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ABSTRACT 

A method to repair - “blow-up” - the singularities of the Abelian (2,2) 

orbifolds to obtain the corresponding (2,2) Calabi-Yau manifolds is presented. 

This approach makes use of the fact that with each orbifold singularity there are 

associated massless scalar fields -blowing-up modes - whose potential is flat to 

all orders in the string perturbation theory. The zero vacuum expectation values 

(VEV’s) of the bl owing-up modes correspond to the orbifold limit, while nonzero 

VEV’s yield the corresponding Calabi-Yau manifold. One can then calculate 

explicitly, for such Calabi-Yau manifolds, the mass spectrum, Yukawa couplings, 

and all the other parameters of the effective Lagrangian by inserting successively 

all the background blowing-up modes with nonzero vacuum expectation value 

into the corresponding orbifold amplitudes. These results are ezact at the string 

tree-level; however, they are perturbative in the blowing-up procedure. Mass 

spectra and Yukawa couplings for the blown-up Za and 2’4 orbifolds are explicitly 

calculated. In particular all the Ec singlets except the ones associated with the 

moduli-space of the blown-up orbifolds receive the mass; while the 27’s and 27’s 

_- do not pair up. 
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A large variety of different compactifications of superstring theories have 

,=.- been proposed ‘-12’ ’ m the last few years. However, the compactifications whose 

four-dimensional effective field theories possess a realistic gauge group, N=l su- 

pergravity and quarks and leptons as elementary fields, can be divided into two 

classes of candidates, which are believed to be consistent superstring vacua to all 

finite orders in string perturbation theory: 

1. Compactifications of the Es x Es heterotic string 131 on a Calabi-Yau man- 

ifold or a left-right symmetric orbifold, in which the spin and gauge connections 

are identified. In these cases the theory possesses (2,2) worldsheet supersymme- 

try, i.e. there is both a left-moving (I) and a right-moving (r) N = 2 worldsheet 
1,14,15] superconformal algebra. 

2. More general compactifications of the heterotic string! which require only 

(super)conformal invariance of the worldsheet action, with the contribution of the 

matter fields to the Virasoro and super-Virasoro central charges cancelling the 

ghost contribution, i.e. Z?l = 26 and & = 10, plus modular invariance of scattering 

‘-12’ amplitudes. Space-time supersymmetric compactifications of this type - 

necessarily having at least (0,2) worldsheet supersymmetry - also appear to 
19-211 give rise to perturbatively stable vacua. Some of these constructions seem 

to be isolated vacuum solutions, i.e. one cannot continuously deform such a 

vacuum solution into another. Many of them can be explicitly constructed 1‘31 as 
111 asymmetric orbifolds. 

In this note we shall concentrate on the first class of models, from now on 

referred to as Calabi-Yau models and orbifold models. 

$ In compactifications of the type II superstring theory, i.e. zl = & = 10, massless excita- 
tions cannot be identified with the standard quarks, because massless triplets of W(3) and 
massless doublets of W(2) are never present in the same model. lel Note also that com- 
pactifications of the bosonic string, with Fl = Tr = 26, cannot yield space-time fermions. 

5 Note that for (0,2) Calabi-Yau backgrounds 21 , i.e. configurations where the spin and gauge 
connections are not identified, conformal invariance is generically spoiled by worldsheet 
instantons.r7”81 
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Orbifolds are especially attractive because interactions on orbifolds can be 

calculated ezactly at string tree 22’231 level. Thus all the parameters of the tree- 

level effective Lagrangian can be determined exactly, i.e. including contributions 

which are nonperturbative in the ratio a/R, where o.’ is the string tension and 

R is the radius of the orbifold. For example, the effects of worldsheet instantons 

are automatically incorporated. 

