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ABSTRACT 

We discuss the structure of the effective Lagrangian for the (2,2) ZN orbifolds 

and the corresponding Calabi-Yau manifolds which are obtained by “blowing-up” 

the orbifold singularities. The method to “blow-up” such singularities is reviewed.’ 

Results are exact at the string tree-level. In particular the question of generating 

an intermediate scale MI in such models is addressed. It is shown that for ZN 

orbifolds (except one) and the corresponding blown-up orbifolds which are com- 

pactified on any six-torus T6 which can be obtained by continuously deforming 
-- - 

T4 @T2, all the terms of the type (27mK are absent from the effective superpo- 

tential, thus questioning the mechanism for generating a large intermediate scale 

for such compactifications. 
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-1. Intrqduction 

Different compactifications of superstring theories whose four-dimensional 

effective field theories possess a realistic gauge group, N = 1 supergravity and 

quarks and leptons as elementary fields have been proposed recently. 1-121 They 

are believed to be consistent superstring vacua to all finite orders in string per- 

turbation theory. 

-. 
Here we will not discuss more general compactifications of the heterotic string, 

which require only (super)conformal invariance of the worldsheet action, with 

the contribution of the matter fields to the Virasoro and super-Virasoro central 

charges cancelling the ghost contribution, i.e. ?z = 26 and Zr = 10, plus modular 

. . 

8-121 
invariance of scattering amplitudes. We shall rather study phenomenological 

imphcations of originally proposed compactifications of the Es x Eg heterotic 

-131 string on Calabi-Yau manifolds ‘1 or left-right symmetric orbifolds,41 in which 

the spin and gauge connections are identified. In these cases the theory possesses 

(2,2) worldsheet supersymmetry, i.e. there is both a left-moving (1) and a right- 

1,14,15] 
moving (r) N = 2 worldsheet superconformal algebra. 

-- - 

Orbifolds are especially attractive because interactions on orbifolds can be 

16,171 
calculated exactly at the string tree-level. Thus all the parameters of the tree- 

level effective Lagrangian can be determined exactly, i.e. including contributions 

which are nonperturbative in the ratio n/R, where CX’ is the string tension and 

R is the radius of the orbifold. For example, the effects of worldsheet instantons 

are automatically incorporated. - - 

On the other hand-the methods for explicitly studying string interactions on 
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Calabi-Yau manifolds is limited, partly due to the lack of an explicit metric. The 

field theory limit (a/R + O)results1’181 state that the numbers of particular 

types of massless modes are determined by the Hodge numbers, the topologi- 

cal invariants of the Calabi-Yau manifolds. Also, certain Yukawa couplings 19,201 

are determined by similar topological considerations. Nonperturbative contri- 

butions to the effective Lagrangian for Calabi-Yau compactifications have been 

_- 

explored 211 by studying worldsheet instantons. One result of this analysis is 

that some parameters of the effective Lagrangian can be modified by worldsheet 

instanton contributions, which are proportional to exp(-R2/o’). It has been 

shown 211 that Yukawa couplings as well as masses of the matter E6 singlets re- 

ceive nonzero corrections in general, while 27 and 27 do not pair-up. However, 

the calculation is not entirely explicit, due to the unknown metric. 

A_ complementary approach to studying the complete tree-level effective La-. 
.  .  221 

- ‘. grangians for Calabi-Yau models has been given by choosing a Calabi-Yau 

manifold which is constructed by repairing (“blowing-up”) the singularities of an 

orbifold. This approach makes use of the fact that each orbifold singularity is as- 

-- - sociated with massless scalar fields - blowing-up modes - whose potential is flat to 

all orders in the string loop 
16,171 

expansion. Thus any vacuum expectation value 

(VEV) of these modes corresponds to a vacuum solution to the string equations 

of motion, at least perturbatively in the VEV’s. The case with all blowing-up 

modes having zero VEV corresponds to the orbifold limit, while nonzero VEV’s 

for the mode located at a particular singularity corresponds to repairing that 

singularity. Scattering amplitudes in the repaired Calabi-Yau background - and 

hence also parameters of the effective Lagrangian - can be calculated by inserting 
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successively larger numbers of-background blowing-up modes into orbifold ampli- 

tudes. Although this method is perturbative in the blowing-up VEV’s, it enables 

one to obtain explicit values for parameters of the blown-up orbifolds, thus giving 

exact results at the string tree-level. 

In this paper we shall study the general structure of the effective Lagrangian 

of the Abelian ZN orbifolds as well as their blown-up versions corresponding to 

the Calabi-Yau manifolds by using the above method.221 We shall first summarize 

already obtained 221 results for parameters of dimension 4 or smaller for 2s and 

24 orbifolds and their blown-up versions. Then we shall concentrate on higher di- 

mensional operators, for general ZN (blown-up) orbifolds, in particular (27qK 

(with K > 2) terms of the superpotential. Such terms are relevant for generating 

an intermediate scale 231 MI and therefore understanding the structure of such 

terms. 

