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i 1. Introduction 

Recently, there has been much interest in calculating multiloop superstring 

amplitudes. This has been strongly motivated by the effort to explicitly prove the 

finiteness of superstring theory and explain the vanishing of the cosmological con- 

stant. Hyperelliptic surfaces are a subclass of compact Riemann surfaces defined 

as two-sheeted coverings of the sphere. The bases of holomorphic differentials 

. on hyperelliptic surfaces can be easily parametrized, and thus these surfaces pro- 

vide a simple setting for explicit string calculations. Such calculations would be 

complete up to genus two, since all such surfaces are hyperelliptic. Bershadsky 

and Radul took advantage of this observation to calculate the two loop bosonic- 

string amplitude.i11 We have extended their methods so as to be able to calculate 

fermionic correlations using the techniques of conformal field theory.““” 

- 

In this paper we have calculated the superstring (type II) vacuum amplitude 

y on the hyperelliptic surfaces and have found that the amplitude displays cancel- 

lations in a way which generalizes the one loop result. The vacuum amplitude 

cancels completely for genus g 5 20. We find this same cancellation in all higher 

orders for the subclass of spin structures with no Dirac zero modes. E. Verlinde 

and H. Verlinde have recently shown that the integrand of the string partition 

function is generally nonzero, but a total derivative on moduli space. We expect 

(though we have not shown) that our nonvanishing results at high genus have 

this interpretation .“I 

Since the partition function of the type II superstring decouples into holomor- 

phic and antiholomorphic sectors, our results on the vanishing of the cosmological 

constant extend to the case of the heterotic string. Our conclusions are depen- 

dent on having an uncompactified, flat background metric. It is likely that this 

analysis can be generalized to any orbifold background; these calculations are 

in progress. Recently, J. Atick and A. Sen have calculated the two loop dilaton 

tadpole for string theories compactified on arbitrary supersymmetry preserving 

mbackgrounds.[Y 
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- 

In the course of our analysis, we will note that hyperelliptic surfaces provide 

a wonderfully simple setting for studying harmonic spinors and spin structures. 

For an arbitrary Riemann surface very little is known about the dimensionality 

of the space of harmonic spinors, since an index theorem does not exist for the 

Dirac operator.‘71181 On hyperelliptic surfaces it is not difficult to find the number 

of Dirac zero modes (harmonic spinors) in each spin structure. Before proceed- 

ing into the heart of the paper we will give a short overview of the theory of 

hyperelliptic surfaces. 

When this work was completed, we received a preprint by D. Lebedev and 

A. Morozov in which similar results were obtained.“’ 

2. Hyperelliptic Surfaces 

In this section we will summarize some of the relevant mathematics of hyper- 

elliptic surfaces. A more detailed discussion can be found in standard texts.‘101’111 

A hyperelliptic surface of genus g is a two sheeted covering of the sphere with 

2g + 2 branch points, or more concretely it is the Riemann surface of the algebraic 

curve 
29+2 

w2 = j--J (2 - z(&)) 
n=l 

_ . _ ..-. 

where Pk # Pi for k # j. These branch points are referred to in the literature 

as the Weierstrass points and carry information about the possible meromorphic 

functions on a Riemann surface.“” They can be parametrized by coordinates 

in the plane s(Pn) = an, where z is the meromorphic function mapping points 

on the Riemann surface to the complex plane. Note that z-‘(P) is a double 

valued mapping, while w(P) is defined to be single-valued. Thus, under a sheet 

interchange z -P z, w -+ -w. This mapping allows us to do our calculation on 

the complex plane, Z, with a flat metric, except for a finite number of singularities 

at the-Weierstrass points. 

E 
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. 
Hyperelliptic surfaces are the simplest Riemann surfaces and have many at- 

tractive properties. For example, modular transformations can be generated by 

permutations of the branch points. This is significant because it simplifies the 

construction of modular invariant quantities (e.g. the superstring partition func- 

tion). The dimensionality of this set of surfaces, as a subspace of moduli space, 

can be found as follows: Analytic mappings of the plane into itself (elements of 

.SL(B,C)) can be used to fix 3 of the Weierstrass points. This leaves (2g - 1) 

points, giving (29 - 1) complex parameters. 

- 

In this paper, we will be mainly concerned with the holomorphic differentials. 

