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ABSTRACT 

__ 

We report on our recent simulation results on the disruption effects during 

the interaction of round e+e- beams in linear colliders. It is found that in ad- 

dition to the well-known disruption parameter, D, the disruption effects also 

depend on another parameter A z azIp*, where a, is the bunch length and ,P 

the P-function at the interaction point. It turns out that while the luminosity 

enhancement factor, HD, is insensitive to A only in the small D(D 5 1) regime, 

the disruption angle enhancement factor, He, behaves oppositely. Specifically, 

we found that for large D, He is suppressed as l/o, and HD increases mono- 

tonically without saturation. Moreover, for fixed D, HD varies as a function of 

f?z(l/A). C om u er analysis further suggests that in the large D and small A p t 

regime a confinement mechanism is developed near the beginning of the collision: 

particles once pinched tend to be trapped in a much smaller radius throughout 

the process. A theoretical model is provided to qualitatively explain the above 

findings. 
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1. 1NTRODUCTI;ON 

To achieve high enough luminosity for particle physics experiments in linear 

colliders, it is necessary to focus the colliding e+e- beams down to miniscule 

dimensions at the interaction point. In the world’s first of such accelerators, the 

Stanford Linear Collider (SLC), the beam size at the interaction point is designed 

tobeoo z oZ=oy= 1.65 pm, and a, = 1 mm.l For the next generation of linear 

colliders at the range of 1 TeV in the center-of-mass energy, the beam size would 

be even smaller. The high density of charged relativistic particles would provide 

strong electromagnetic fields viewed by the particles of the oncoming beam, while 

the particles in the same bunch feel no space-charge effects to the order of l/r2. 

Two major effects arise during this beam-beam interaction which are important 

to the design of linear colliders. Namely, the disruption effect associated with the 

bending of particle trajectories.under the influence of these EM fields provided 

by the oncoming beam; and the beametrahlung effect associated with radiation 

loss of the particle energies induced by the bending of the trajectories. 

Strictly speaking, the two effects, disruption and beamstrahlung, are coupled. 

This is self-evident because without deflection there would be no radiation, and 

with radiation during bending the remaining trajectory of the particle would 

not be the same. Fortunately, in a large range of beam parameters the average 

disruption angle is rather small, and the emission of hard photons is relatively 

rare. For these reasons the two effects can be isolated from each other to the first 

degree and the studies of the issues are greatly simplified. 

In this paper we present new computer simulation results on disruption ef- 

fects assuming negligible beamstrahlung. The same subject has been previously 

investigated by several authors. While the well-known results of Hollebeek2 on 
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;‘ the functional behavior of the luminosity enhancement factor has-long been ac- 

cepted, the recent study of Fawley and Lee 3 hints on discrepancy in the large 

disruption regime. Considering the importance of luminosity for high energy ex- 

periments, it seems profitable to reinvestigate the issue with more detailed sim- 

ulations. In particular, our attention has been directed to the exceedingly high 

local particle densities due to beam focusing, which can contribute significantly 

to the luminosity and might affect the eventual disruption angles, as well. 

The paper is roughly constructed in two parts. In the first part, we present 

the simulation results on the average and the maximum disruption angles in 

Section 2 and the luminosity enhancement factor in Section 3. In both sections 

simple semi-empirical scaling laws are given to fit the simulation results. The 

second part of the paper is devoted to a theoretical model which qualitatively 

explains the simulation results on the luminosity enhancement factor. To do this, 

we investigate the time evolution of the differential luminosity near the end of 

Section 3. It is found that the disruption processes are characteristically different 

in three regimes of the disruption parameter D, defined as 

- 

^. 

D= rd&N 
ro; 

, (14 

where re is the classical electron radius and 7 the Lorentz factor of the relativis- 

tic beam. Sections 4, 5 and 6 deal with theoretical descriptions for the small 

(D 5 0.5), medium (0.5 5 D 5 5) and large (D > 5) disruption regimes, re- 

spectively. The small D regime corresponds to the situation where the first focal 

point of one beam lies beyond the oncoming beam. As such, the oncoming beam 

can be regarded as a weak focusing lens. In the medium D regime, the focal point 

starts to lie inside the oncoming beam, and a large fraction of the beam disrupts 
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severely after being focused. The situation changes dramatically as the interac- 

tion passes into the large D regime. It is found that the beam during pinching 

evolves into a core and a halo in its transverse distribution where the core, once 

formed, tends to be confined in an equilibrium radius throughout the remainder of 

the collision. 

. In all these studies of the disruption effects we introduce, in addition to D, 

another Lorentz invariant, dimensionless parameter A, defined as 

- A=?, 

where p* is the p-function at the interaction point of the e+e- beams. 

(1.2) - 

Physically, A measures the inherent divergence of the incoming beam. This 

is important because the collision process takes place within several 0,‘s around 

the interaction point, and the natural variation of the beam size over such a 

distance due to the finiteness of the p-function would have a significant impact 

on the disruption process. In the study of disruption effects one often chooses 

to fix the beam size ou at the interaction point so that the nominal luminosity 

(in the absence of disruption) can be computed. In such a case, A is related to 

the invariant emittance en via the relation A = r,o,/7c$. Furthermore, one can 

easily verify that A/D manifests the initial phase space area per particle of the 

beam in units of the classical electron radius: 

A en (1.3) 

C 

which.is independent of the optics that the beam experiences. 
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In this paper we assume the same initial parameters for the colliding electron 

and positron beams. The longitudinal coordinate s is fixed to the center-of-mass 

frame whose origin is the collision point of the two bunch centers. The time 

coordinate t is defined such that t = 0 when the two bunch centers collide. We 

further introduce the longitudinal coordinates zj (j = 1,2) co-moving with the 

two bunches. The origin of zj is the center of the jth bunch, and zj is positive 

along the direction of motion of the beam (see Fig. 1). In our calculations we 

shall ignore the longitudinal component of the focusing force, which is of the 

order l/7 smaller than the transverse component. Thus, the coordinate Zj of a 

particle is a constant in t. It is easy to see that particles in one bunch that arrive 

at s at time t should have their co-moving coordinate ~1 related to s by 

- 

s=q+t , P-4 

where we adopt the convention that the speed of light c = 1. On the other hand, 

particles in the opposite bunch arriving at the same space-time point would have 

their co-moving coordinate 22 related by 

s = -22-t . (1.5) 