On the other hand the methods for explicitly studying string interactions on 

Calabi-Yau manifolds is limited, partly due to the lack of an explicit metric. The 

field theory limit (n/R -+ 0) results1’241 state that the numbers of particular 

types of massless modes are determined by the Hodge numbers, the topologi- 

cal invariants of the Calabi-Yau manifolds. Also, certain Yukawa couplings 25,261 

are determined by similar topological considerations. Nonperturbative contri- 

butions to the effective Lagrangian for Calabi-Yau compactifications have been 

explored 181 by studying worldsheet instantons. One result of this analysis is 

that some parameters of the effective Lagrangian can be modified by worldsheet 

instanton contributions, which are proportional to exp(-R2/o’). It has been 

shown 181 that Yukawa couplings as well as masses of the matter Es singlets re- 

ceive nonzero corrections in general, while 27 and 27 do not pair-up. However, 

the calculation is not entirely explicit, due to the unknown metric. 

In this note we shall present a complementary approach to studying the 

complete tree-level effective Lagrangians for Calabi-Yau models by choosing a 

Calabi-Yau manifold which is constructed by repairing (‘blowing-up’) the singu- 

larities of an orbifold.271 This approach makes use of the fact that each orbifold 

singularity is associated with massless scalar fields - blowing-up modes - whose 
22,231 potential is flat to all orders in the string loop expansion. Thus any vacuum 

expectation value (VEV) of these modes corresponds to a vacuum solution to 

the string equations of motion, at least perturbatively in the VEV’s. The case 

with all blowing-up modes having zero VEV corresponds to the orbifold limit, 

while nonzero VEV’s for the mode located at a particular singularity corresponds 

to repairing that singularity. Scattering amplitudes in the repaired Calabi-Yau 
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background - and hence also parameters of the effective Lagrangian - can 
* =.- be calculated by inserting successively larger numbers of background blowing-up 

. modes into orbifold amplitudes. Although this method is perturbative in the 

blowing-up VEV”s, it enables one to obtain ezplicit values for parameters of the 

blown-up orbifolds, giving ezact results at the string tree-level. 

In the following we shall review the general properties of the Calabi-Yau and 

the orbifold models, outline the calculation of the parameters of the effective 

Lagrangian for the blown-up orbifolds, and present explicit results for 2s and 24 

blown-up orbifolds. 

CALABI-YAU AND ORBIFOLD MODELS 

- 
Calabi-Yau models give rise to N = 1 supergravity in four dimensions and 

gauge group * 

G=Egx&. (1) 

The masslees particle spectrum consists of the gauge and the gravity supermul- 

tiplets as well as zero modes (moduli) of the Ricci-flat (to O(CX’)) Calabi-Yau 

metric. In addition there are massless matter multiplets, 27’s, m’s and l’s of 

E6 which are all singlets of Es. 

Due to the local right-moving superconformal invariance 1,14,15] one can use 

the picture-changing formalism, in which vertices for a given state appear with 

different ghost numbers for the bosonized right-moving superconformal ghost r$; 

i.e. they appear in different 15’2Q1 “pictures”. Tree-level amplitudes involve col- 

lections of vertices such that the total ghost number equals -2.15] The simplest 

form of the vertex operator for a space-time fermion is the -l/2 picture, while 

that for a space-time boson is the -1 picture. The picture-changing formalism 

* Space-time supersymmetry implies that the Calabi-Yau spin connection has SU(3) holon- 
omy; the orbifold holonomy group is a discrete subgroup of SU(3). In general the gauge 
group (1) could be broken further at the compactification scale by employing the Wilson- 
loop mechanism?*] However, this will not affect the study of the general structure of the 
effective Lagrangian. 
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enables one to obtain vertices in other pictures. For example, the vertex for a 
151 space-time boson in the 0 picture is obtained in the following way: 

,=.- 

(b(z))0 = &-pexp (d~)T~(w)(b(.+l. (2) 

Here (VB(Z))- 1 is the corresponding vertex operator in the -1 picture and 

is the worldsheet supersymmetry generator 151 - the energy-momentum tensor. 