. . 
- ‘. The rest of the paper is organized as follows. In sect. 2 we review general 

properties of Calabi-Yau and orbifold models, with the emphasis on the nature 

of interactions in the models. In sect. 3 we outline the calculation for the pa- 

-- - rameters of the effective Lagrangian for a general Abelian (blown-up) orbifold 

and summarize results for the parameters of dimension 5 4. In sect. 4 we revisit 

the intermediate scale mechanism and address the question of higher dimensional 

operators in the superpotential, which are of the form (27mK, (K 2 2). Phe- 

nomenological relevance of the obtained results is emphasized. Conclusions are 

given in sect. 5. 
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2. Features of Calabi-Yau and Orbifold Models 

Calabi-Yau models give rise to N = 1 supergravity in four dimensions and 

gauge group * 

G=EgxE8. (1) 

The massless particle spectrum consists of the gauge and the gravity supermul- 

tiplets as well as zero modes (moduli) of the Ricci-flat (to CJ(o’)) Calabi-Yau 

metric. In addition there are massless matter multiplets, 27’s, 27’s, and (per- 

haps) l's (the so-called matter singlets) of EC which are all singlets of Es. 

Due to the local right-moving superconformal invariance 
i,i4,i5] 

one can use 

the picture-changing formalism, in which vertices for a given state appear with 

different ghost numbers for the bosonized right-moving superconformal ghost 4; 

15’251 . . i.e. .they appear in different “pictures”. Tree-level amplitudes involve collec- 
- ‘. 

tions of vertices such that the total ghost number equals 15’ -2. This simplest 

form of the vertex operator for a space-time fermion is the -l/2 picture, while _ 

that for a space-time boson is the -1 picture. The picture-changing formalism 
-- - 

enables one to obtain vertices in other pictures. For example, the vertex for a 

151 space-time boson in the 0 picture is obtained-in the following way: 

(b(z))0 = ~~*exp(~)TF(w)(VB(z))-l. (2) 

* Space-time supersymmetry implies that the Calabi-Yau spin connection has SU(3) holon- 
omy; the orbifold holonomy group is a discrete subgroup of SU(3). In general the gauge 
group (1) could be broken further at the compactification scale by employing the Wilson- 

- loop mechanism.241 However, this will not affect the study of the general structure of the 
effective Lagrangian: 
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Here (VB(Z))- r is the corresponding vertex operator in the -1 picture and 

is the worldsheet supersymmetry generator 151 - the energy-momentum tensor. 

Here X and II, are the string bosonic and fermionic coordinates, respectively; the 

indices (;,i) = (1,2,3) and /J = (1,2,3,4) d enote the three complex internal and 

the four space-time dimensions, respectively. Partial derivatives are with respect 

to the right-moving worldsheet coordinate z. For an orbifold model, TFt takes 

the simple form: 

The left- (right-) moving N = 2 superalgebra of a (2,2) model incorporates a 

.U(l>z- (U(l)T) current algebra, generated by Jl = -i&aH~ (J,. = -idaH,); 
. . 

- ‘. where Hi (H,(z)) is a free left- (right-) moving scalar field. Vertex operators 

can be classified according to their Hl(,,) charge. One can, for example, determine 

the H,. charges for vertices for the massless chiral supermultiplets in various 

-- - pictures. One finds that 

H, = 1 71 picture 

H, = -l/2 -l/2 picture 

for the four dimensional chiral superfield with positive chirality. 

(4 

Another feature of these compactifications is that every such vacuum can be 

con,tinuously deformed to a nearby vacuum of the same (2,2) type. 
16,17,21,22,26] In 

field theoretical language this corresponds to a flat potential for massless scalars 
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which correspond to the “moduli” of the compactified space.+ In the Calabi-Yau 

case the moduli are identified with the zero modes of the metric. Namely, giving 

vacuum expectation values (VEV’s) to the moduli in one conformally invariant 

background generates a nearby background configuration which is also a vacuum 

solution, at least perturbatively in these VEV’s. This procedure can be carried 

out explicitly for the case of deforming an orbifold into the corresponding Calabi- 

Yau manifold by giving VEV’s to the “blowing-up” modes 
16,171 

as was examined 

in detail in Ref. 22. 

Orbifolds are a special limit of particular Calabi-Yau manifolds. This is a 

six-torus T6 with points being identified under a group P of discrete rotations 8: 

R = T’/P. (5) 

. 
- ‘. This identification leaves some points or even two-tori, T2 fixed. We shall confine 

our -analysis to the ZN orbifolds where the group of rotations ZN = (eJ, J = 

1,. i., N - 1) is also the discrete holonomy group which should be a subgroup 

of SU(3) in order to end up with a four-dimensional supersymmetric theory. 
-- - 

Also each discrete space rotation 8 is accompanied by the corresponding discrete 

gauge connection 7. For (2,2) orbifolds one chooses 0 = 7, thus identifying spin 

t It turns out 22’2e1 that the l-sector of the vertex operators for moduli is the same as the 
vertex operator in the 0 picture. In the theory with a local conformal invariance the vertex 
operators in the -1 and 0 pictures correspond to the lower and upper components of the 
worldsheet superfields-primary fields,15’251 which in the case of “moduli” have conformal 
dimension h = i, i.e. they satisfy the constraint 2h = 1 and H = +l and H = -1 
for worldsheet superfields-primary fields with positive and negative chirality, respectively. 
Note also that the primary fields with H = +l correspond to “moduli” transforming as 

- (1,l) .f orms while those with H = -1 correspond to Umoduli” transforming as (1,2) forms 
of the compactified space. 
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and gauge connection. The states of the four-dimensional theory should also be 

invariant under the diagonal transformation g = (6’, 7). 