With these relations in mind, the luminosity for A = 0 is defined by 

Lo = 2fN2 
/ 

d&dsdt m(w,a,t) n2(5,y,Z24 , (1.6) 

where f iS the repetition rate of collisions, and nj(Z,y,Zj,t) the distribution 
5 

function of the jth beam at time t, normalized such that 

/ 
nj(z,y,zj,t) dzdydzj = 1 3 j = 192 * (1.7) 
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Since-we ignore the longitudinal force, the lc?ngitudinal distributions are con- 

stant in time, i.e., 

nj(z,Y,Zj, t) dzdy = n,(zj) = - (14 

In the absence of disruption, the luminosity in Eq. (1.6) can be straightfor- 

wardly integrated (assuming Gaussian distributions) to get 

- r,=$ * 
0 

(1.9) - 

When A # 0, the above expression should be modified to take into account 

the variation of the beam cross section due to the change of the p-function around 

’ the interaction point. This can be done by introducing a reduction factor r]A: 

co e-Z=IUZ 
1+22/p*= dz , (1.10) 

such that the luminosity for a finite A in the absence of disruption is4 

tA=qA.CO - (1.11) 

_. ~ .-. 

Numerically, ?jA H 0.76 at A = 1.0, and rapidly approaches unity for A < 1. 

Since a reasonably designed accelerator would presumably be chosen to work in 

the regime where A < 1 to avoid degradation on luminosity, we find it convenient 

to use l20 as a reference parameter for all values of A. 

C 
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When the disruption is included, the effective.%rminosity L would be different 

from &-,, and a luminosity enhancement factor HD is introduced to account for 

the change 

L: HD E - . 
LO 

(1.12) 

Note that with HD so defined, and without VA involved, it is possible that HD s 1 

when D is small but A is large. 

By the same token, we introduce a disruption angle enhancement factor He. 

In the weak focusing limit where D < 1, the approximate solution of the equation 

of motion for a particle with impact parameter TO can be shown to be 

dr r,N 
dt - 

--ro . 
find 74 

Thus, the nominal disruption angle can be defined as 

r,N 80 = - . 
700 

(1.13) 

(1.14) 

The effective disruption angles $D for an arbitrary D is generally different from 

80, so H@ is defined as 

00 Ho E - . 
e. 

(1.15) 

The computer code, developed by one of us (KY) earlier,5 is now named 

ABEL (Analysis of Beam-beam Effects in Linear colliders). In the code the 

initial conditions of the macroparticles, typically 40,000 to 60,000 in number 

c 

-- 

for each beam, are created at once at s = 0 by Gaussian random numbers in 
. . I five dlmenslons, uz, uz, cry, ai and a,. These macroparticles are then traced 
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z- back to their locations where the simulation starts. Each beanris sliced into 

longitudinal meshes with thickness typically - 0.05 a,. In each mesh the particles 

are subdivided into transverse bins where the two-dimensional Poisson equation 

is solved to find the local electrostatic force that act on the opposite bunch. The 

magnetic force is assumed to be equal in magnitude to the electrostatic force. 

The particles are then pushed according to the equation of motion solved by the 

central difference method. 

In the original version of ABEL, the Poisson equation was solved by using 

a band matrix as described in Ref. 5. Since then, two major improvements 

have been introduced for faster and more accurate computations. One of these 

utilizes Fast Fourier Transformation (FFT) in two dimensions. This enables one 

to handle the transverse bin size down to as small as 0.1 00. This method would 

still take a considerable amount of computing time if an even smaller bin size is 

required, as is the case in the large D regime. The other method, which is used for 

- 

the simulations presented in this paper, assumes axial symmetry of the particle 

distribution at every time step and integrates the Poisson equation simply by 

r 

radial field - i 
/ 

n(r) rdr . (1.16) 
0 

__ 

In practice, since the initial conditions of the finite number of macroparticles are 

generated by random  numbers, there are tiny fluctuations around the assigned 

particle distribution that break the axial symmetry. Nevertheless,‘Eq. (1.16) is 

still invoked to calculate the pinch force, while the fluctuations in the distribution 

are traced. Compared to the first method (FFT), this method is much faster, and 

thus allows for much smaller radial bin size, which is necessary for our purpose 

to monitor very high local densities during the collision. 

5 
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The radial bin size used in our simulations-is anywhere between l/20 and 

l/200 of 00, depending on the values of D and A. Larger D and smaller A 

require smaller bin sizes. It should be mentioned that in simulations the actual 

beam size is truncated at f2.5 tr in both longitudinal and transverse directions. 

Accordingly, the luminosity Co differs from Eq. (1.9) by a few percent. This slight 

correction has been taken into account in all our calculations. With the beam 

size so chosen, the beams move through each other in 800 to 1600 time steps. A 

typical computing time for one run is between 30 seconds and 3 minutes. 

Constrained by the axial symmetry that we imposed, our present study is 

thus limited to cases for exactly head-on collisions (but random fluctuations are 

allowed) of round beams (i.e., CT% = (TV = 00) only. Nonaxisymmetric problems 

1 such as flat beam (i.e., a, > cry) collisions, effects due to beam alignment offset, 

collision with a crossing angle, etc., still await future efforts. 

__ C 
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2. DISRUPTION ANGLES 

One important piece of information for linear collider design is the expected 

disruption angle. Knowledge of the maximum disruption angle is essential to 

determine the aperture of the last element in a final focusing system, so as to 

avoid being showered by the debris from the beam-beam collision. 

. The simulation results of the maximum and the rms disruption angle enhance- 

ment factors, Hraz and Him’, are plotted in Figs. 2 and 3, respectively. The 

curves for A = 0 in the two figures reasonably agree with the previous results.6 

These curves for zero emittance can be well-explained theoretically,7 which pre- 

diets the following generic functional behavior for both HcF and HiT8 for A = 0, 

i.e., a linear increase for D < 1 and a l/a suppression for D B 1: 

a+bD, D<1, 
He,0 7 

$5 
D>l, (2-l) 

where a, b and c are some numerical coefficients which are different for maximum 

and rms angles, and which are to be fixed by the simulations. From Figs. 2 and 

3 we find 
0.87 +1.57 D , D < 1 , 

H ma= N 
@SO 1.84 D>>l, (2.2) 

a’ 

0.78 + 0.20 D , D < 1 , 
Hi;= N 0.67 

37' 
D>l. (2.3) 

__ 

When A # 0, the inherent divergence of the beam cannot be overlooked when 

the disruption is small. The natural rms divergence angle .of a beam is 

- 

I u%Y 00 
Qz,y = 

-=- 
P* P* ’ 

(2.4 
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,z.‘ while .- -. 
. 