The quickest way to determine them is by using the divisors of the algebraic 

functions defining the surface. The divisor of a function (which I will denote by: 

(f) ) is defined by (f) = n Pi 4pil where the Pi denote the zeros and poles of 

f(P) and the a(Pi) denoteith ’ elr order. Holomorphic functions must have all of 

.-the (Y(P~) 2 0 (’ i.e., they have no poles). Such a divisor is called integral. The 

algebraic functions defining the. hyperelliptic surface have the following zeros and 

poles on the Riemann surface: ‘lo1 

If w = dniL;2(z - Z(Pj)) ,then 

and 

__ 
(2) = $$i, (dz) = ” Q,?+’ _ 

1 2 1 2 

- 

(2.1) c 

where Qr, 92 are the poles of z (that is, the points of the surface mapped to 

z = 00) , and Qa,Q4 are its zeros. The abelian, quadratic (Beltrami), and (-l)- 

differentials are necessary for constructing the bosonic string amplitudes (as done 

by Bershadsky and Radul”’ ). The quadratic differentials describe deformations 
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i of the metric. It is easy to see that, for genus ,g, they are given by : 

. 
aO+ * * * +J2g-222f7-2 (dz)2 P-2) 

- 

b. + . . . +wb,-3ZS-3 (,&)2 P-3) 

The power in the numerator is limited so that their divisor will be integral. It is 

interesting to observe that the 2g - 1 differentials given in (2.2) represent defor- 

mations within the set of hyperelliptic surfaces, since they are symmetric under 

a sheet interchange, while the g - 2 differentials in (2.3) , being antisymmetric 

under a sheet interchange, are deformations off the subspace of hyperelliptic sur- 

faces. This makes manifest that all surfaces of genus< 2 are hyperelliptic. More 

information about integer differentials on 2~ symmetric Riemann surfaces (i.e. 

N-sheeted coverings of the sphere which are invariant under a permutation of the 

T sheets; these are the natural generalizations of the hyperelliptic surfaces) is given 

in the work of Bershadsky and Radul.“l 

3. The Fermionic String 

3.1 THE PARTITION FUNCTION 

We will now evaluate the fermionic (i.e. supersymmetric type II) string par- 

tition function . It has been shown that the formula for the partition function, 

Z, reduces to:“” “*I ‘l” 

__ 
z.= / dlLwpgtr W’Vl,2J5 ( y;;;)-5 

iuoduli 

x (det’V$2V3,2)-1’2 (det’VtV1)“2 (K) 

4 (3 1) 
. -- 

The ingredients in this equation are the following: dp,,,p is the Weil-Peterson 

measure on moduli space. Vli2 is the Dirac operator; V1 and V3/2 are the 
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i covariant derivatives on the graviton (spin 2 field) and gravitino (spin 3/2) ghosts, 

. respectively. 

- 

and where $0 are the Dirac zero modes and J&~) run over a basis dual to the holo- 

morphic 3/2-differentials (i.e. the gravitino zero modes) where 1 = 1,. . . , N = 

2g - 2 enumerates the chosen basis. TF is the fermionic stress energy tensor given 

by: Ia1 

TF(~) = 

’ with b,,, c* being the dimension 2, -1 ghost fields, and /?=, 7 being the dimension 
3 
2, -f superconformal ghosts; From eqs. (3.1) and (3.2) , we can see without 

much difficulty that the holomorphic and antiholomorphic sectors decouple, so 

that we may consider each sector independently. 

_ . 

One would naively expect that the integrand of 2 should vanish for spin 

structures containing Dirac zero modes. Indeed, if we have more Dirac zero modes 

than can be absorbed by the gravitino zero modes, then the the expression (3.2) 

trivially vanishes. If there are more gravitino than Dirac zero modes, however, 

it is possible that the Dirac zero modes may be absorbed by the TF and TF 

insertions to give a nonzero result for (K). It is not difficult to check that (K) 

can be nonzero only if each uncompactified dimension ~1 T 1,. . . , 10 has an even 

number of zero modes. It will turn out that the first case where this remark 

applies appears when g > 20, as will be shown in section (3.4). It is straight 

forward to calculate (K) in these cases , and the expressions do not vanish. We 

expect that the integrand of 2 should be a total divergence on moduli space I4 , 

but we have not been able to demonstrate this explicitly. 
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i In the remainder of the paper, we will concentrate our attention on spin 

structures where there are no Dirac zero modes . In the following sections we . 
will show how to identify the subset of the even spin structures on hyperelliptic 

surfaces which have no Dirac zero modes. We will argue that, within this class, 

(K) is independent of the particular spin structure. This can be understood 

explicitly from the description of the spin structure of differentials on hyperelliptic 

surfaces which will be elaborated upon in the following sections. This will allow 

‘us to combine the integrands for these spin structures and show that their sum 

is zero. 