The massless spectrum 41 falls into the untwisted (go) and the twisted (gJ, J = 

1 7.-*, N - 1) sectors depending on whether the massless states arise as excitations 

of the string with periodic or twisted boundary conditions, respectively. Note 

. that states arising from strings with twisted boundary conditions are located at 

a particular fixed point. 

.- Orbifolds possess the following additional features: 

1. Enlarged gauge group. In addition to the gauge group (1) there is a gauge 

group Go 5 SU(3) which commutes with the discrete holonomy group 

of the orbifolds, e.g. the ZN holonomy group for a ZN orbifold. For ZN 

- orbifolds,-Go is either SU(3), SU(2) x U(l), or U(1) x U(1). 

. . 2. Enlarged symmetry of the efective Lugrungiun. A ZN orbifold possesses 
- ‘. 

-- - 

a ZN symmetry which can be described as an additional selection rule on 

interactions. Blowing-up modes carry nonzero charge under these symme- 

tries. Thus many nonzero parameters of the Calabi-Yau manifold become 

zero in the orbifold limit, including certain mass terms and Yukawa cou- 

plingsof matter multiplets. 

3. Increased worldsheet symmetry. In particular, the U(1) (z,~) worldsheet sym- 

metry of the (1,r) -sector is enlarged to [U(l) x U(1) x U(l)]cl,,J for a ZN 

orbifold. Thus, instead of the two conserved charges H(l,,) E xfzl(Hi)~,r, 

there are now six conserved charges HI~,~, Hz~,~, and H31,p. 
- 

Hi charges are classified4’ for all the ZN orbifolds. The (Hi),. charges are 
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-- - 

related to the matrix of the discrete rotation 8 acting on the three compactified 

coordinates. For example for 2s orbifolds 8 = (w, w, w) in its diagonal form. Here 

w = exp(2ri/3). Such a 6 in following determines (Hi), charges of the singly- 

twisted sector (gl) which are (t, $, $) in the -1 picture. In table I we give 41 

(Hi)l. charges of the singly-twisted sector for all the ZN orbifolds possessing 

N = 1 supersymmetry. 

TABLE I. (Hi), h g c ar es of the singly-twisted sector in the 
-1 picture for ZN orbifolds possessing N = 1 supersymmetry. 

(Hi), charges in turn uniquely determine the r-sector of the vertex operator 

for emission of massless states at the string tree-level. For example in the -1 

picture (emission of a massless boson) and the -i picture (emission of a massless 

fermion) the r-sector of the vertex operators are the following: 
- 

(VB,)-~ = exp(-d)$j exp(ikPXP) untwisted sector (6.4 
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(VB,)--1 = exp(-4) J-J 0isi exp(ik,P) twisted sector (6-b) 

(vF,)-l/2 = exP(+/+ n eq(-(K),/2)$j exp(&Xp) untwisted sector 
i 

(7.4 

(vF&/2 = “XP(-56/2)U n ai exp(-(Hi),/2)s; exp(ilcPXp) twisted sector. 
i 

(74 

Here ,!.L = l,... ,4 and (i,;) = l,... ,3 again refer to the four space-time and the 

six compactified dimensions, respectively and u refers to the spinor of the four 

uncompactified dimensions. The bosonic twist fields ai and the fermionic twist 

fields si correspond to the emission of the massless state from the propagating 

string with the twisted boundary conditions for the bosonic Xi and the fermionic 
171 

$i coordinates, respectively. Fermionic fields are presented in terms of the three 

bosonic U( 1) ,. charges: 

t,!~j = exp [i(Hj)r] , 4’ = exp [-i(Hj)r] (8.4 
. . 

- ‘. S’ = exp [ikj/N(Hj),] , S’ = exp [-ikilN(H . P-w 

The three separate charges (Hj), should satisfy the constraint that H,- = - 

Cj(Hj)r = Cj kj/N = 1. F or example, for the singly-twisted sector of the 23 
-- - 

orbifold kj/N = $, i = 1,2,3. 

On the. other hand, the part of the vertices which carry the information 

of the l-sector, should be constructed explicitly, due to the lack of the local 

superconformal invariance in the l-sector; i.e. the picture changing formalism 

does not apply. However, for each state one can again explicitly determine 

the (Hi)l charges corresponding to the fermionic fields Z’. They are deter- 

mined by the first three entries of the lattice vectors of the rs x l?s lattice. 

