthermore in pp collisions one can 
even study time-like photon production into e+e- and examine the virtual photon 
-mass dependence of the Compton amplitude. Predictions for the q2 dependence 
of the pp + 77* amplitude can be obtained by crossing the results of ref. 94. 

- - 

69 



. . 

22. The Deuterog in QCD 

Of the five color-singlet representations of six quarks, only one corresponds 
to the usual system of two color singlet baryonic clusters.85 The exchange of a 
virtual gluon in the deuteron at short distance inevitably produces Fock state 
components where the three-quark clusters correspond to color octet nucleons 
or isobars. Thus, in general, the deuteron wave function will have a complete 
spectrum of “hidden-color” wave function components, although it is likely that 
these states are important only at small inter-nucleon separation. 

Despite the complexity of the multi-color representations of nuclear wave func- 
.-. tions, the analysis4’ of the deuteron form factor at large momentum transfer can 

be carried out in parallel with the nucleon case. Only the minimal six-quark Fock 
state needs to be considered to leading order in 1/Q2. The deuteron form factor 
can then be written as a convolution [see fig. 171, 

1 

.-. - 

F~(Q~) = /[dx] [&/I &y,Q) ~~+7*+6q(x,~,Q) 4&,Q) 3 (27) 
* 0 

where the hard scattering amplitude scales as 

. . 
- .. T6q+r* -‘6q = 

H 
[ I 

01$f2) ’ t(x, y) [I + 0 (~8 (Q2))] (28) 

The anomalous dimensions r”, are calculated from the evolution equations for =-- 
+d(zi, Q) derived to leading order in QED from pairwise gluon-exchange interac- 

-- - tions: (CF = 4/3, Cd = -CF/~) 

y] i6(xi,Q) = -9 ildy] V(xir~i)g(yi, 9) - (29) 

0 

Here we have defined 

@(xi, Q) = fi xk&k Q), 
k=l 

and the evolution is in the variable 
- - Q= 

((Q2) = E / $a.(k’) - In 

Qf 

(30) 

(31) 

The kernel V is computed to leading order in 08(Q2) from the sum of gluon 
interactions between quark pairs. The general matrix representations of 7n with 
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bases ne, XT 
> 

is given in ref. 45. The effective leading anomalous dimension 

70, corresponding to the eigenfunction 6(xi) = 1, is 70 = (6 /5) (C~/p) .  the next 
section). 

In order to make more detailed and experimentally accessible predictions, we 
_ will define the “reduced” nuclear form factor in order to remove the effects of 

nucleon compositeness: 86 
.-. _ 

&(Q2) fd(Q2) = J-“(QZ/q) - (32) 

The arguments for each of the nucleon form factors (FN) is Q2/4 since in the 
limit of zero binding energy each nucleon must change its momentum from - p/2 

to ( P  + q) /2.  s 

ince the leading anomalous dimensions of the nucleon distribution 
amplitude is C~/2p, the QCD prediction for the asymptotic Q2-behavior of fa(Q2) 

- is 
- 53 

fd(Q2) - -s2’ (Zn$)-’ c , (33) 

where -(2/5)(C~/p) = -8/145 for nf = 2. 

-Although this QCD prediction is for asymptotic momentum transfer, it is in- 
teresting to compare it directly with the available high Q2 data” (see fig. 19). - 
In general one would expect corrections from higher twist effects (e.g., mass and 
Ccl smearing), higher particle number Fock states, higher order contributions in 
cy8(Q2), as well as non-leading anomalous dimensions. However, the agreement of 
the data with simple Q2fd(Q2) - const behavior for Q2 > l/2 GeV2 implies that, 
-unless there is a fortuitous cancellation, all of the scale-breaking effects are small, 
and the present QCD perturbative calculations are viable and applicable even in 
the nuclear physics domain. The lack of deviation from the QCD parameterization 
also suggests that the parameter A is small. A comparison with a standard defi- 
nition such as Am would require a calculation of next to leading effects. A more 
definitive check of QCD can be made by calculating the normalization of fd(Q2) 
from TH and the evolution of the deuteron wave function to short distances. It is 
also important to confirm experimentally that the helicity X = X’ = 0 form factor 

Is-&deed dominant. 