3.2 HALF-INTEGER DIFFERENTIALS AND SPIN STRUCTURE - - 

Before studying superstrings on hyperelliptic surfaces, we must determine 

the holomorphic half-integer differentials on such surfaces. These differentials are 

necessary ingredients in calculating the fermionic determinants. A holomorphic 

differential must have an integral divisor (as defined above (2.1)). Therefore the 

possible half-integer differentials of weight n+1/2 (where n is an integer) are 

given by : 

2g+2 
fl [z - z(Pi)]-(dz)n+‘/2 

,j i=l 
[uJ]n+lP (3.3) 

where cy(Pi) = 0 or 1 (i = 1, *. . ,2g + 2) which define a spin structure. Holomor- 

phicity requires that we have only integer or half- integer powers of Z. The only 

restriction on the (.y(Pi) is that for even(odd) genus, C cy(Pi) must be odd(even), 
i 

_ . 

so that the differential will not have an additional square root singularity at in- 

finity. The condition that the divisor is integral is a restriction on the value of 
-. 3. 

2j + c a(E) 5 (272 + l)(g - 1) i (3.4 
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which follows from the general formula for the,divisor of (3.3): 

. (2n+l)(g-1)/2-j-+ C,(R) j+i C a(Pi) 

[Ql 921 
t 

-[Q394] i 

where Qr Qz and QsQ4 were defined earlier as the poles and zeros of z (see 

eq. (2.1)). W  k e now that for (n+l/2)-differentials to have a finite norm they 

must asymptotically vanish as z-c 2n+1); this statement is ,of course, equivalent 

‘to (3.4). We will verify in the next section that have not left out any half-integer 

differentials by observing that the dimension of the above basis corresponds to 

that given by the Riemann-Roth theorem. 

- A nonzero czl(Pi) gives a nontrivial boundary condition around Pi, such that 

the differential changes by (-1) when going around any any loop about Pi. Thus 

each set of a(Pi) define a spin structure. Note, though, that the set of exponents 

;(l- a(.Z’i)} give th e same phases about all closed loops on the Riemann surface 

T as {I} and th us d fi e nes the same spin structure. (The two sectors are related 

in the same way as the sectors of integer differentials even and odd under sheet 

interchange.) With these observations, it is now simple to determine the number 

of allowed spin structures.The pairing of sectors allows us to limit ourselves to 

N = c a(Pi) 5 (g + 1). For a given N < (g + 1) we have (2$2) different spin 
i 

structures. When N = (g + l), the sectors pair with one another, and we have 

$(“,p,+,“) spin structures. Thus, we have all together for odd g: 

ikE1 (““2: 2) = 229 
k=O 

spin structures, and for even g we similarly have 

spin structures. This is ,of course, as expected.I1’] Alternating possible values of 

x a(l)i) correspond to the odd and even spin structures . These are the spin 
i 
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i structures where the number of holomorphic Dirac zero modes is odd or even, 
. respectively. It can be shown that: C a(.Pi) = g + 1 (nod 4) for the even spin 

i 
structures, and C Q(Z’i) = g - 1 (mod 4) for the odd spin structures. This will 

be proven in the*following section where we explicitly count Dirac zero modes. 

Now note the following identities:‘16’ 

1 

c( 
29 + 2 

z g+l-4n 1 
= 29-‘(2g + 1) 

n 

1 2g + 2 
5 n c( g-1-4n = > 

2g-72” - 1) 

- 
We have thus verified that there are 2 g-l (29 f 1) even(odd) spin structures. It 

should also be noted that spin structures defined by the same value of C a(Pi) 
i 

(or its complement 2g + 2 - C CX(Pi)) f orm a restricted modular orbit, in the sense 

_ that they transform into each other under permutations of the branch points and 

have the same number of Dirac zero modes (as will be shown). We then have 

[ 1 y such orbits for each genus g, where [z] is the integer part of x. 