These three entries correspond to the additional gauge symmetry Go. On the 

other hand the bosonic derivatives dzX(dzX) appear in the vertex operator 
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whenever the state possesses a corresponding creation operator z (E).* For ex- 

ample a state of the twisted sector represented as $ki/N IkIlN, ka/N, ks/N)l 

would have the vertices (6.b,7.b) multiplied by the expression g = a,rf-“Z with 

Z = exp [ikl/N(Hl)l + ikz/N(Hz)l + ikg/N(H3)z]. In general the l-sector of 

the vertex operators should be constructed separately for each massless state. 

However, there is a general prescription for the vertex operators of the “mod- 

uli”, i.e. the “blowing-up” modes corresponding to the “blowing-up” of the fixed 

points and the massless modes corresponding to the deformation of the six-torus 

T6. It turns out that the l-sector of these vertex operators is the vertex op- 

erator in the 0 picture, obtained by using eq. (2) with (VB)-~ being of the 

form (6). However, now all the notation applies to the l-sector, e.g. z + Z, 

w + IU, (Hi), + (Hi)l, etc. For example the l-sector of the “blowing-up” 

modes of the 23 orbifolds is obtained in the following way. In this case there 

is one “blowing-up” mode bM located at each of the 27 fixed points of the 

singly-twisted sector (g’). This bM transforms as (1,l) and therefore the cor- 

responding vertex operator for the l-sector at zero external momentum can be, 

. . obtained by using the first term of TF (see eq. (3.b)) which annihilates the 
- ‘. 

state with HI = 1, i.e. the vertex operator in the -1 picture corresponds to 

the upper component of the worldsheet superfield with positive chirality. Then 

using (2) one obtains the l-sector of the vertex operator for such a bM as g = 

-- - limz-,,r, C; asX’$ ~j exp [iZj/N(H,)I] with Kj/N = $. Such a bM is then in 

turn described as 10),.x z11,3 
[ 1 -f,~,~),+~~1,31~,-~,~)I i-c,,, I$,&-$]. 

On the other hand, for “moduli” which transform as (1,2) forms the correspond- 

ing vertex operator of the l-sector is obtained by acting with the second term of 

TF on the vertex operator in the -1 picture corresponding to the upper com- 

ponent of the worldsheet superfield with negative chirality and thus Hl = -1. 

Such “moduli” for example appear in the case of 24 orbifolds (see Table I) in the 

_ +-This result of course emerges as a consequence of the first quantization of the bosonic 
string coordinates. Note that the only surviving term of azX (azx) coordinates arises 
from the first term iri the “oscillator” expansion of the bosonic coordinates. 
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untwisted (go) and doubly-tw&ted (g2) ~sectors. 

One can also make general statements about the structure of the l-sector for 

27 and 27 of Es. For the parts of 27 (27) t ransforming as 16 (16) of SO(10) the 

vertex operator corresponding to the l-sector can be represented as vertex oper- 

ators in the -l/2 picture with Hz = -i (Hl = +f) (see eqs. (7)), respectively.* 

For example the first three entries of the lattice vectors (corresponding to the 

gauge symmetry Go) for 16's for the singly-twisted sector of the 2s orbifold is 
1 1 1 

-- -- -- G’ 6’ 6 > I’ 

_-. 
The above results also imply that in the orbifold limit the number of 27’s 

(27’s) is always the same as the number of “moduli” which transform as (1,l) 

((1,2)) forms of the compactified space: General analysis for the (Hi)llr charges 

for 27’s, 27’s, and the moduli will- be given in sect. 4. 

Along with these “moduli” there are also additional massless l’s of Ee, the 

so-called matter singlets. Some are states with bosonic excitations in the I- 

sector, while some appear without them. One can convince oneself by explicit 

construction that the number of the latter ones is at least equal to the number of . 
- ‘. -3 .$ 27 s. Those matter singlets which correspond to 27’s can be obtained from the 

part of 27’s transforming as a singlet under SO(10) by changing one (Hi)l charge 

by two units. For example for the 24 orbifold ( see Table I) in the doubly-twisted 

sector the singlet part of 27’s is denoted as 1 -i, - $, -1)1 and the corresponding 

-- - matter singlet is then denoted as I-f, -i, l)r. 

- 
* It also turns out that for the parts of 2’7 (27) transforming as singlets of SO(10) one can 

represent the l-sector of the vertex operator with the vertex in the -1 picture correspond- 
ing to the upper component of the worldsheet superfields with conformal dimension h = 1 
and Hl = +2 (Hl = -2). (See Ref. 26 for details.) - 

t Note that in the “orbifold terminology” the definition for 27’s (27’s) is just the opposite 
from the one in “Calabi-Yau terminology”. 