(2.5) 

Dividing both sides by 80, as defined in Eq. (1.12), we have the contribution from 

finite emittance: 

H rmd = 
B& 6 =@, 

- (q. (2.6) 

where the definitions of A and D are used. The general expression for Him8 is 

therefore 

HO rmd = ,/(H;;‘)’ + (H;y6)2 - (2.7) 

Inserting Eq. (2.3) for Hiy and Eq. (2.6) for Hiy, the above expression fits 

.I all the curves in Fig. 3 very well. Notice that the contribution of the second 

term rapidly diminishes for D ,beyond unity. Thus, the rms disruption angle is 

asymptotically independent of A. 

The situation for the maximum disruption angle is slightly more complicated, 

since the maximum natural divergence angle for Gaussian distributions is not 

well-defined. However, as is the case for He,o, the functional behavior of H8yEa” 

should be similar to that of Hi:“, and the overall HraZ should be analogous to 

He rms, in Eq. (2.7). This is evidenced by the similarity between Figs. 2 and 3, 

aside from the numerical differences. 

C 
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. . - 3. LUMINOSITY ENHANCEMENT FACTOR 

From the disruption process, our major concern is the effective luminosity L: 

compared to the nominal luminosity lo, or the luminosity enhancement factor 

Ho. As is mentioned in the Introduction, HD is a function of both D and A. 

In the design of a linear collider, it is desirable to have A considerably smaller 

than unity, otherwise the luminosity would be degraded because of the significant 

variation of the beam size during collision due to the finiteness of ,B*. 

Figure 4 shows HD as a function of D for five values of A (A = 0.05, 0.1, 0.2, 

0.4 and 0.8). Notice that for relatively small values of D, say D 5 5, the result 

of Hollebeek’s,2 which was evaluated at A = 0, seems to agree roughly with our 

curve for A = 0.2. In fact, in this region of D our result also agrees with that 

‘of Fawley and Lee,3 which was evaluated at A = 0.2. However, there is a novel 

feature which was not observed before, namely, HD varies for different values 

of A. In our simulations the five values of A are selected such that they are 

equally spaced in logarithmic scale. One finds from the figure that for each D 

the curves for different A’s are roughly equally separated except for large A (e.g., 

A 2 0.8), where the separation depends on D. This suggests that HD has a term 

proportional to .&(1/A) for small A, i.e., 

- 

jmoHDcc& + + 0 
, for fixed D . (3-l) 

Another characteristic feature of our result is the monotonic increase of HD 

as a function of D (for all A’s) at least up to D = 100. This is fundamentally 

different from Hollebeek’s result where the luminosity enhancement saturates at 

the value HD - 6 beyond D - 5 and decreases for D 2 20. On the other hand, 

c 
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our result. agrees with that of Fawley and Lee in this respect, except that the 

rate of increase in HD in Fig. 4 turns out to be more pronounced than that of 

Fawley-Lee. Here again, HD unmistakably depends on A in the large D regime. 

These differences between the simulations, we think, are brought about mainly 

by the resolution in the transverse dimensions. As long as A is small, the particle 

density during collision is rather singular near the axis. As would be discussed in 

much more detail in Section 6, in the large D regime the beam tends to develop 

itself into a core and a halo. While the size of the halo, which can be estimated 

by naive geometric considerations, is of the order - 

the size of the core is roughly 

ucore N $00 - 

Thus the core is much smaller in size, and it requires good resolution in simula- 

tions in order not to overlook the contribution from the core. 

Based on the data shown in Fig. 4, an expression for HD is found on purely 

empirical grounds: 

HD=I+D~/~ (1+DL3) [In(JiS+1)+2Ln(y)] _. (3.4) 
c 

This expression reproduces all the data in Fig. 4 to an accuracy of around *lo%. 

Equation (3.4), h owever, differs substantially from the corresponding expression 

given in Ref. 7, where the fit was based upon the middle three curves in Fig. 4 

then available. 

13 



,z.- In .order to analyze the physical mechanism~of the disruption process which 
. give rise to the HD behavior shown in Fig. 4, we investigate the time evolution 

of Ho. The differential luminosity (per unit time), dL/dt, can be defined as 

dL: - 
dt 

= 2jN2 
/ 

d@/ds m(z,y,G) n2(~~,~24 - P-5) 

By the same token, the differential luminosity enhancement factor, dHD/dt, is 

defined by 

dHD 1 dl 
-=Lox’ dt (3.6) - 

such that 

P-7) 

In the absence of disruption, it is easy to see that 

dHD 1 
dt = fi a, exp ' (3.8) 

and from this expression J(dHD/dt) dt = 1, by definition. Figure 5 shows dHD/dt 

as a function of time for various values of D. Here, the parameter A is fixed at 

0.05, and the time t is in units of a,/~. Jn spite of the fact that the HD curves 

in Fig. 4 are reasonably smooth for each fixed value of A, the curves shown 

in Fig. 5 reveals different characteristics throughout the entire range of the 

value of D. 
C 

For very small D, e.g., D 2 0.5, we find that dHD/dt varies essentially as 

Eq. (3.8), which reflects the square of the longitudinal particle distribution of 

the bunch. When D - 0.5, a second peak appears at t N 1.6 a,/~. The peak 

14 



,z.- grows a,s Q gets larger, and eventually becomes the dominant source for the 

luminosity enhancement by D - - 0.7. Notice also that the location of the second 

peak shifts gradually to the left as D increases, where the strong disruption 

induces the phenomena to occur earlier in time. Furthermore, while the buildup 

of the second peak becomes steeper, its falloff becomes smoother as D increases. 

This phenomena of a second peak appears in the region 0.5 2 D s 5. Beyond 

D- 5, the differential luminosity evolves into a new regime. The “second” 

peak now occurs right near the beginning of the collision, and its smooth jallofl 

now recovers the Gaussian-like variation, except that there appear to be high- 

frequency wiggles superimposed. While the time evolution of dHD/dt in both 

the small and the large D regimes behave similarly, their absolute values are 

- 

distinctively different. 

It turns out that the underlying physical mechanisms are indeed very different 

in the above mentioned three regimes of D, classified as follows: (1) the small 

D (D s 0.5), or the weak focusing regime, (2) the medium D (0.5 5 D s S), 

or the transition regime, and (3) the large D (5 5 D), or the pinch cbnjinement 

regime. In the following sections we shall provide theoretical descriptions that 

qualitatively explains the phenomena occurs in the three regimes. 
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;- . . _ 4. THE WEAK FOCUSING REGIME 
. 