.C. 

Because of hidden color, the deuteron cannot be described solely in terms 
of standard nuclear physics’ degrees of freedom, and in principle, -any physical . 
or dynamical property of the deuteron is modified by the presence of such non- 
Abelian components. In particular, the standard “impulse approximation” form 
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for the deuteron form factor 

Fd(Q2j = FpdY(Q2) FN(Q2) 9 (34 

where F, is the on-shell nucleon form factor, cannot be precisely valid at any 
- momentum transfer scale Q2 = -q2 # 0 because of hidden color components. 

More important, even if only the nucleon-nucleon component were important, 
Thus the conventional factorization cannot be reliable for composite nucleons 
since the struck nucleon is necessarily off-shell*’ in the nuclear wave function: 
Ik’2 - k21 - 1 2Q 2. Thus in general one requires knowledge of the nucleon form fac- 
tors FN(q2, k2, k’2) for the case in which one or both nucleon legs are off-shell. In 
QCD such amplitudes have completely different dynamical dependence compared 
to the on-shell form factors. 

.-. - 

Although on-shell factorization has been used extensively in nuclear physics as 

i., 

a starting point for the analysis of nuclear form factors, ** its range of validity has 
- never been seriously questioned. Certainly in the non-relativistic domain where 

target recoil and off-shell effects can be neglected, the charge form factor of a 
composite system can be computed from the convolution of charge distributions. 

- However, in the general situation, the struck nucleon must transfer a large fraction . . - ‘. of its momentum to the spectator system, rendering the nucleon state off-shell. As 
shown in ref. 45, the region of validity of on-shell form factor factorization for the 
deuteron is very small: 

1 
Q2 < 2kidEd 

-- - i.e., Q 5 100 MeV. However, in this region the nucleon form factor does not deviate 
significantly from unity, so the standard factorization is of doubtful utility. The 
-reduced form factor result has general utility at any momentum scale. It is also 
important to confirm experimentally that the helicity X = X’ = 0 form factor is 
indeed dominant. 

. 

The calculation of the normalization Tz+7*+6q to leading order in 08(Q2) will 
require the evaluation of over 300,000 Feynman diagrams involving five exchanged 
gluons. Fortunately this appears possible using the algebraic computer methods 
introduced by Farrar and Neri. *’ The method of setting the appropriate scale Q 
ofzz(Q2) in TH is given in ref. 96. - 

We note that the deuteron wave function which contributes to the asymptotic 
limit of the form factor is the totally antisymmetric wave function corresponding 
to the orbital Young symmetry given by [6] and isospin (T)+ spin (S) Young 
symmetry given by (33). The deuteron state with this symmetry is related to the 
NN, AA, and hidden color (CC) physical bases, for both the (Z’S) = (01) and 

.s- 
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‘. 

4 

(10) cases, by the formulag7 

(35) 

Thus the physical deuteron state, which is mostly $NN at large distance, must 
evolve to the $!+3]{33} state when the six quark transverse separations by 5 
0(1/Q) + 0. Since this state is 80% hidden color, the deuteron wave func- 
tion cannot be described by the meson-nucleon isobar degrees of freedom in this 
domain. The fact that the six-quark color singlet state inevitably evolves in QCD 
to a dominantly hidden-color configuration at small transverse separation also has 
implications for the form of the nucleon-nucleon (Sz = 0) potential, which can be 
considered as one interaction component in a coupled scattering channel system. 
As the two nucleons approach each other, the system must do work in order to 
change the six-quark state to a dominantly hidden color configuration; i.e., QCD 
requires that the nucleon-nucleon potential must be repulsive at short distances 