3.3 COUNTING FERMION ZERO MODES 

We will now count the dimension of the given basis of (n+l/2)-differentials 

and verify that it agrees with the Riemann-Roth theorem. Recall from (34)that 

j<f ( (2n + l)(g - 1) - C dpi) 
i > 

(3.5) 

Since 2g+2-C C,(Pi) corresponds to the same spin structure, we can also permit 

in the paired s(ector powers of z with the exponent satisfying: 4 
-- 

j’ i f 
[ 

(2n + l)(g - 1) - (29 + 2 - C Cr(Pi)) 
I 

P-6) 
i 

ifj’z0. Notethatj’>OimpliesCa(Pi)L(1-2n)g+2n+3. Forn>l,g> 

-2 the inequality (3.6) 
i 

cannot be satisfied for only two cases: n = 1,g = 2 and 
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- 

C a(&)-= 1, which has 2 zero modes in the ,original sector , and also n = 1, 
i s = 3 and C o(Pi) = 0, which has 4 zero modes. Otherwise, we get that for 

n > 1,g 2 2 the dimension is the maximum of j + j’ + 2 = 2n(g - 1). Thus, we 

find that for all cases n 2 1,g 2 2, we always have 2n(g - 1) zero modes. For 

n < 0 we have zero modes only for g = 0,1. For g = 1 we always have only one 

zero mode corresponding to c cY(Pi) = 0. For g = 0 ,n < 0 we clearly get 2lnl 

,-zero modes. This is all as exdected from the Riemann-Roth theorem. Still, the 

really interesting case is n = 0 where the Riemann-Roth theorem does not apply. 

This corresponds to the Dirac zero modes (or harmonic spinors) on hyperelliptic 

surfaces. - 

3.4 DIRAC ZERO MODES ON HYPERELLIPTIC SURFACES 

For n = 0 we find from eq. (3.3) that j 5 i(g - 1 - C a(Pi)) where j 2 0. 

’ (We neglect j’ since it is always negative for C a(Pi) 5 g+\.) Hence, the number 

of Dirac zero modes is the maximum of (j +‘I): 

5 ( g+ l-CQ(Pi) 
i ) 

(3.7) 

This equation verifies our previous claim that for even(odd) spin structures we 

have C o(Pi) = g + l(mod 4) (Ccr(Pi) = g - l(mod 4)). It is important to 

observk that we will always have birac zero modes except in the modular orbit 

defined by C a(Pi) = g + 1. We then see that some even spin structures have 

Dirac zero modes for all values of the hyperelliptic parameters. 
c 

The first set of even spin structures where we have Dirac zero modes corre- 

sponds to having C a(Pi) = g - 3. For this value of C a(Pi) we can see from eq. 

(3.5) that we have( g + 1 holomorphic 3/2-differentials. Then, in 10 dimensions 

we will need g > 20 in order to have enough gravitino zero modes to absorb the 

even Dirac zero modes in eq (3.2). Th is explains our comment in section (3.1). 

._ 
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z Now we are prepared to see that (K) as defined by (3.2) is independent of 

. the individual spin structures in a modular orbit . This easily follows because 

the spin structure dependence of (K) arises in terms of the form X(Z)+(Z). In a 

modular orbit the spin structures are given by placing branch cuts at C o(Pi) 

points. Since X(Z) is dual to the holomorphic 3/2-differentials, the bra&h cuts 

describing its spin structure will occur in the denominator and will thus cancel 

_ with the numerator spin structure branch cuts in $(.z). Thus, (K) will only 

depend on the number of branch cuts describing the spin structure. Since the 

number of branch cuts is all that defines a restricted modular orbit , (K) will be 

invariant within an orbit. 
- 

4. Calculating the Fermion Determinants 

Since the partition function vanishes when Dirac zero modes are present ( 

for g 5 20), we are only interested in calculating the fermionic determinants 

in the spin structures defined by C o(.Pi) = g + 1. We will now calculate the 

relevant determinants on genus 1 aid then in arbitrary genus, using the methods 

of references [l], [17], [18]. 