The weak focusing regime corresponds to the range 0 < D 5 0.5. For such 

small values of D, dHD/dt is essentially described by the Gaussian function in 

Eq. (3.8). The correction to this expression to the first order in D can be derived 

in the following way. For the sake of argument we assume A = 0. This is justified 

because it turns out that there is no divergence at A = 0 in the correction term 

linear in D, i.e., to this order the correction arises only through the radial motions 

of the particles. 

The equation of motion of a particle at zr in a bunch is 

d2t 4Nr, 
s= -7 fo(r) nz(-2t - 21) , (4-l) 

with 

we(r) rdr , P-2) 
0 

where n,o(r) is the unperturbed radial distribution function normalized such 

that s n,o(r) rdr = 1. To derive the first order correction we had assumed 

unperturbed distribution on the right-hand side of Eq. (4.1). The solution of 

Eq. (4.1) with initial conditions r = ro, and dr/dt = 0 at t = -oo is given by 

r(t,iq) = r0 - (4.3) 
rt 
-- 

with 

t t1 t 

g(+) = 
/ / 

dtl dt2 n,(-2t, - a) = 
I 

dtl (t - tl) n,(-2tl - ~1) . 

-CO -CO -CO 

16 



;- 
Equation-(4.3) can be inverted as 

. 
4Nr, 

f-0 A r+- r f0(r) g(t41) , (4.4 

within the same order of accuracy. For our purpose we like to know the perturbed 

radial distribution function n,(r) at (t, 21). This can be found by 

d(4 1 ‘n&t, a) = nrO(r0) - 
d(r2) 

= nrO(r) l+ [ 5 (& 2 fo(r) +n,,> g(t,zl)] . 

Accordingly, the luminosity can be evaluated aa 

Lee 
/ 

rdr da da n&l) 42) ~1 (r, t, 21) WI (r, t, 4 I , 
t=-(al+za)/a 

= 
/ rdr da dZ2 n&l) 44 [nro(r)]2 

x {1+f$ (& 2 fo+n,o) [g(t,n)fB(t,n)]}t=-(ntll)jl , 
(4.6) 

where the leading term (unity) corresponds to the nominal luminosity fZo. The 

integration over r can be carried out, which gives 

1 ho 
- - fo+nro) = i 7 rdr n& . 
nro dr 

0 

(4.7) 

-_ 

Thus, the luminosity enhancement factor for small D is 

HD N l+~[‘/~z~p] 

X 
/ 

da dz2 n&l) 422) 
[ 

g(t, 21) + g(t, z2) 
I t=-(%1+%2)/a 

17 



,:.- Since the two colliding bunches are symmetric,~ g(t, ~1) and g(t, $2) contribute 

. equally to HD, where 

t co 
g(t, a> = 

/ 
dtl(t - tl) n,(--2tl - q) = i rd7 nz(T + 22) . 

t=-(e1+za)/2 -m 
/ 
0 

(4-g) 

Therefore, 

HD -N l-k- 4:re [i z$)] // da dz2 n,(q) nz(q,) /m rdr nz(T + zz) 

=I+? [i zit] 7 dz /m TdTn,(z) nz(r+l) . (4.10) 
0 0 

‘Now we introduce normalized coordinates p = r/q,, and < = Z/U,. Then 

HD = I+,[: zzi] /m d< /m rdTn&) n&+C) * (4.11) 
0 0 

For Gaussian and uniform distributions, this leads to 

HD =I+Dx 
$ (radially Gaussian) 

> 1 

x -& (longitudinally Gaussian) 

* i (radially uniform) --& (longitudinally uniform) 
(4.12) 

This formula agrees very well with the simulation results for D 5 0.5. Notice 

that for D < 1, the empirical expression for HD in Eq. (3.4) behaves as D15i4, 

which is by no means close to the linear behavior in Eq. (4.12). This is mainly 

because of the need to suppress the strong h(l/A) dependence in Eq. (3.4) 

-- 
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in the small D regime. This strong &(1/A) dependence, however, is necessary 

to fit the medium and large D regimes. 

Rigorously speaking, HD cannot be Taylor expanded around D = 0. In 

deriving Eq. (4.4) we have assumed that the first term ro on R.H.S. of Eq. (4.3) 

is much larger than the second term. This is not the case when t becomes large, 

no matter how small D is. One obvious example is that at the focal point the 

two terms would become equal. For D < 1, however, this focal point lies far 

beyond the tail of the oncoming bunch, thus the subtlety mentioned above is 

alleviated. To be more explicit, from linear optics it is easy to see that the focal 

length in the weak focusing regime is proportional to u,/D, thus the density of 

the oncoming beam around the focal point is proportional to exp {-l/2 D2) < 1. 

Since HD comes from multiplication of the local densities of the two bunches, 

the contribution from the focal point is exponentially small. 

- 
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5. THE TRANSITION .eEGIME . . _ 

The transition regime is characterized by the appearance of the second peak 

in dHD/dt with relatively short duration. This phenomena also conforms with 

the fact that in this regime the first focal point lies inside the bulk of the on- 

coming beam. Because of the strong focusing, the deformation of the oncoming 

beam cannot be ignored. As we will show later in this section, the leading order 

correction in D for the target bunch deformation is equivalent to the second order 

contribution in D to the focusing force. To set the stage for the second order 

calculations, however, we shall still start with the first order approach where the 

equation of motion is given by Eq. (4.1). For small z in a Gaussian distribution 

we have 

fi= 4Nr, z 
exp {-w} 

--- 
dt2 -7 2u; 6 02 

20 x 
= - -& 3 exp 

(2t + %1)2 
24 - 

It suffices to solve the equation 

d2x 20 x -= 
dt2 

---exp 
d-- 27r 0: 

(5-l) 

(5.2) 

which arises from a coordinate transformation from t to t + zr/2. Let us denote 

the two solutions to Eq. (5.2) by ul(t) and uz(t), with initial conditions at t = --do 

1+0 

1 
Ul 

= 0 1 
7 ,ut=t+Ot ) 

0 
(5.3) 

c 

-- 

respectively. We are interested in the solutions near the focal point, which for 

ED 2 -5 occurs at to - u,/D. By definition, at the focal point ul(to) = 0. 
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,z- Numeri.cal- integration then gives the following approximate solution 

. 
3n 

il(to)rr-4a , (O.SdDsS) , 
z 

while 

u2(to) = 
1 4 Qz 

-41(to)- 
-- 
30 ’ 

(0.5 s D g 5) . 