_ $-It has been shown for Calabi-Yau models that in the field limit, i.e. a//R2 + 0, the 
number of massless matter singlets is bound from below by the Hodge number hc2,r), i.e. 
the number of (2,l) forms of the Calabi-Yau space. 
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3. Paramete_rs of the Effective Potential - 
Results for the Operators of Dimension 5 4 

The calculation of parameters of the effective Lagrangian in a particular 

theory reduces to the study of the corresponding amplitude of the massless states 

emitted from the string propagating in this particular background. In the orbifold 

limit the explicit form of the vertices for emission of massless states allows for a 

. direct calculation of the parameters of the effective Lagrangian because all the 

background blowing-up modes have zero VEV’s. 

_-. On the other hand for the blown-up orbifold this would correspond to cal- 

culating the corresponding amplitudes by including in the orbifold amplitudes a 

successive number of vertices corresponding to the blowing-up modes bM, which 

now have nonzero VEV’s. 

It is most convenient to calculate221 the following Yukawa-type n-point func- 

tion: 

Here VF; and VB~ denote the vertices for the emission of the massless fermionic 

and bosonic mode, respectively. 

This amplitude enables one to probe the parameters of the superpotential 

-- - for .the blown-up theory directly, unlike the amplitude for n-bosons! Also the 

gaugino masses can be computed directly, thus determining the new gauge group 

in a direct way.’ 

The mass terms for the fermions $1 and $2 arising from the chiral multiplet 

is obtained by choosing the appropriate vertex operators VF~ and VF, while all 

the bosonic vertices VB~ correspond to the vertices for the blowing-up modes. On 

5 Note that in this case one is probing the scalar potential, which is the mixture of the F- 
- and D-terms. 
7 The new gauge group can in principle be determined also by calculating the gauge boson 

masses. However, this appears to be more complicated. 
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the other hand the mass term-for the mixing between the fermions, &, and the 

gauginos can be obtained by inserting in (9) vertices for the blowing-up modes 

as well as their complex conjugates, because this arises from the D-term as well. 

Yukawa couplings for two fermions and the boson of the chiral multiplets are 

obtained from (9) by taking all but one bosonic vertices VB~ to be the vertices 

for the blowing-up modes. Similarly, one can calculate any higher point function 

in the superpotential, which shall be explored in sect. 4. 

With the explicit form of the vertices (7,8,2), one can then evaluate the 

amplitudes in the background of the blown-up orbifolds, i.e. (bM) # 0. These 

amplitudes should obey the following selection 171 rules. 

1. The total 4 charge equals -2. 

2. (Hi), charges should be separately conserved. 

3. (Hi)r charges should be separately conserved. 

4. The amplitude should be twist invariant. By this one means that in the 

-amplitude the twist numbers Ji associated with the bosonic twist fields uJi. 
. . 

- ‘. of the gJ’ twisted sectors should sum up to 0 (modN). 

5; The amplitude should be invariant under the automorphisms of the lattice, 

i.e. under the group of discrete rotations P. In general the amplitudes de- 

pend on the bosonic coordinates Xi. Transformations on these coordinates 
-- - which are in the group of automorphisms of the lattice should certainly 

leave the amplitudes invariant. 

6. The location of the twist fields should satisfy the space group selection 

rules described in Ref. 17. They essentially determine the location of 

string states, i.e. the location of the fixed points at which the particular 

states are located. 

Selection rules (l-4) can be in general trivially satisfied. The worldsheet 

fermionic degrees of freedom are taken care of by applying the selection rules (l- 

3). Note also that the- (Hi)l conservation essentially implies that the amplitude 
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should be gauge invariant. Also some amplitudes could be determined to be zero 

by simply applying the selection rule 5. 

It has been shown 221 that in the amplitudes (9) which probe the terms of the 

superpotential, only the terms of (Vp,)o with H, = 0 contribute, i.e. only terms 

(V-1/2, V-1, liT, = -;,l, respectively) proportional to dXi$” survive in such 

amplitudes in order to conserve the total H,. charge. Thus the terms in (VB)O 

coming from 8X+!+, i.e. terms proportional to the four-dimensional external 

momenta k’-‘“, do not contribute. Then such amplitudes assume the following 

form in generalT21 

( v-47-474v0.. . vo) cc (&Xi,. . . ) &Xi,. . . , a,X”) . 
cd1 . ..uJn 

(10) 

This in turn implies that the effective superpotential calculated in this way can- 

not be mimicked by a massless exchange of gauge or gravitational particles; the 

amplitudes of such exchanges would be proportional to k2 which are absent in 

our case. 

. . 
- ‘. Explicit calculations for the mass spectrum and Yukawa couplings have been 

done for the 2s and 24 blown-up orbifolds. It agrees with the general results 

211 of the worldsheet instanton calculations. In particular, all the matter singlets _ 
acquire masses which are proportional to exp(-R2/o’) while 27and 27 do not 

pair-up.* Also, all the “moduli” remain massless’ as expected. On the other hand, -- - 
Yukawa couplings of the form h;j, 27;27jl, for any pair (;,j) are nonvanishing 

for some a as well as Yukawa couplings of-the type hijk27i27j27k are nonzero in 

general. Some of these Yukawa couplings are nonzero already in the field theory 

limit, i.e. a//R2 + 0, while some become nonzero due to nonperturbative effects. 