4.1 GENUS 1 

The even spin structures (where C o(Pi) = g + 1 = 2) correspond to placing 

square-root branch cuts at a pair of W*eierstrass points. Note that placing branch 

cuts at the complementary pair, which corresponds to a sheet interchange, gives 

the same spin structure, and this must be taken into account. This is only of 

relevance for the ghost determinant, since the complementary pair gives the same 

correlation function for spinors. Let us first choose the pair (~2, ~3) (al, ad). Let 

Or4(ai) be the primary conformal operator which defines the proper monodromy 

behavior of fermion fields $(z) transported around ai and the spin structure 
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z defined by (al, ~4) ., We will then be interested::in calculating the vacuum expec- 
. tation value: 

(014(d) - [detVl,t] ii2 (4.1) 

where VI/2 is the Dirac operator acting on spin-l/2 fields. 

To evaluate (4.1) , th e authors of references [17] , [18] suggest starting from 

_ the Green function defined by: 

G14(Z, w) _ @(%)+(w)014 C”i)> - 
(014(%)) 

(4.2) 

- 
where +I(%) are the l/a-differentials. This Green function is uniquely determined - 
by its poles and the chosen spin structure. The only pole occurs as z + 20: 

hirG(z,w) = z+... 
z-w 

The rest of the analytic structure of G~J(z,w)‘s is given by the l/2- differential 

nature of $((z)and the spin structure. We then clearly get: 

&4(w) = & I; ;($;;:; 
1’4 1 [ (w - Ul)(W - u4) 1’4 

(w - a2)(w - a3) 1 (4.3) 
The Green functions Gr2 and Grs may be obtained from (4.3) by permutatiing 

the branch points ai. The expectation value of the stress energy tensor: 

(T(i)) 
14 

= (T(z)014(ui)) 
(O14(%)) 

may be computed from (4.2) and the definition: 

A simple calculation gives: -- 

( 1 
2 

WNl4 = & 2 A 

6ii+6ii 

j=l %- ui 
= &T (% IUij2 -$ c (% f,1:;: _‘; ) (4.5) 

j>i i i 

where”’ 
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. 6ij = 1 if (ij) =‘(kl) 
kl 0 otherwise 

Recalling the form of the operator product expansion of T(z) with any primary 

conformal field”’ “I , 

where h is the conformal dimension of O(w). W  e can interpret the residue of a 
single pole in (4.5) as the logarithmic derivative of (4.1) : 

gii+@ a,izog(o14) = -$ c (-l) l4 as j>i ('- uj) 
Integrating this equation, we find: 

(dehvlp) 1’2 - 
[ 1 

-l/16 

I-D 
-6ii-6ii 

Ui -uj) l4 98 

i>j (4.6) 
= (a4 - Ul)(U3 - u2) l/l6 

[ (a2 - al)@3 - al) I 

For any other even spin structure, we will find: 

(detk&/2) 1’” - [ fJ(Ui - Uj)w6’] -l/l6 (4.7) 

where (kl) is any pair defining the same spin structure. We can now use SI,(~,C) 

to fix three of the branch points . Let or = 0, a2 = x, a3 = 1, a4 + oo,then 

(detlrVl,t)l” - , - 

- 

ir 
-- 

(det13Vl,2)“2 - (x(1 - x))l/16, (4.8) 

.(deh2Vl,2)1’2 - 

We now proceed to calculate the superconformal ghost contribution which 
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x 
is given-by (detbV,,,>-’ where V3/2 is the differential acting on spin-3/2 fields 

. and u  represents the spin structure. This is the vacuum expectation value of the 

superconformal ghost action.“’ Let 0, ghoat(ai) be the primary field which defines 

the vacuum of the ghost action with spin structure Y. W e  observe that we have 

no spin-3/2 zero modes in the even spin structures (at genus 1). The relevant 

Green function for the (14) spin structure is: 

G14(z, w) = (7(%:pd;;OP;(ui)) 

14  ui 

1 (Z-Q)(%- u4) 3'4 (Z-U2)(%-u3) 1'4 
=- - 

%  -W i (w - Ul)(W - a4)  1 [ (w - a2)(w - a3)  1 
(4.9) 

where 7(z) and p( w are the -l/2 and 3/2 spin ghost fields, respectively. It ) 

should be noted that we take 7  and p  to be anticommuting fields. This is just 

Z  the simplest way to evaluate the necessary ghost determinants using this stress 

energy method. The stress tensor is given by:[‘] 