The last relation comes from the W ronskian property 

u1(t)fi2(t) - ?qt)uz(t) = 1 . 

(5.4 

(5.5) 

(5.6) 
- 

The general solution to Eq. (5.2) is therefore 

X = soul(t) + xAuz(t) * P-7) 

Transforming back to the original coordinates, we have the solution to Eq. (5.1) 

x = .04+3+xb2(t+~) . (5.8) 

Generally, xi < 1, so from Eqs.(5.4), (5.5) and (5.8) we see that a particle at zr 

would be focused to the axis at time to - u,/D, or 

+!g-$. (5.9) 

The focal point is thus at 
C 

_- 
. _n_ 20, 

%2 = -2t-%l - -D . (5.10) -- 

This means particles at different longitudinal positions zr in one bunch would all 

be focused to the same point z2 - 2u,/D, but at different times. 
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This naive picture, however, contradicts simulation results. Two computer 

analyses were performed to monitor the detail processes of beam focusing in this 

regime. Figure 6 shows the time evolution of the average radius f(t, Z) of a set of 

selected z-slices with ~1 ranging from -2u, to +2u, for D = 1.0 and A = 0.05. 

Here, f is defined as 

F z {21[nr(r)]2rdrr’2 , (5.11) 

where the radial particle distribution function n,(r) is normalized such that 

j’ n,(r) rdr = 1. The above definition is equivalent to the definition of the 

standard deviation uo in the limit of a Gaussian distribution, but in general it 

puts more weight on the radii that have higher particle densities. This is par- 

- 

ticularly inspired by the observation that during the collision, a bunch tends to 

develop into a core and a halo, and the conventional definition of the rms value 

would not reflect the crucially important role of the core. 

One finds in Fig. 6 that most particles at different Z’S are focused almost 

simultaneously, at t - 0.8 uZ/c, which differs with Eqs. (5.9) and (5.10). This 

fact is also reflected by the relatively short duration of the second peak in dHD/dt. 

Indeed, the full-width half-maximum (FWHM) of the second peak turns out to 

be around 0.4 uZ/c throughout the range of 0.7 5 D 5 3. One further computer 

analysis is shown in Fig. 7 for dHD/dz as a function of Z. This is the cumulative 

contribution of each z-slice of one beam to the luminosity enhancement. If all 

the particles are focused at the same ~2, as the strong-weak picture suggests, 

then dHD/dz must show a sharp spike. On the contrary, Fig. 7 shows a smooth 

C 
-- 

-curve -manifesting the longitudinal Gaussian distribution of the beam. 
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To--account for these facts, we proceed by including the deformation of the 

oncoming beam to the first order in D. To this order, the deformation of a 

longitudinal slice at zr is given by Eq. (4.5), and that for the oncoming beam is 

obtained by simply replacing zr by 22 = -2t - zr, i.e., 

n&t,22 = -2t - 21) = fbo(r) 1+ [ 7 (& 2 fo+n,o) da)] * 

(5.12) 

It is interesting to observe that t does not appear on the R.H.S. of the above 

equation. We can thus improve the unperturbed equation of motion by replacing 

fe(r) with 

fl(r,q) = i j n,l(r,t,z2 = -2t -21) rdr . 
0 

(5.13) 

Substituting Eq. (5.12) into Eq.(5.13), we find a simple expression 

fi(r,zi) = h(r) [l + F %0(r) g(R)] . (5.14) 

Actually, the above inclusion of the deformation of the oncoming beam, with 

the disruption parameter D intact, can also be interpreted as the inclusion of the 

modification of D to the next order, namely, 

I 
7 (5.15) 

with the distribution fo(r) unchanged. From this viewpoint, the focusing force 

for the bunch core near the axis is increased by a factor 

4Nr, 
1+- d4 

7 
n,o(r) g(a) = 1+4D a, - (5.16) 
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* ,=.- Once this is seen, the result from the strong-weak picture (or the first order 
. 

expansion in D) can be readily modified to include the next order in D. Namely, 

the focal point should occur at 

t - 
21 

D [l + 4:g(zl),o,] - 7 * 
(5.17) 

From the definition of g (zr ), we find for small zr 

490=1_1zr+~** . 
02 t/G 20, 

(5.18) 

This implies that the zr dependence in Eq. (5.17) is almost cancelled provided 

that D is not too large (e.g., of order unity). Thus, the minimum beam size 

.occurs at the time 

t - tr(D) = 02 
D(l+D/&) * 

(5.19) 

We are now ready to derive the luminosity enhancement factor Ho. The 

beam size of the slice at zr can be derived from Eq. (5.8) as 

tYf = (zg) u: (t + $) + (z$) uf (t + $) 

= 4 [qt+$)+(+J24(t+~)] . (5.20) 

Considering that the primary contribution to HD comes essentially from the high 

particle densities near the focii of both bunches, we concentrate on the beam size 

around t N t/(D), where ul(tf) = 0. Thus, Eq. (5.20) becomes 

c 

0; N 0; I I G(q) 2 (t - tf)2 + p* 
u2h) 2 

[ 11 
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,=.- . . 

. =u;[g (!z$f)2+!!$F] , (5.21) 

where Eqs. (5.4) and (5.5) h ave been used. The same expression holds for 022 of 

the second beam near t H tf. The enhancement factor is therefore 

HD = 
/ 

dzl dz2 & 
z 

= 2 
/ 

dsdt & 
z 

exp{-!$-!t} [g, (!$L)2+Jf&]v’ 

=-.$ / $ exp{-5) [$ (~)~+g]-' . (5.22) 

Since the contribution to HD essentially comes from around t - tf, we can 

approximately carry out the above integral as 

fi -1 
HD H A exp 

[D (l+D/m12 
(5.23) 

Unfortunately, this expression does not fit the transition regime in Fig. 4 too 

well numerically. In particular, it is too sensitive to A, and Eq. (5.22) gives too 

sharp a peak in dHD/dt. The disagreement mainly comes from the fact that tf 

is not strictly zr independent. The residual ~1 dependence in Eq. (5.17) would 

break the simultaneity of focusing among all the z-slices. As a result, at time tf 

when a slice at zr reaches its minimum size or, the overlapping oncoming slice 

at 22 may not have reached its minimum yet. This slight mismatch between ~1 

and 02 would potentially relax the sensitivity of HD on A a~ in Eq. (5.23). 