* This result is general 261 for any orbifold or Calabi-Yau manifold barring nonperturbative 
effects of the modes corresponding to the moduli space of the VEV’s. 

261 _ -+-This .is a general feature; namely modes corresponding to the moduli space have fEat 
potential for any orbifold or Calabi-Yau manifold, again barring nonperturbative effects 
in the VEV’s of the moduli. 
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4. Intermediate Scale = (27fljK Terms of the Superpotential 

We would now like to address the question of higher-dimensional operators, 

in particular (2727)K/A4gK-s), (K 2 2) t erms in the superpotential for a gen- 

eral ZN (blown-up) orbifold. These terms can be relevant for generating the 

intermediate scale MI which breaks the gauge symmetry G appearing at the 

231 compactification scale. The need for MI is inevitable for a large class of mod- 

els in order to ensure a proper evolution of the gauge coupling constants down to 

the lowest energies, to prevent fast proton decay, N - x oscillations, and/or sat- 

isfy other constraints from the low-energy experiments. It is generally believed 
27,281 

that MI should be 1016 GeV or larger. 

The originally proposed intermediate scale mechanism 281 did not take into 

account the existence of the matter singlets. The MI was generated by nonzero 

VEV of a particular Si and Sj, which are the singlets of the standard gauge group 

SU(3) x SU(2) 3 U(l), arising from 27i and 27j, respectively. By choosing the flat 

direction of the D-term (Si) N (Tj) an assuming that the soft supersymmetry d 

breaking terms would generate negative mass squared for these fields of order . . 
- ‘. 

Mw = lo2 GeV, the MI is bound to be 

s s (si) N (Sj) E Mu = [M~.M~~-~)] 1’(2K-2) > &T&M~~ = 0 (loll GeV). 

(11) -- - 
This result is obtained by using the fact that in the superpotential the term which 

would contribute to the part of the potential with the S fields only is the first 

nonzero term (2727) K/M#K-3). Since the value of I/MK is at most of order 

l/Mpl, MI has the lower bound (11). 

This originally proposed mechanism should be revisited because by now a 

better understanding of the structure of the effective Lagrangian has been gained, 

in particular the role of the matter singlets is well understood. As explained in 

the--previous section, in general each 27 and each 27 couple to a particular 

matter singlet with nonzero Yukawa couplings and the matter singlets become 
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21,221 nonzero due to the nonperturbative effects. What impact does this have 

for the low-energy phenomenology? Yukawa couplings hija27i27jla in principle 

spoil the intermediate scale mechanism. However, since the matter singlets do 

acquire mass ml cx Mplexp(--R2/a’) > M 1’ after integrating the heavy singlets 

out the effective contribution of the above Yukawa couplings is damped, i.e. 

h?ja + (hijaMl/ml)2 due to the decoupling theorem.301 Minimization of the 

potential yields in general an upper bound on MI: 

MI = (Mwml/hija) l/2 5 &Mpl = O(lO1lGeV) (12) 

where the equality sign applies only if hija is damped exponentially as well. 

The above constraint for MI can be evaded in a particular case 271 only if the 

relevant Yukawa coupling hija is absent due to a specially symmetric choice 

of the Calabi-Yau manifold! In this case the originally proposed intermediate 

scale mechanism 231 would remain intact, i.e. eq. (11) would be valid, provided 

l/M~#0. - 

It has been argued211 that ~/MK # 0 for a general Calabi-Yau manifold, due 

to the worldsheet instanton contribution. This would in turn suggest that the 

intermediate scale mechanism is in general viable. However, here we would like 

to point out that this is not the case for the following particular ZN orbifolds 

and their blown-up versions. 
-- - 

.We will show that 

~/MK E O- (13) 

for all the ZN (except the &P, see Table I) orbifolds and their blown-up versions 

as long as they are compactified on a six-torus T6 which can be obtained by 

$ Note that for ml 5 MZ the effective Yukawacoupling would not have been damped, thus 
MI << 1011 GeV (see eq. (12)). Al so, we have assumed that (1) = 0 which may not be 

the case in 291 general. 

f One should again point out that the explicit calculation shows 221 that this is not the case 
for the blown-up 24 orbifold. Even for the most symmetric cubic lattice of the torus T6 
all the matter singlet-masses and the above Yukawa couplings are nonzero. 
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continuously deforming 7’: = T4 8 T 2. By 7’: we mean the six-torus, which is a 

direct product of an arbitrary four-torus and a two-torus which are orthogonal 

with respect to each other. Therefore for 2’: the four basis vectors have entries 

corresponding to the T4 coordinates only, i.e. (a, b, 0)) and the two basis vectors 

have entries corresponding to the T2 coordinates only, i.e. (O,O, c).Here we have 

to choose the T2 coordinate io = 3. 