-- (see fig. 39).‘* The evolution equation for the six-quark system suggests that the 
distance where this change occurs is in the domain where cyB(Q2) most strongly 
varies. The general solutions of the evolution equation for multi-quark systems is 

_ discussed in ref. 45. Some of the solutions are orthogonal to the usual nuclear con- 
. . figurations which correspond to separated nucleons or isobars at large distances. - 

-- - 

.-. - 

= - 

r(fm) 
IO-83 4686A8 

Fig. 39. Schematic representation of the 
deuteron wave function in QCD indicating the 
presence of hidden color six-quark components 

- - at short distances. 
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23. Reduced Nuclear Amplitudes 

One of the basic problems in the analysis of nuclear scattering amplitudes is 
how to consistently account for the effects of the underlying quark/gluon compo- 
nent structure of nucleons. Traditional methods based on the use of an effective 
nucleon/meson local Lagrangian field theory are not really applicable, giving the 
wrong dynamical dependence in virtually every kinematic variable for composite 
hadrons. The inclusion of ad hoc vertex form factors is unsatisfactory since one 
must understand the off-shell dependence in each leg while retaining gauge invari- 
ance; such methods have little predictive power. On the other hand, the explicit 
evaluation of the multi-quark hard-scattering amplitudes needed to predict the 
normalization and angular dependence for a nuclear process, even at leading order 
in o8 requires the consideration of millions of Feynman diagrams. Beyond leading 
order one must include contributions of non-valence Fock states wave functions, 
and a rapidly expanding number-of radiative corrections and loop diagrams. 

The reduced amplitude method,86 although not an exact replacement for a 
- full QCD calculation, provides a simple method for identifying the dynamical 

effects of nuclear substructure, consistent with covariance, QCD scaling laws and 
gauge invariance. The basic idea has already been introduced for the reduced 

- deutkron form factor. More generally if we neglect nuclear binding, then the light- . . - .. cone nuclear wave function can be written as a cluster decomposition of collinear 
nucleons: tiq/A = +N/A n, *q/N where each nucleon has l/A of the nuclear 
momentum. A large momentum transfer nucleon amplitude then contains as a 
factor the probability amplitude for each nucleon to remain intact after absorbing 
l/A of the respective nuclear momentum transfer. We can identify each probability 

-- - amplitude with the respective nucleon form factor F (& = -& i!A). Thus for any 
exclusive nuclear scattering process, we define the reduced nuclear amplitude 

The QCD scaling law for the reduced nuclear amplitude m is then identical to 
that of nuclei with point-like nuclear components: e.g., the reduced nuclear form 
factors obey 

f,a(Q2) = 
FA(Q~) - 

[FN(Q2,A2)]A - [8121A-1 ’ 
(37) 

Comparisons with experiment and predictions for leading logarithmic corrections 
to this result are given in ref. 86. In the case of photo- (or electro-) disintegration 
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of the deuteron one has 

(38) 

i.e., the same elementary scaling behavior as for MyM-rqq. Comparison with exper- 
iment is encouraging (see fig. 40), showing that as was the case for Q2 fd(Q2), the 
perturbative QCD scaling regime begins at Q2 2 1 GeV2. Detailed comparisons 
and a model for the angular dependence and the virtual photon-mass dependence 
of deuteron electro-disintegration are discussed in ref. 86. Other potentially useful 
checks of QCD scaling of reduced amplitudes are 

mpp4*+ - PT2 f (t/s) 

mpd+Wr+ - PT4 f (t/s) (39) 

mrd+rd - PG4 f (t/s) - 

It is also possible to use these QCD scaling laws for the reduced amplitude as a 
parametrization for the background for detecting possible new di-baryon resonance 
states. 