Here X and T,LJ are the string bosonic and fermionic coordinates, respectively; the 

indices (i,;) = (1,2,3) and p = (1,2,3,4) d enote the three complex internal and 

the four space-time dimensions, respectively. Partial derivatives are with respect 

to the right-moving worldsheet coordinate z. For an orbifold model, Tpt takes 

the simple form 

The left- (right-) moving N = 2 superalgebra of a (2,2) model incorporates 

a Wh (WA current algebra, generated by .JI = -idaHI (Jt = -i&3Hr), 

where Hi(z) (H,(z)) is a free left- (right-) moving scalar field. Vertex operators 

can be classified according to their Hl(,) charge. One can, for example, determine 

the H, charges for vertices for the massless chiral supermultiplets in various 

pictures. One finds that 

H, = 1, - 1 picture, 

H, = - f, - f picture, 

for the four dimensional chiral superfield with positive chirality. 

(4 

Another feature of these compactifications is that euery such vacuum can be 

continuously deformed to a nearby vacuum of the same (2,2) type. 18,22,23,27] In 
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field theoretical language this corresponds to a flat potential for massless scalars 

,=.- 271 which correspond to the ‘moduli’ of the compactified space. In the Calabi- 

. Yau case the moduli are identified with the zero modes of the metric. Namely, 

giving vacuum expectation values (VEV’s) to the moduli in one conformally 

invariant background generates a nearby background configuration which is also 

a vacuum solution, at least perturbatively in these VEV’s. This procedure can be 

carried out explicitly for the case of deforming an orbifold into the corresponding 

Calabi-Yau manifold by giving VEV’s to the ‘blowing-up’ modes22’231 and will 

be examined in detail later. 

Orbifolds as a special limit of particular Calabi-Yau manifolds possess the 

following additional features: 

1. Enlarged gauge group. In addition to the gauge group (1) there is a gauge 

group Go G SU(3) which commutes with the discrete holonomy group of 

the orbifolds, e.g. the 2~ holonomy group for a ZN orbifold. 

- 

_ 2. Enlarged symmetry of the eflective Lugrungian. A ZN orbifold possesses 

a ZN symmetry which can be described as an additional selection rule on 

interactions. Blowing-up modes carry nonzero charge under these symme- 

tries. Thus many nonzero parameters of the Calabi-Yau manifold become 

zero in the orbifold limit, including certain mass terms and Yukawa cou- 

plings of matter multiplets. 

3. Increased worldsheet symmetry. In particular, the U(l)(l,,) worldsheet sym- 

metry of the (l,r)-sector is enlarged to [U(l) x U(1) x U(l)](l,,) for a ZN 

orbifold. Thus, instead of the two conserved charges H(I,,) G  xf=, Hi,(l,,), 

there are now six conserved charges Hl,(l,t), H2,(l,r), and H~,(I,~). This en- 

larged symmetry enables one to construct ezactZy22’231 the vertex.operators 

for the emission of massless states at the string tree-level. ; 
-- 

CALCULATION OF THE AMPLITUDES FOR THE BLOWN-UP ORBIFOLDS 

The calculation of parameters of the effective Lagrangian in a particular 

theory reduces to the study of the corresponding amplitude of massless particles 
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emitted from the string propagating in this particular background. For the blown- 

,=.- up orbifold this would correspond to calculating the corresponding amplitudes by 

including in the orbifold amplitudes a successive number of vertices corresponding 

to the blowing-up modes bn,i, which now have nonzero VEV’s. 

We shall concentrate on the following Yukawa-type n-point function: 

( vFlvF2vBI - - - %t--2, > (5) 

Here VF~ and VB~ denote the vertices for the emission of the massless fermionic 

and bosonic mode respectively. 

This amplitude enables one to probe the parameters of the superpotential 

for the blown-up theory directly, unlike the amplitude for n-bosons*. Also the 

gaugino masses can be computed directly, thus determining the new gauge group 

in a direct way+. 