For proving (13) we would need to analyze only the properties of the corre- 

sponding amplitude with respect to the (Hi,,)*,, charge and the Xi, worldsheet 

coordinate only. For this purpose we shall need the value of the (Hi,)l,, charges 

_- carried by 27's, 27's, and the “moduli” b’s (transforming as (1,l) forms) and b’s 

(transforming as (1,2) f orms) whose nonzero VEV’s correspond to the deforma- 

tion of T,f (“moduli” of the untwisted sector) as well as to the blowing-up of the 

fixed points (“moduli” of the twisted sectors). 

First one observes that in the untwisted sector at most one 27 and the cor- 

resp-onding 6M-can appear, and this for orbifolds which are generated by the 

discrete rotation ~9 which rotates one complex coordinate Xi,, let’s say the third. 
. . 

- ‘. one .(io = 3) by ISO’.’ These are all the orbifolds which have one (Hi,), of the 

-1 picture equal to i. This in turn implies that (Hi,,), change for 27 and the 

_ corresponding $M from the untwisted sector (go) 

(Hi,), =l -1 picture 
-- - 

(Hi& =1/z -l/2 picture untwisted sector (Une). (14.u) 

(Hi,), =O 0 picture 

On the other hand the (Hi,)l for the part of this 27 which transforms as 16 

- 
7 This result is obtained by noticing that the 27 transform as (3 x 3)antisymmetric = 6* 

under a continuous SU(3) holonomy group. Noticing that the eigenvalues of the discrete 
rotation 6’ are (WI, ws, ijrij2) transform as 3 of the continuous SU(3) holonomy group. One 
can then derive that the eigenvalues of states in the untwisted sector which transform as 
B* are (ijl,ij2,w1w2,w~,w~,~~~~). Here the iir denotes a complex conjugate value of w. 

-Thus, for IV = 1 supersymmetric theory, i.e. all of the eigenvalues of 0 should be different 
from .l, the number of physical states which transform as 6* of SU(3) is at most 1. The 
latter is the case when one and only one of the eigenvalues of 0 is 1, e.g. Orijs = -1. 
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under SO(10) and the corresponding b.are, respectively: 

(Hi& = - l/2 

(Hi,)z =O 

16 

T; 
untwisted sector (~no). (14.b) 

On the other hand the 27’s and corresponding 5’s from the twisted sector come 

only from the n-twisted sectors (gn) which leave at least one complex direction 

unaffected, e.g. 6” = (w, a, 1) in its diagonal form for ib = 3. It turns out that for 

all ZN orbifolds, except the 2,) orbifold ( see Table I) ,* the direction which remains 

unaffected is the Same as the one which corresponds to rotation 8i, = 1, i.e. ib = 

io. On the other hand for 27’s the three entries of the lattice vector corresponding 

to the gauge group Go G SU(3) are (kr/N - l/2, ka/N - l/2, kg/N - l/2) with 

ki/N > 0 and Ci k;/N = 1. (Note that (Hi)l h g c ar es correspond to the vertex 

operator in the -l/2 picture.) 

This in turn implies that the (Hi,),. for 27’s and E’s coming from the twisted 

sector is fixed to be: 

+%,)r =O -1 picture 
twisted sector (two). (15.a) 

. . 
- ‘. (Hi;), = - l/2 -l/2 picture 

On the other hand (Hi,)l charges for the parts of 27’s transforming as 16’s of 

SO.(lO) and 8’s are respectively:’ 

-- - (&,)I = + l/2 

(Hi,)z =O 

16 

6 
twisted sector (two). (15.b) 

The constraints (14-15) for the (Hio)l,,. charges can be obtained by using the pic- 

* This is the reason that in general one cannot prove (13) for Ze, orbifold. - - 
+ This can be shown in the following way. The part of 27 (27) transforming as 16 (16) 

under SO(10) must have a representation in terms of l?s x rs lattice vector whose entries 
to be all fi with eight entries corresponding to the Ee gauge symmetry have an odd 

-7 . @en) number of plus signs. In order to have 27’s and 27 s m a particular twisted sector, 
27’s can only be obtained by adding to the lattice vector of 27 a lattice vector h of rs x rs 
lattice which has one fl entry in one of the eight entries corresponding to E6 and one 

_ - fl entry in one of the three entries corresponding to Go, i.e. one must have for one iu, - 
(H+,)l = ki,, /N+ l/2. The requirement that 27 and 27 both lie at the same (zero) energy 
level further requires-that ki,/N = 0. Q.E.D. 
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ture changing formalism. Note, that in the O-picture (Hio)l,,. remains unaffected, 

because the energy-momentum tensor TF acting on the vertex in the -1 picture 

cannot change (Hio)l,, E 0. On the other hand the (Hio)l,,. charge of the 27’s 

and 6’s (transforming as (1,l) f orm) is not restricted in general. 