To incorporate the residual zr dependence in t/, numerical integration will be 

needed. Our result here, however, does indeed qualitatively explain the essential 

_ . 
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physical process which dominates the transition regime. Namely, the luminosity 

in the transition regime is contributed primarily from a very narrow window of 

collision time when the longitudinal slices from head to tail of each bunch are 

focussed to their minimum size almost simultaneously. 

- 

C 

-- 
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._ 6. PINCH CONFINEMENT O$ BUNCH CORE 

In the large D regime (D 2 S), th e most striking phenomena is the confine- 

ment of a large fraction of bunch particles near the axis within a small equilibrium 

radius throughout the course of collision. We call this portion of the bunch the 

core, as opposed to the halo particles that come from either being never focused 

to the axis or being focused but escaped. The occurance of this phenomena, 

however, is nothing like a phase transition that appears abruptly at a particular 

value of D. In fact, we already see certain signature from the slices near the 

bunch tail in Fig. 6, where slices at z = -1.0, -1.5 and -2.0 tend to stay at a 

pinched radius. This is why we called the regime for medium D the transition 

regime. 

In this section we devise an analytic description of the large D regime guided 

by simulation results. Since the luminosity essentially comes from the confined 

core, we will emphasize the behavior of the core. This is handled, again, by the 

mean radius f of a longitudinal slice introduced in Eq. (5.11). However, for the 

sake of mathematical simplicity, the transverse distributions of each longitudinal 

slice is assumed to be Gaussian at any time. The evolution of the beam size is 

described by the rms beam size aj(zi, s) of a slice at zj that comes to s. Since 

we assume equal beams, we have by mirror symmetry 

^. 

_ 

u&z,s) = CT&,-s) . (6.1) 
L 

In the linear approximation of the focusing force, the equation of motion of 

a particle at zr in the first beam is given by 

-- 

d2x 
-p+K1 (21,s) x=0 9 (64 
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,=.- with .- - 

K&w) = - 
2: [(61;;i$Y$ ea=*l-2s * 

When D is very large, the actual beam size is rapidly oscillating during the 

collision. We may smooth out this fluctuation in the focusing force Kr. In this 

sense we have introduced ziz in Eq. (6.3), where the bar indicates a smoothing 

over some short interval of s. Our task is to solve Eq. (6.2) to obtain ~(21,s) and 

from which to deduce the beam size ~1 so as to be self-consistent with 82 in Kr. 

In the case where D is very large and the particle in consideration is well inside 

the oncoming bunch (i.e., lz2l s ( some factor) xaZ), the WKB approximation is 

suitable to solve Eq. (6.2). Thus, in this case we have 

x(.&s) = [a3 Kl~~l,s)ll14 (clcosel + Gsin61) 
’ 

where 

dmds . (6.5) 
80 

Here, we have introduced dimensionless constants Cr and Cz. In order to express 

them in terms of the initial condition x0 and x;), we need a solution near the head 

of the oncoming bunch, where WKB fails. This will be discussed later. 

Since cos 81 and sin 81 oscillate very rapidly, we may put cos2 81 = sin2 81 = 

l/2 and cos 81 sin 8i = 0. Then, we have 

x2h4 = $&) i l(c,2+c;) - 

c 
-- 

(64 
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,=.- To.get the smoothed beam size we average Eq. (6.6) over the initial distribu- 
. tion, from which we get 

a:(w) = (x2(374> = cT 
z 

J& ’ 
, 

(6.7) 

with 

c= f (G+G) , 
> 

(6.8) 

where ( ) denotes the average over the initial distribution. Then, we get from 

Eqs. (6.3) and (6.7) 

~~(“1,s) = & 

Similarly, for the second beam 

00 a2(z2,5) 1 3 4x3 *2=zl-28 * P-9) 

00 a1 (a, s) 

af(z29S) = & Jig&) al=~~+2s * [ 1 (6.10) 

Now, we can solve Eqs. (6.9) and (6.10) self-consistently with the result 

e(a,s) = 2 - [u~Tz&I)]-~‘~ [wb~~2~] J,‘i:,-28 - W1) 

Inserting into Eq. (6.3) we obtain 

402 [uz~z(zl)]2’3 [fwz~z2~]~“=.,~28 * (6.12) f JwlY4 = c24 

Here, we have a remarkable formula saying that the beam size is determined only 

~by local variables, namely, the longitudinal density of the beam of interest at zr 
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,=.- and the longitudinal density of the oncoming beam at the same position. All 
. the history of the particle is packed in one single parameter C. Keep in mind, 

however, that Eqs. (6.11) and (6.12) d o not apply to the head and the tail of the 

bunches. 

Figure 8 shows the time evolution of the beam size for five z-slices at zr = 

i.0, 0.5, 0, -0.5 and - 1.0 a,, for D = 100 and A = 0.05. These five curves 

are then overplotted in Fig. 8(f). One finds that there is no distinctive dif- 

ference among the five curves except for the shift in time according to their 

locations in the bunch. The slices abruptly shrink when entering the oncom- 

ing beam and soon reach some equilibrium “core- with small and rapid wig- 

- 

gles and a slow variation of the mean radii. The rapid wiggles are related to 

F the oscillations of COB 81 and sin 81, whereas the slow variation agrees well with 

[nz(z2)]-1/3 0~ exp [(a - ~s)~/SU~] in Eq. (6.11), which ensures the validity of 

the WKB approximation. 

In order to find HD we have to express Cl, C2 and C in terms of the initial 

conditions. To this end we need a drastic approximation. The fact that the beam 

size suddenly reduces to a small value suggests that we may ignore the focusing 

force before the particles are focused to the core. Therefore, we shall assume that 

the focusing force Kr is given by Eq. (6.12) w h en 22 is well inside the oncoming 

beam but it is zero near the beginning and the end of the collision. The boundary 

is determined by the limit where WKB fails. The condition that the WKB is - -4 

valid is given by 

I I d l Sl -- 
dsfl . 

(6.14) 
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i ,L- Since zr is a constant for a given particle, we can rewrite Eq. (6.12) as 
. 

k2 
Kl= - exp 

4 
, 

with 

{::$+L-p{2&] ’ 

(6.15) 

(6.16) 

We shall ignore exp( -zf/6az), assuming that our particle is nowhere near the 

head and the tail of the beam. The solution of Eq. (6.14) for s’ < 0 is - 

2s; , (6.17) 

where si(< 0) is a solution to -,. 

, (6.18) 

and is approximately given by 

$-J$qgg). (6.19) 

The above si is ,thus the boundary that partitions the two zones for zero and 

finite Kr’s. Note that at s’ = si Kr is given by 
C 
-- 

Kl(sAlz& (-$j)’ (z)‘E +p (-$$>’ [Ln(g $I-’ . 