_ The mass terms for the fermions $1 and $2 arising from the chiral multiplet 

is obtained by choosing the appropriate vertex operators V’F~ and VF* while all 

the bosonic vertices VB~ correspond to the vertices for the blowing-up modes. 

On the other hand the mass term for the mixing between the fermions, $i, and 

the gauginos can be obtained by inserting in (5) vertices for blowing-up modes 

as well as their complex conjugates, because this arises from the D-term as well. 

Yukawa couplings for two fermions and the boson of the chiral multiplets are 

obtained from (5) by taking all but one bosonic vertices VB~ to be the vertices 

for the blow&up modes. Similarly, one can calculate any higher point function 

in the superpotential, thus obtaining all the terms in the effective Lagrangian. 

We shall mainly concentrate on the masses and Yukawa couplings, while higher 

dimensional terms are explored elsewhere.271 4 
-- 

* Note, that the in this case one is probing the scalar potential, which is the mixture of the 
F- and D-terms. 

t The new gauge group can in principle be determined also by calculating the gauge boson 
masses. However, this appears to be more complicated. 
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With this procedure the value of the parameters in the superpotential can 

,=.- be determined in principle to all orders in the blowing-up procedure! i.e. by 

calculating the particular amplitude (5) f ‘- or all the possible insertions of the bM 

vertices! 

Since all the vertices are in the orbifold limit, they can be constructed ex- 
22,231 actly. In the -1 picture of the r-sector (VB)-~ is in general of the following 

form: 

‘(vB)-l = exp(-4)@ exp(ikpXp)f(&X, &x3 $), untwisted sector (64 

(vB>-1 = “x&d) n QiSi exp(ik,XP)g(&X, asX, s”), twisted sector (6.b) 
i 

Here ~1 = l,... ,4 and (i,q = l,..., 3 again refer to the four space-time and the 

six compactified dimensions, respectively. The bosonic twist fields cri and the 

fermionic twist fields si correspond to the emission of the massless state from the 

propagating string with the twisted boundary conditions in the r-sector for the 

bosonic Xi and the fermionic $’ coordinates, respectively.231 Fermionic fields are 

presented in terms of the three bosonic U(l), charges: 

tJ’ = exp[-i(Hi),] (7-a) 

si = exp[iki/N(Hi),], gi = exp[-ikilN(H (7-b) 

The three separate charges (Hi), should satisfy constraint (4), namely H, = 

Ci(Hi)r = Ci ki/‘N = 1. F or example, for the 2s orbifold ki/N = f, i = 1,2,3. 

$ In the supersymmetric theory as ours this is actuallyrk;ue to all orders in the string loop 
corrections, due to the non-renormalization theorem . 

5 One could argue that this result is also ezact in the blowing-up procedure if bM’s, and 
not for example l/bM’s, correspond to the representation of the fields in the Lagrangian. 
Then, since the superpotential should be an analytic function of the fields; i.e. the terms 
in the effective superpotential cannot be generated from interaction terms which have a 
nonpolynomial dependence on by fields. Note, that this statement is not true for the 
gaugino masses and the chiral multiplet fermionic masses which mix with gauginos. In 
this case these masses do not arise from the F term, thus the argument of the analyticity 
does not apply. 

c 
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On the other hand, functions j and g, which carry the information of the l-sector, 

,=.- should b-e constructed explicitly, due to the lack of the local superconformal 

invariance in the l-sector. Then the U(l)li charges corresponding to the fermionic 

fields, s”‘, are determined by the lattice vector and the bosonic derivatives &X 

are determined by the type of bosonic creation operators in the l-sector. For 

example, a state of the twisted sector represented as G?kiiN /Ccl/N, k2/N, k3/N)l 

would have g = &X:s” with s” = exp [ikl/N(H])l + ik2/N(H2)i + il~~/lV(H~)~].! 