In order to calculate the parameter ~/MK in the general background of the 

above ZN (blown-up) orbifolds one has to evaluate the following amplitude: 

Here the fields symbolically denote the corresponding vertex operators. Here uno 

(tzue) refer to the states of the untwisted (twisted) sector where 27’s and 8’s (and 

also corresponding 27’s and b’s) appear. On the other hand un’ (tw’) refer to 

the states of the untwisted (twisted) sector with H charges such that only 27’s 

and-b’s appear.- Note also that states 27,,1 (bunt) have the same (Hi,)l,,. charges 

as 27-t,, (bt,,). Also recall that (Hi,)z of 27’s (i.e. 27un0,two) is -(Hio)l of 
. . 

- ‘. the corresponding 27’s (i.e. 27,,, ,tWO ). We also choose two 27’s to be in the 

-l/2 picture (for the r-sector) and one 27 in the -1 picture, while the rest of 

the vertices are in the 0 picture. Note again that insertion of moduli from the _ 

untwisted sector in amplitude (16) corresponds to deformation of T,$’ while moduli 

-- - from the twisted sector correspond to the blowing up of the orbifold singularities. 

Using (14) one sees that (Hio)l,,. = 0 from bunI ‘s, b,,, , and zun, because in 

the 0 picture of the untwistedsector Hi G O(i = 1,2,3). However, from operation 

(2) the above modes give the following contribution to the amplitude (16) with 

respect to the i,th bosonic coordinate: 

Note that this part of the amplitude is always invariant under the automorphisms 
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of the lattice.” Analogously one can study the contribution from the rest of the 

vertices. Using (2,6,7,14,15) one arrives at the following contribution to the 

amplitude (16) from the ioth coordinate:’ 

d,X,“, &XC. (18) 

Conservation of (Hi,,) l,,. charge yields 

a=2?ii-1-j-f (19.a) 

with 

P=ma-rFZfNl+N, (19.b) 

where Nl and N, refer to the sum of Hi, charges in the -1 picture for 27tWr’s 

and bt,,,, ‘s. Obviously (18) is not invariant under the automorphism of the lattice 

f%, ,O neither is then the total amplitude (16). Thus eq. (13) is proven for the 
# t above models. 

The absence of terms (27s) K/M$K-3) in the superpotential, for the ZN’ 

(blown-up) orbifolds except 2 6’ again implies that either there cannot be any MI 

or MI should satisfy the bound (12). 

0 When 8i,, = -1 implies that ‘8 # 0 in general, i.e. there is i,,,. In this case (17) is 
invariant under Bi, . On the other hand when Bi, # -1, there is no 8,,, and B = 0. Then 
also in this case (17) is invariant under Bi,. 

4. Note that in eq. (18) there is no contribution of the type asX:o which could in principle 
come from &,,‘s. However, in such sectors where 8two’s appear, Ni, E 0 in the -1 
picture and there could be no contribution of the type asXi,, when one applies the picture 
changing (see eq. (2)) from the -1 to the 0 picture. 

0 For Bi, = -1 and thus also (8, rf~) # 0, A changes sign under the action of Bi,, . On the - 
other hand for OiO # -1 one has @ = rtL z 0, i.e. there are no 27,n,‘s and/or 6,,, ‘s. In 
this case A picks up the phase 0i,, under the action of this rotation. 

tj Here we would like to emphasize that for any Z, (blown-up) orbifold (independent of 
the structure of the six-torus) the amplitude (16) is always at most exponentially damped, i.e. 
o( exp(--R2/a’). See Ref. 31 for details. 

l Note that the proof for Ze, (blown-up) orbifold does not go through because one cannot 
choose the same io direction for the classification of (Hi,)l,, charges of the untwisted and 

_ -twisted sectors. Actually we obtained the form of the amplitude A which seems to be 
nonzero, in general. However, for the case of the Zs , orbifold limit, the first value of K 
for which ~/MK is possibly nonzero is K = 7! 
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_ 5. ConGlusions 

We studied the structure of the effective Lagrangian for the ZN orbifolds 

and their blown-up versions. We discussed in detail the general structure of the 

vertices for the emission of the massless states for such modes, in particular for 

those of “moduli” as well as for 27’s and 27’s. These vertices are exact at the 

string tree-level. The calculation of the amplitudes in the general background, 

i.e. with “moduli” acquiring arbitrary VEV’s, is outlined. This in turn allows one 

to extract the value of the corresponding parameters of the effective Lagrangian, 

which are exact at the string tree-level. Special care is given to the higher di- 

mensional terms of the type (27p)K (with K 2 2) in the superpotential and 

the importance of such terms to generate an intermediate mass scale, MI in such 

models, is emphasized. We showed that for all the ZN orbifolds and their blown- 

up versions in general background, such terms, if they are nonzero, are at most 

exponentially damped. However, interestingly we showed that all such terms are 

absent for all the ZN orbifolds and their corresponding blown-up versions when 

compactified on a six-torus T6 which could be continuously obtained by deform-’ 

ing T$ = T4 @IT’, with T4 and T2 being orthogonal to each other. This certainly 

imposes strong phenomenological constraints on such models. 
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