(6.20) 
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i ,:- The solution with the initial condition x0 and xh at s’ = s; is then 
. 

x = x0 K&i) 1’4 [ 1 Kl (s’) ‘OS’ + xc: Kl(s;;4(st) 1 114 
sin8 , (6.21) 

where 

e=j $cjqds’ . 
, 

a0 

(6.22) 

Note that we have ignored the derivative of Kl, which is always valid whenever 

the WKB approximation is applicable. Rigorously speaking, we should impose 

the initial condition at s = 0, not at s’ = si. Our treatment is justified because 

for very small A the deflecting angle xi at s’ = si is much smaller than uc, which 

;is the typical value of x0. 

Comparing Eqs. (6.21) and.(6.4) we have 

[ Cl = [CT; K1(8;)]1’4 2 = [a (G)” h (a @]-“‘z (6.23) 

[ C2 = [u~K~(s;)]-~‘~ f$ . (6.24) 

Averaging over the initial distribution g 

, (6.25) 

and 

;ives 

(c2) (c2) = 
1 2 - . 

C 

- 

(6.26) 
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;-- The latter merely insures the conservation of the linear emittance. Since we 
. 

assume A < 1 and D > 1, we have (Cl) > (Ci). Therefore, 

c2 = ; (C,” + C,“) N I , (6.27) 

which, together with Eq. (6.25), d e t ermines C self-consistently. We now get 

c= [$ (&g g)]-l’” . (6.28) 

While C still appears on the RHS of the expression, it varies only logarithmi- _ 

tally. We may substitute C on RHS with some 

approximation we get 

C= (E>““[(n(f) 1 

onstant times D1i3. As a good 

-l/6 

, (6.29) 
-.. 

which agrees with the exact solution of Eq. (6.28) within 1% for D 2 10. Thus, 

the smoothed beam size in Eq. (6.11) is now written as 

D.l(Zl,S) = a0 
9 

l - 
xi?,& Den(D/2) 

and the focusing function is 

Kl(a,s) = [ff D4 h (:)]““-xp { “‘~~rf}z2~z~-28 
_- 

I  _P_ 

These formulas apply for 

lz2l 2 214 = 
\i (1 

i tn : a2 . 

(6.30) 

(6.31) 

C 
-- 

(6.32) 
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Let usno-w calculate the enhancement factor go. Analogous to Eq. (5.23) we 

have 

dzl dz2 4 1 
HD = - exp 

Uf<Zl,S, + 4Z2,S) mu; . (6.33) 
22=21-2i3 

Note that 2 dsdt = dzldz2. If we replace uj in this expression with the smoothed 

radius Bj in Eq. (6.29), we get 

,=l.37d[,,(~)]1’3 - (6.34) 

via numerical integration. As in the case of the transition regime where the 

slight mismatch between ur and uz should not be overlooked, in the confinement 

regime the rapid wiggling of the beam size also plays some role and, therefore, 

one needs to use oj instead of aj. Averaging the square of Eq. (6.4) over the 

initial distribution and using Eqs. (6.25) and (6.30), we get 

u:(Ll,s) - (x:(v)> 
= & g ( c2 ~05~ e1 + : sin2 el) exp { ” ,‘,f”” }z2~zl~2s - z 

(6.35) 

At 81 = z/2, we have the minimum beam size ur = [(27r)‘/” A/Sfi]uo, as stated 

in Eq. (3.3). Notice that if we ignore A 2 and replace cos2 81 by l/2, we recover 

a- _P_ 

the smoothed beam size in Eq. (6.30). Nevertheless, the finiteness of A can still 

contribute to the luminosity near the zeros of cos 81. Substituting Eq. (6.35) into 

Eq. (6.33), the new HD now reads 
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. 
D 

HD =.- 
dzldz2 3(2f + 2;) - 

7&F / 
- exp 

0: { > 

x [exp{-T2z:] (~~0s2tll+~sin2t91) 

+exp{‘$f} ( A2 C2 ~05~ e2 + 4 sin2 e2 ) 1 
-1 

. 

22=21-28 
(6.36) 

Since 81 and 62 are strong functions of zr and 252, and C2 >> A2/4, we can 

approximately integrate the above expression to obtain 

HD = - 
20 

7r2& c2 
& cash ($-l”)] 

(6.37) 

’ for A < C. By numerical integration and by invoking Eq. (6.29), we finally 

obtain 

HD = h b en (p)l”” {i en [x2 lf;D,21] - LnA} , (6.38) 

where Xr = 0.880 and X2 = 2.28. The agreement with the simulation is not very 

excellent but the fhA dependence is correctly expressed. We can also obtain 

dHD/dt discussed in Section 3 by replacing dzldz2 in Eq. (6.37) with 2 dsdt and 

by integrating over s. Since only small jzr ( and I 2 I z contribute in the integral, we 

may ignore the variation of cash in Eq. (6.37) as a rough approximation. In so 

doing, we obtain 

(6.39) 

Comparing this expression with the unperturbed dHo/dt of Eq. (3.8), one finds 

~that dHD/dt for large D is indeed Gaussian with a slightly larger coefficient 
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i ;-- for t2 in the exponent. This fact agrees with the simulation results quite well. 

. (Compare the figure for D = 100 versus that for D = 0.2 in Fig. 5.) Notice that 

the functional behavior exp(-3t2/2ui) comes solely from the WKB part. On the 

other hand, the overall factor in Eq. (6.39), which comes from the truncation of 

Kl at the head of the bunch, like the case for Ho, does not numerically reproduce 

the simulation results. 

.-- - 
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. . - 7. DISCUSSION 

In this paper we have presented the simulation results of the enhancement 

factors for the disruption angles and the luminosity. We have shown that the 

inherent beam divergence, manifested by the newly introduced parameter A, 

plays a critical role in addition to the well-known disruption parameter D. In 

particular, while it is the small D regime that is sensitive to A in the case of Ho, 

on the contrary, it is the large D regime that is sensitve to A in the case of Ho. 

All these observations are then theoretically described with guidance from 

a further computer analysis of the beam-beam interaction process. Our theory 

explains the essential features found from computer simulations, although it fails 

to reproduce HD numerically in the transition and the confinement regimes. 