. . 
-. , 

24. Conclusions 

The nucleus plays two complimentary roles in QCD: 

1. We may utilize a nuclear target as a control medium or background field to 
modify or probe quark and gluon subprocesses. We have discussed in these 
lectures several novel examples, such as color transparency: the predicted 
diminished attenuation of hadrons participating in high momentum trans- 
fer edusive reactions, and formation zone phenomena the absence of hard 
collinear target-induced radiation by quarks or gluons interacting in a high 
momentum transfer inclusive reactions. More generally, the nucleus may act 
to modify the properties of its constituent nucleons; a myriad of non-additive 
and shadowing effects have been suggested to explain the EMC/SLAC obser- 
vations. Measurements of nuclear non-additivity in individual electroproduc- 
tion channels are needed to unravel these effects. We have also emphasized 
the importance of the NA-10 observations for the Drell-Yan process in nuclei: 

- the transverse momentum distribution of lepton pairs is broadened; never- 
theless, structure function factorization is maintained. Thus as predicted by 
&CD, the incoming quark or anti-quark can suffer elastic initial state inter- 
actions even though hard collinear inelastic interactions do notbccur. These 
observations are important for the general understanding of the propagation 
of quark and gluon jets in nuclear matter. 
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-Fig. 40. Comparison of deuteron photo-disintegration data with the scaling pre- 
diction which requires f “(a,.,.) to be independent of energy at large momentum 
transfer. The data are from H. Myers et al., Phys. Rev. 121,630 (1961); R. Ching 
and C. Schaerf, Phys. Rev. 141, 1320 (1966); P. Dougan et al., Z. Phys. A276, 
55 (1976). 

2. The nucleus itself must be described as a QCD structure. At short dis- 
tances nuclear wave functions and nuclear interactions necessarily involve 

- - hidden color degrees of freedom orthogonal to the channels described by the 
usual nucleon or isobar degrees of freedom. In the case of the deuteron, five 
color-singlet Fock states are required just to describe its six-quark valence 
wave function. At asymptotic momentum transfer, the deuteron form fac- 
tor and distribution amplitude are rigorously calculable. At sub-asymptotic 
momenta, one can derive new types of scaling laws for exclusive nuclear 

= - 

76 



amplitudes in terms of the reduced amplitude formalism. We have also em- 
phasized some novel features of nuclear difiractive amplitudes-high energy 
hadronic or electromagnetic reactions which leave the entire nucleus intact. 
In the case of deep inelastic scattering, such leading twist contributions can 
give unusual non-additive contributions to the nuclear structure function at 
low z~i. In the case of vector meson electroproduction at highly virtual pho- 
ton mass, diffractive processes can give essential information on non-forward 
matrix elements of the same operator products which control deep inelastic 
lepton scattering. 

The application of QCD to- nuclei-Nuclear Chromodynamics has brought to- 
gether two formerly distinct communities of physicists. Given that the natural 
scale of QCD is 1 fermi, nuclear physics can hardly be studied as an isolated 
subject. Indeed several traditional assumptions of nuclear theory are incompat- 
ible with QCD, such as (a) standard on-shell form factor factorization and (b) 
Dirac equation phenomenology for nucleon interactions in nuclei-since the NNN 
intermediate state is severely suppressed by nucleon compositeness. Conversely, 

- 

- the very difficult questions for particle theorists-the structure of the hadrons in 
terms of their quark and gluon degrees of freedom, the gluonium and other exotic 
spectra, coherence effects, jet hadronization and particle formation, the nature of 

-the pomeron, diffractive and forward processes, etc., require experimental input in 
the GeV regime or even lower. We have discussed a number of new experimental 
facilities relevant to the study of these problems. 

In these lectures, I have reviewed several areas where theory has made signifi- 
cant progress over the past few years. This includes the extension of factorization 
and evolution equations to the domain of exclusive hadronic and nuclear ampli- 

-- - tudes. Moreover, QCD sum rule techniques have made tantalizing predictions for 
the required hadron wave functions, results which are being confirmed by lattice 
gauge theory computations. 
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