(T(z))14 = ~~z{-3/2&G~4(~,w) - 1/2&dh4(W’) - (% k,,,} (4.10) 

where Gr4(s, w) is given by eq. (4.9). W e  then obtain 

(T(Z))14 =: [ (% -'a2)2 + (% -'a3)2 + (% -“a1)2 + (% -“a412 1 
3 

+ (% -tz3) +  (Z-q) +  (% 

(4.11) 

C 

Convert ing this equation to a  differential equation for (O~,hosf), integrating, and 

fixing three oi, we find: (0,8t08t(ai)) - [x3( 1 - x)] -l/16 . Interchanging (14) 

-- 

and (23) gives the second sector of this spin structure; in this sector G(z, w) is 

changed by interchanging the exponents i and i. W e  then obtain a  different 

value for (T(z)), and ,finally, (0,8F8’(ai)) - [x3(1 - x)‘]-~‘~~. The total ghost 
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s contribution is then: 

. 
(det(14)(23)03,2)-1 - (O~,ho8’(Ui))(O~~08t(Ui)), 

- [xyl - x)1o] -1m. 

In the same way, one can verify that: 

(det(13)(24]v3,2)-’ - [x6(1 - x,“] --l/l6 , 

(det(12p4)V3,2)-1 - [xl’(l - x)‘]-~‘~~ 

The cut sphere can be mapped explicitly onto the torus by:“‘] 

z(t) = p(t) - el 
e2 - e3 ’ el + e2 + eg = 0  

where p(t) is the classical W e ierstrass function. W e  may identify 

e3  - el 
XE- 

e2  - el ' 

(4.12) 

(4.13) 

It is now straight forward to’express x  in terms of the Jacobi theta constants, 

t9i(T) : 

X = 94(7) 

( ) 

4  

93  (7) 

Now using eq. (4.14) and combining eqs. (4.13) , (4.8): 

-1 (det12Vl,2 )5 (detd$) - l/2 
[x(1 - x)]-1/2 

= [x(1 - x)]-2’3 gy;~;3 
17  

(det13V1,2)5 (det13V3,,)-’ - [x(1 - x)]-“’ [x(1 - x)]-li2 

_- 
= [x(1 - x)]-2’3 tiy;(;;;3 

17  1 - x l/2  
(d&rVlp)5 (detd$)-'  - - i 1  X 

[x(1 - x)p 

= [x(1 - x)1-2’3 J;(;!13 
lT 

(4.14) 

(4.15) .- 
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i The relative coefficients of the terms in eq., (4.15) are determined by requir- 

ing that they transform into each other under modular transformations. The . 
modular transformations of the theta functions are well-known and we find the 

established result that the integrand of the one loop partition function is propor- 

tional to 

c (det,V1,2)5 (det,V312)-’ - 19: + t9: - St 
Y 

which vanishes by the well-known Jacobi theta identity. It is interesting to ask 

how this cacellation would have appeared if we had not converted to the lan- 

guage of theta functions. In our original parameterization, modular transforma- 

tions correspond to permutations of the Weierstrass points. Requiring that the 

different spin structures transform into each other under permutations we get 

simply: 

C (debVl,2)5 (detuV3,2)-1 - Pfuff [Aij] (4.16) 
Y :. . 

where Aij = ai - aj, i, j =. 1,-a * ,4, and Pf denotes the Pfafian. Pf(Aij) 

vanishes trivially since the rows or columns of Aij are not all linearly independent 

(e.g. Au = Aik + Akj). W  e can also see this explicitly as follows: 

Pf (Aij) = AIS& - A13&4 + A14&3; 

and using A13 = A12 + A23 we obtain 

Pf(4j) = Al2&2 + A23A12 = 0 
C 

_- . = This concludes the discusion of genus 1. 
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i 4.2 GENUS> 1 

We will now calculate the corresponding quantities on higher genus hyperel- 

liptic surfaces. Since all genus two surfaces are hyperelliptic, the following results 

will give the complete contribution to (3.1) for genus two. We remember that 

because of the presence of harmonic spinors the partition function vanishes for 

all spin structures except for the modular orbit defined by C cy(Pi) = g + 1. We 

place branch cuts on g + 1 points (i.e., half of the Weierstrasi points) in order to 

describe the relevant spin structures. The Green function is then given by: 

(4.17) 

where the set {Z;) contains the g + 1 Weierstrass points where we have chosen 

to place branch cuts to describe our spin structure. The number of inequivalent 

sets of {Zi} is $(y,+,“, , which is just the number of spin structures. The stress 

energy tensor is then given by from eq. (4.4): 