. From (V.)-+ (VI) o in the O-picture is obtained by using eq. (2). From the 

form (3) for TF and eq. (7) one sees that in this case (VB)~ consists in general 

of terms with H, = 0,2,and - 1, respectively. 

For the fermionic vertices VF one can also analogously use the picture chang- 

ing formalism in the 231 r-sector, while the structure of the l-sector remains the 

same as in (6). For example 231 the fermionic vertex for the untwisted and the 

singly twisted sector in the -l/2 picture can be written in the following way: 

(vF)-l,2 = exp (-#/2)u n exp (-Hj/2)$’ exp (ikJ)“)f (azx, dzx,G), 
j (8.4 

untwisted sector 

(VF)-I/~ = exp (-4/2)~ n ai exp (-Hi/2)si exp (ikPXP)g(azX, asX, s”), 
i 

twisted sector. 
(84 

Here u refers to the spinor of the four uncompactified dimensions. Analogously 

q The function g for the case of the blowing-up modes by can be obtained in the fol- 
lowing way. It turns out that the vertex operator of bM for the l-sector is the ver- 
tex operator in the O-picture; i.e. this vertex is obtained by using (2). However, now 
ail the notation applies to the l-sector. ? _i For example in the 2s orbifold one would get 

g = lims-0 C,~~~‘V$‘I-I,. exp[iij/N(Hj)r] with ii/N = f. The state bM is in turn 
described as 
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one can obtain the vertex operators for the other twisted sectors. Again the 

,=.- 
constraint (4) for H, is satisfied, i.e. Hr = Ci ki/N - $ = -f. 

With the explicit form of the vertices (6,3,8),‘bne can now evaluate the am- 

plitudes in the background of the blown-up orbifolds, i.e. (bM) # 0. These 

amplitudes should obey the following selection 231 rules. 

1. The total 4 charge equals -2. 

2. (Hi), charges should be separately conserved. 

.3. (Hi)l charges should be separately conserved. 

4. The amplitude should be twist invariant. By this one means that in the 

amplitude the twist numbers Ji associated with the bosonic twist fields aJi 

of the gJi twisted sectors should sum up to (OmodN). 

5. The amplitude should be invariant under the automorphisms of the lattice. 

In general the amplitudes depend on the bosonic coordinates Xi. Trans- 

formations on these coordinates which are in the group automorphism of 

the lattice should certainly leave the amplitudes invariant. 

6. The location of the twist fields should satisfy the space group selection rules 

described in detail in ref. 23. They essentially determine the location of 

string states, i.e. the location of the fixed points at which the particular 

states are located. 

Selection rules (l-4) can be in general trivially satisfied. The worldsheet 

fermionic degrees of freedom are taken care of by applying the selection rules (l- 

3). Note also that the (Hi)l conservation essentially implies that the amplitude 

should be gauge invariant. Also some amplitudes could be determined to be zero 

by simply applying the selection rule 5. 

When calculating the amplitudes (5) which probe the terms of the superpo- c 

tential, one sees that only the terms of (V B o with H,. = 0 contribute. Namely, ) 

using (4) (Le. for V(-1/2,--1), H, = -$, 1, respectively), one sees that only the 

terms of (VB)O proportional to dX’$’ survive in such amplitudes in order to 

-- 
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conserve the total H, charge. Thus, the terms in (VB)O co&g from aXpq!~p, 

,=.- i.e. terms proportional to the four-dimensional external momenta kp, do not 

contribute. Then such amplitudes assume the following form in general: 

( V-~/2V-~/2V4VO.. . VI) oc (&Xi,. . . , a&. . . , a,R”) 
uJ1 . ..uJn * (9) 

This in turn implies that the effective superpotential calculated in this way cannot 

be mimicked by a massless exchange of gauge or gravitational particles because 

the amplitudes of such exchanges would be proportional to k2 which are absent 

in our case. This is a plausible result, since it only confirms that the interactions 

arising from the D-term cannot mimic the F-terms. Thus if one obtains a zero 

amplitude for a certain term, this is a genuine zero value of the corresponding 

term in the superpotential. On the other hand the first nonzero value for a 

certain amplitude in the blowing-up procedure would also directly determine the 

value of the corresponding term in the superpotential. 

