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Abstract 

We have looked at, and compared, three types of damping ring lattices: 

a) conventional 

(.’ b) wiggler lattiee with finite cx 

c) wiggler lattice with a = 0 

and observed the attainable equilibrium emittances for the three cases assuming a con- 

straint on the attainable longitudinal impedance of 0.2 ohms. The emittances obtained 

are roughly in the ratio 4:2:1 for ci, b, and c. 

-- - Introduction 

The equilibrium emittance in a conventional damping ring depends at high energies 

on quantum fluctuations and at low energies on intrabeam scattering. A minimum is 

- obtained when the two contributions are matched. It is then found to depend critically 

on a parameter H that is dominated by the dispersion 7 and this in turn depends on the 

tune Q of the ring. We want a high Q for low emittance. 

But a high Q implies a large ring, and a large ring at the required energy implies low 

bending fields. Low bending fields imply slow damping times and small momentum spread, 

both of which are clearly -undesirable. 
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Fig. 1. One half cell of a) a conventional damping lattice 
and b) a wiggler lattice with n = 2.5 wiggles. 

However, high Q, a large radius and high bending fields are possible if the bending is 

alternated (see Fig. 1). This is the idea behind a wiggler lattice.’ 
. . 

- ‘I 
A problem, however, with a wiggler lattice is that the momentum compaction param- 

eter ar becomes very small and problems arise with longitudinal instabilities. ~1 becomes 

small even in a normal ring if’ a high tune Q is chosen, but becomes even smaller in & 

wiggler ring and can even become negative. This gives us the possibility of looking at 
-- - 

cy. 2 0 rings where, though longitudinally they may be unstable, the growth time of the 

instability is longer than the needed damping time. 

In this note I examine what gains might be possible using these two ideas. 

Equations 

Assuming ,& and & are constants, I can take the values of the equilibrium normalized 

emittances from 1) quantum fluctuations2 and 2) intrabeam scattering3 to be 
- 

Ew M 2.2 x 10-10 
(Jz : <J,) -121HB) 

(1) 

2 
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(2) 

I assume 

N(H’12) 1 112 

fen M 

Jz = Jy = 1 , 

(3) 

.-. 
and B is the magnetic field in the bending magnets; < is vertical/horizontal mixing pa- 

rameter; czn = ya,dp/p is the invariant longitudinal emittance; Fw is the fraction of the 

circumferance filled with bending magnets; pZ and ,& are the focusing parameters in hor- 

izontal and vertical directions; and. 7 is the transverse dispersion parameter. 

rl * P2/R (4 

. 
- . where R is the mean ring radius. 

In a simple ring the contribution to H from 7’ is negligible, but in a wiggler ring, 

within the wiggler pole of length 2k 

-- - 

q’=f (forz=-et0 +f?) (5) 

where p is the bending radius within the wiggler, and z is measured from the center of 

each wiggle magnet pole. 

Substituting into Eq. (3): 

- - 

and 

(6) 



.- 

(H1i2) = p:/‘( (1 - F,)a 

+ (Fm); [v%?+ $ log (e + &FGF) - % log a] } 

where a = P,/R. 

In the finite CY cases the impedance requirement is taken as 

(7) 

(8) 

where oz is the rms bunch length; E is the electron energy in electron Volts; 

N is the number of electrons; e is the electron charge; and c is the velocity of light. 

The momentum-speed is taken to be 

assuming Jz = 2. 
-- - 

The longitudinal momentum compaction cy: for a simple ring is 

but for the wiggler case we must include the effect of a finite 77 ‘: 

- - P,2 Frn e2 
Q=R2-2p2 (11) 

or for Fm = 1 
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Comparing this with Eq. (6) we see that as the q’ term in H becomes significant in 

increasing H, it simultaneously becomes a significant reduction in CL For convenience I 

define a term Fa giving the relative contribution of the 7’ term: 

Fa = (13) 

In the ar = 0 case, electrons of different momenta are synchronous, the beams are 

infinitely unstable with an infinite growth time. The machine is like a relativistic linac, and 

the effect of impedance is to produce “wakefields” that give a momentum spread between 

the front and back of a bunch. This momentum spread can, however, be corrected either 

in-the ring, by operating at an appropriate rf phase or outside the ring in an rf,section. 
. . The uncorrected energy spread: 

LIE NeRc Z 
- = I’ = ,&,;E ; E 

-- - 

or if we set a bound on $$ of 1.7% (cos r$ = l-.025; 8 = lo’), then: 

Z/n < .017 - 
&+E 

NecR ’ 

Method 

(14 

(15) 

J.-Using. the above equations I select the operating energy (E) to set the equilib- 

rium emittance from quantum fluctuations equal to that from intra-beam scattering. 

(Since intrabeam scattering falls with energy and quantum fluctuations rise, the 

combined emittance is at a minimum when they are approximately equal.) 
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2. I chose pz depending on the operating energy scaling from the SLAC damping ring: 

'pz =.77(2.4:lo3)1'2 - 

I take & = 4/3,. 

3. I assume the fraction of the circumference filled with magnets Fm = .33. Given R 

this then determines the bending field B for a conventional ring. For the wiggler 

rings I keep B = 1.5 Tesla. 

4. I take 

N = 2 x 10” 

( = .Ol 

these all being taken from the examples given in my introductory talk. 

5. For the finite cx wiggler case I chose the wiggler pole tip lengths to have 

Fa = .l 

For the Q = 0 case 
-- - 

F&=0 . 

I now vary R and plot the equilibrium emittance and Z/n requirement as a function 

- of R, for the three cases 

a) conventional 

b) wiggler Fa = .l 

c) a=0 - - 

Figure 2 shows these plots. 
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Fig. 2. a) Equilibrium emittance, b) impedance require- 
ment and c) energy for equal quantum and intrabeam 
contributions, plotted as a function of radius R, for A) 
a conventional ring, B) a wiggler ring and C) an cy = 0 
ring. 
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Conclusions 

From Eq. (la) we see: 

1. That at any fixed radius the equilibrium emittances are lower for the wiggle lattices 

than for conventional, but that the o = 0 case is not quite as good at the finite cy 

case. 

2. The impedance requirement is more severe for the wiggler than the conventional, but 

that if a radius is chosen to satisfy any given impedance requirement the wiggler still 

gives a lower equilibrium emittance. 

3. The impedance requirement for the QI = 0 case is much easier. 

If I apply a bound on Z/n of 0.2 ohms I then obtain best solutions for each of the cases 

(see Table 1). We see that the use of a wiggler lowers the achievable emittance by a factor 

of 2. The LY. = 0 case lowers the emittance by at least another factor of 2 (the use of a 

larger phase advance would show a greater gain). We also note that the lower emittances 

of B and C come with faster damping times. 

-- - 

Table 1 
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