2g+2 (-l)bi{li} 2 
tTIz))(li) = z C z _ a [ 1 j=l i 

where 

6j{li} = 
{ 

1 if Uj E {li} 

0 otherwise 1 

and, consequently, following the same procedure as in eq.(4.7) : 

[p - .j)-6q -1’r0 

(4.18) 

t 
-- 

(4.19) 
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where _ 

. 
fi{lil = 1 if ai and aj E (li) 07 ai and aj 4 (li) 

ij 0 otherwise 

- 

We will now calculate the superconformal ghost contribution. Again, we work 

with anticommuting@ and 7 fields, applied to produce the required determinants. 

. We have 2(g - 1) p zero modes which must be taken into account. In our spin 

structures we divide the Weierstrass points into two complementary sets of g + 1 

points: the ai E (li) and the ai 4 {Zi). g - 1 of the p zero modes correspond 

to placing branch cuts at oi E {Zi} while the other g - 1 correspond to putting 

branch cuts at the complementary set of points. Since we calculate the Green 

function for a particular set {Zi} and then multiply by the complement, we only 

have g - 1 p zero modes in each calculation. The relevant Green function is then: 

(4.20) 

X n (2 - ai)li2 jJ (W - &)‘I2 

aiE(li} aigl(li} 

We can now use the stress energy tensor as before to obtain: 

g-1 29-2 

Cn ~(Yi)"~~~8'(ai))( n P(Yi)O{$*(&)) * 
i=l B (4.21) 

-rI( ali - alj) 
-518 

ai: - all) -‘I8 i II’ i 
al’ - al )-‘i8 det/Sn(ym)]-’ i 1 

i>j i>j 4i 
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I 

- 

where - 
. 

29-2 g-l 

IdetPn(Ym)]-l = n n n (Ui - yk)‘/” I-J (Ui - yl)‘l’ 

k=g I=1 aiE{li} ai${li} 

x rl[ (ai - Yl)3’4 Jj (ai - ?&)3'4 n (Ym -yn)-l 

GE(k) ai${k} m#n 

_ is the determinant of the 2g - 2 supermoduli,(Zi} and {Zi} are complementary 

partitions, and ali E {li}, al: E (1:). This is related to the determinant of V3/2 

with the zero modes, p(yi), absorbed: 

g-1 

( 1 

-l (II P(Yi)"t,2j.')(2h2 P(YiJ”ykyt) 

det’(li~V3/2 = 
1 

[deth ( y$] 

8 

In all, the integrand of the string partition function contains the following 1. 

ingredients (again for the right movers in lo-dimensions): 

X I-J (ali - alj) JJ (ali - al;) 
i>j i>j 

(4.22) 

The c{lilare phases necessary to insure modular; that is, permutation invariance 

among the ai. We now observe that the right hand side of eq. (4.22) can be 

written in terms of the Pfaffian of Aij = (ai - ai). Indeed, 

C E{li} n(ali - alj) n(al; - al;.) - [f’; Aij]’ 
{Ii) i>j i>j 

(4.23) z 

For genus one this has already been shown explicitly. For genus two it is also 

obvious because the left hand side of eq. (4.23) is an alternating 6-linear func- 

tional of Au and a well-known theorem of linear algebra tells us that it must be 
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. 

proportional to the determinant of Aij. 

g both sides of eq. (4.23) 

It is not difficult to see that for arbitrary 

contain the same number of powers of Aij and form 

l-dimensional representations of 2 ~+2 (which acts on the indices of Aij) . It 

is then clear that they must thus be proportional. The Pfaffian of Aij vanishes 

trivially as discussed earlier and consequently so does the partition function. 

In the genus one case the vanishing of the Pfaffian was related to a theta 

function identity, and indeed this extends to higher genus. Thomae’s formula 

relates the Weierstrass points to theta constants :“I 

- 
0[q{li}l(o)4 = c n(al; - ali) n(al; - al;) 

i<j i<j 
(4.24) 

where c is independent of the spin structure. Making use of Thomae’s formula 

in eq. (4.23) gives: 

C ~{li}0[~{li}l(o)4 = O  (4.25) 
U$ 

Remarkably enough this turns out to be a well-known identity. This is a special 

case of Frobenius’ theta formula.“’ 
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