~~XPLICIT RESULTS- MASS SPECTRUM 

1. Four-dimensionai N=l supergrauity multiplets. We have explicitly verified 

that these multiplets remain massless, thus confirming that preserving the 

supersymmetry of the blown-up orbifolds remains intact. 

2. Gauge multiplets. To the leading order in blowing-up-procedure we checked 

explicitly that the additional gauge group Go is completely broken, thus 

leaving the gauge symmetry of the blown-up orbifold to be Es x Es. The 

mass-term for the mixing between the gauginos and the E6 singlets br of 

the twisted sector which have bosonic excitations in the l-sector is in the 

leading order of the blowing-up procedure of the following form?’ 

* The mixing between the gauginos and the singlets without bosonic excitations (in the 
l-sector) li, which do exist in the Z4 orbifold turns out to be zero because the selection 
rule 5 is not satisfied. 

t One also notices that the blowing-up modes bM which are a particular combination of bI 
modes does not couple to gauginos, in agreement with the observation that these modes 
remain massless also after the blowing-up procedure. 

z 
-- 
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( VA -1/2v’b;,2(v~f)+)o,o,_, cc bd* W) (10) 

3. 27% pairing. We studied the question whether 27s pair-up for the Z4 

orbifold! For the most general cubic 24 lattice we found that there is no 

pairing-up of 27 and 27 to all orders in the blowing-up procedure. This 

result is due to the selection rule 5. Namely, the amplitude for this mass 

term is proportional schematically to: 

(11) 

- Here the partial derivative is with respect to z and .z. This equation is true 

for any number of the blowing-up mode insertions. One then notices that 

for the 24 orbifold one can independently rotate the third coordinate by 

180”. This in turn ensures the zero value of amplitude (11) to all orders in 

the blowing-up procedure! 

4. Eg singlets. 

(a) Modes corresponding to the moduli space. These are the modes cor- 

responding to the moduli space of the six-torus and the blowing-up 

modes associated with the orbifold singularities. We checked explicitly 

that the modes have no mass terms’ in the background of the blown-up 

orbifold. 

(b) Other E6 singlets. In general these modes acquire nonzero mass. For 

the 23 orbifold, for example, there are nine such modes located at 27 

$ Note, in the case of Zs orbifold there are no 27’s. Also the pure fact that the blown-up 
orbifolds are supersymmetric ensures that there is no mass term for 27%. 

§ In ref. 27 we show that this result is general for any orbifold or Calabi-Yau manifold 
barring nonperturbative effects of the modes corresponding to the moduli space of the 
VEV’s. 

5 
-- 

q In ref. 27 we show that this is a general feature; namely modes corresponding to the 
moduli space have j7d potential for any orbifold or Calabi-Yau manifold, again barring 
nonperturbative effects in the VEV’s of the moduli. 
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fixed points, which we denote as b(ii,fp) with (i,i’) = 1,. . . ,3 and jc* 

-. denoting a particular fixed point.* In the leading order of the blowing- 

up procedure the mass terms among these modes assume the following 

form: 

mI(ii’fo),(3’i’fa)l = C EitjtkViVjYk eXP [-r/fi12/(2fi)] (b(kkf,)) t12) 
G,k 

with the coset vectors being determined as 231 

fi E (I- e”)(f, - f-, + A). (13) 

Here the rotation 8 = exp (a2?r/3) and A is the lattice vector. Note 

that the blowing-up mode at the fixed point ja corresponds to: 

i 
(14 

From the explicit form (12) one obviously concludes that these mass 

terms are in general nonzero. Also they are exponentially damped, 

thus indicating the nonperturbative instanton-type contribution. Note 

also, that the b~‘s do not possess any mixing term with any b(ii,fa). 