To summarize, in the weak focusing regime (0 < D s 0.5) the enhancement 

of luminosity comes from the overall deformation of the beam, and is rather 

.insensitive to A. In the transition regime (0.5 5 D s 5) , the dominant contri- 

bution to HD comes from the high particle densities around the focii that lie 

within the oncoming beam. The focused particles tend to be severely disrupted 

afterwards, although when approaching larger D in this regime one starts to ob- 

serve partial confinement for slices near the tail of the bunch. One novel feature 

in this regime is that the focusing process tends to occur at the same time for 

different longitudinal slices, but not at the same position in the oncoming bunch. 

This fact is reflected by a sharp spike in the dHD/dt plots for smaller D, and 

a sharp rise followed by a wide skirt (from partial confinement) for larger D. 

These are explained by including the mutual deformations of both beams up to 

the second-order expansion in D. 

37 



The most striking phenomena occurs in the pinch confinement regime (D 2 5) 

where a large fraction of the bunch particles are abruptly pinched to a much 

smaller cross section and tend to be confined within the equilibrium radius 

throughout the collision process. This fact is well described by the WKB ap- 

proximation during the confinement, and by the drastic approximation made in 

the focusing force near the boundary. One major claim from our theory is that 

during the confinement phase the motion of the particles is adiabatic so that the 

variation of the oscillation amplitude is determined solely by the local density of 

both beams and is independent of their history. - 

In our linearized model for the focusing force in the confinement regime, 

the bunch core preserves the initial emittance, which in turn provides a thermal 

;energy that is balanced with the potential energy, and gives rise to an equilibrium 

radius for the core. It can be seen from Eq. (6.35) that, while the upper bound 

-of the oscillation amplitude is governed by C which is independent of A, the 

lower bound is governed by A. This is confirmed by a plot similar to Fig. 8, but 

with D = 100 and A = 0.2. Figure 9 shows that the amplitude of the wiggles is 

indeed smaller for larger A. In fact, our theory implies that as A + 0 the lower 

bound vanishes and in turn HD diverges logarithmically, which agrees with our 

simulation results. 

A closer look at Figs. 8 and 9 indicates that the difference in oscillation 

amplitudes is not, as pronounced as Eq. (6.38) predicts. In addition, there is an 

obvious smearing of the oscillation during the course of confinement, which is 

not accounted for by the equation. This suggests that nonlinear terms for the 

confining potential may be necessary for a better theoretical picture. 
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Having been demonstrated by the drastically different scenario of our results 

from previous works, one would naturally ask if our results are prone to various 

plasma instabilities. One such instability is the filamentation instability where 

local density fluctuations tend to act as tiny focusing lenses that attract the 

nearby oncoming particles, which in turn further enhance the fluctuations until 

-the beam is eventually torn into clusters. From our simulations, we found no 

sign of such a filamentation up to D = 100. Concerned that our use of axial 

symmetry to calculate the Poisson equation may have suppressed the effect, we 

- - also diagnosed the instability using the band matrix method, which is fully three- 

dimensional. Due to the constraint on the computing time, however, we had to 

choose a much larger bin size (- 0.2 ac) at D = 50 and 100. Although the 

results still show no sign of filamentations, it is rather inconclusive because of 

the coarseness of the bins. 

One possibility is that there is a threshold cross section of a beam below 

which it cannot be further filamented. This threshold beam size has to do with 

both the energy and the temperature of the beam. For the confined bunch core, 

we suggested earlier that an equilibrium is rapidly reached between the thermal 

energy and the potential energy. This might also mean that the equilibrium 

radius of the core is at or below the filamentation threshold, and no tearing of 

the core could be possible. As for the halo, notice that it comes from either 

the particles that are never well focused to the core because of -the nonlinear 

nature of the force associated with Gaussian distributions, or the particles that 

are euaporuted from the core for the same reason. In either case, the emittance 

of the halo must be much larger than the initial value, whence filamentations are 

_- 

also avoided in the halo. 
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Another possible instability is the kink instability where the initial offset of 

the two beams would be amplified during collision. This instability does exist 

when D is very large, but should be regarded as a separate issue from what has 

been studied in this paper. Here our only concern is how beam-beam disruption 

behaves when the two beams are perfectly aligned. 

- 

_ Finally, there is a digression from the theory we developed for pinch con- 

finement. Recall that HD is crucially dependent on the parameter C, while C 

itself is very sensitive to the boundary condition related to the initial stage of the 

collision. This suggests that perhaps a careful design of the longitudinal particle 

distribution, especially near the bunch head, would help to achieve the optimum 

luminosity enhancement. 
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FIGURE CAPTIONS . . - 

Fig. 1. Schematic diagram that defines the various coordinates of the two colliding 

bunches. For a test particle in bunch 1 at zr = z, the relative coordinate 

with respect to bunch 2 is 22 = -2t - z. 

Fig. 2. Maximum disruption angle enhancement factor as a function of D, com- 

puted with four different values of A. 

Fig. 3. Root-mean-square disruption angle enhancement factor as a function of 

D. Notice the similar behavior of Figs. 2 and 3, aside from the difference 

on the numerical values. 

Fig. 4. Luminosity enhancement factor as a function of D, computed with five 

different values of A. The A values are so chosen that they are equally 

separated on the logrithmic scale. 

Fig. 5. Computer analysis on the time evolution of the luminosity enhancement 

factor HD, at various different values of D with A = 0.05. For very small 

and very large D’s, dHD/dt varies as a Gaussian function (although for the 

large D regime there are small wiggles superimposed), while for medium 

values of D there is an obvious spike. 

Fig. 6. Time evolution of the average radius f (in units of ac) of a set of selected 

z-slices with zr ranging from -2 a, to +2 a, for D = 1.0 and A = 0.05. 

Notice that in this regime of D different slices are focused to their minimum 

_- radius.at about the same time, in this case, at t - 0.8 uZ/c. 
C 

Fig. 7. Cumulative contribution of the luminosity enhancement factor dHD/dz as 

a function of z. The Gaussian-like distribution indicates the simaltaneity 

of the focusing process for different z-slices. 
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~- Fig. 8. Time evolution of the beam size for five selected z-slices at zr = 1.0, 0.5, 0, . . _ 
-0.5 and -1.0 trZ, for D = 100 and A =“0.05, shown in the figure from 

S(a)- to 8(e), respectively. The five figures- are then overplotted in 8(f). A 

confined bunch core can be obviously seen. 

Fig. 9. A similar plot to Fig. 8, except that A = 0.2 in this figure. The behavior of 

the bunch in this case is almost the same as the one in Fig. 8, other than 

that the amplitude for the fast oscillations is smaller for larger A. 
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