In the case of the 24 orbifold there are also singlets without bosonic exci- 

tations in the l-sector, whose number is at least the number of 27.** It turns 

out that there is no mass term among such singlets, because the corresponding 

amplitude is again proportional to the odd-powers of Xs derivatives, thus not 

being invariant under the automorphisms of the lattice. However, the analysis of 

the total singlet mass matrix reveals that ull those singlets become massive due 

to the mixing mass terms between the singlets with the bosonic excitations and 

the ones without them which are in general exponentially damped. 
c 
-- 

* Note e.g., bCil,aI = IO), x &LI,5 l-g, g, i),; (i = 1,2,3), located at f~. Thus, bM = 

IO), x {h’+$ I-5, $, +) + qi I+, -5, $) + 21,s I+, $, -:)}. 
** Note that the number of such Ee singlets is bound from below by the Hodge number 

241 
+w* 

13 



EXPLICIT RESULTS- YUKAWA COUPLINGS 

,=.- The -phenomenologically interesting Yukawa couplings are the couplings of 
. three 27-plets, since these may determine the mass spectrum of the family gen- 

erations, thus possibly shedding light on the fermion mass hierarchy problem. 

Another interesting Yukawa coupling to be determined is the one between the 

2727 and the EG singlets. 

Also it is of general interest to calculate effective terms of the superpoten- 

tial of dimension 4 or higher, since these terms may be relevant for the mecha- 

301 nism to generate the intermediate scale. These calculations will be presented 
311 elsewhere. 

- 1. Yukawa couplings of the three 27’s. Some of these Yukawa couplings are 

nonzero already in the orbifold limit, in particular those couplings whose 

total twist number is zero. For example for the 23 orbifold, the following 

Yukawa couplings are 231 nonzero: 

h[ 27(ii’) ,z7(jjr) t27(kkt) 1= cijk6iljfkl (15.4 

hp7f,,271p,27/,] = xexp [-7+1’/(2~)1 
P 

(15.b) 

with fi being defined in eq. (13). H owever, other Yukawa couplings be- 

come nonzero after the blowing-up procedure. For the 23 orbifolds one 

obtains the following explicit results in the leading order of the blowing-up 

procedure: 

(15.d) 

x exp bdc12/(2~)1 (+kkfa)) @(llf.l)) 
with 5 again being defined in eq. (13). 27(ii,) with (i, i’) = 1,2,3 refers 
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to the nine different 27-plets in the untwisted sector, while 27fa refers to 

the 27-plet arising from the string state located at the fixed point jp. One 

sees from this explicit calculation that the blowing-up procedure can allow 

for an additional hierarchy in the Yukawa couplings. Namely, besides the 

exponentially damped terms o( exp (-R2/o’), there is an additional hier- 

archy oc R2/a’ x (by). This may be relevant for the understanding of the 

fermion mass hierarchy. The explicit calculation within other possibly phe- 

nomenologically acceptable orbifolds is needed in order to further elaborate 

on this idea. 

2. Yukawa couplings of 27% and singlets. We checked that all the 27-plets 

couple with all the %-plets and a particular singlet without the bosonic 

excitations in the leading order of the blowing-up procedure for the 24 

orbifold. Some of these Yukawa couplings are again nonzero already in the 

orbifold limit, while the rest of these Yukawa couplings become nonzero 

after the blowing-up procedure. The value of these terms is again damped 

exponentially. 

The explicit calculation of the mass terms and Yukawa couplings for the 2s 

and Z4 blown-up orbifolds confirmed the general statement 181 about the structure 

of the effective Lagrangian for the Calabi-Yau manifold. Using the above method, 

the values of parameters are (can) be obtained explicitly. 
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