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Practitioners of lattice QCD are nowadays using what may sound like a huge 

amount of computer time. The calculation discussed here required 500 Cray-2 

hours, but this will soon be considered a small computation. What do we hope 

to discover? I will attempt to provide a partial answer in this talk. The work I 

discuss has been done in collaboration with Rajan Gupta, Gerry Guralnik, Greg 

Kilcup and Apoorva Patel. I will eschew technical details; they can be found in 

references 1 and 2. For a general introduction to lattice methods see the talk of 

Billiore. 13’ 

To illustrate what lattice calculations can and cannot do, I focus on the weak 

decay K- -+ rT-vro, whose anatomy is exposed in Figure 1. The Standard Elec- 

troweak model tells us how the quarks couple to W bosons. The couplings needed 

for this particular decay are shown in the inner box. To connect this short dis- 

tance interaction to the external particles we must dress the diagram with gluons 

and internal quark loops. We know how to do this using perturbation theory for 

internal momenta ranging down to p M 2GeV. This is represented in Figure 1 by 

region between the inner and outer boxes. The output of the perturbative calcu- 

lation is the effective weak Hamiltonian (NW). It is for the remaining dressings, 

those outside the outer box, that we need lattice calculations. Here the momenta 

vary down to zero, the coupling constant becomes strong, perturbation theory is 

not useful, and so a truly non-perturbative method is required. 

Lattice calculations are indeed non-perturbative, but they involve their own 

approximations. First, continuous space time is discretized - replaced with a 

mesh of finite spacing. When this spacing becomes very small it should be irrel- 

evant. It is this mesh which cuts off the momenta at the high end. The second 

approximation is that the world is replaced by a box of finite size. Ours is 1.4 fm 

across, a typical size. This approximation means that it is not feasible to have 

more than one particle in the box. Indeed, the box is barely large enough to 

accommodate a single pion, and probably too small for a baryon. 

These two approximations mean that, while the lattice can evaluate the ef- 
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fects of small internal momenta, it does so only for a discrete set. It should be 

emphasized, though, that this set can be systematically enlarged, the effects of 

the approximation being in this way reduced. I should also stress that numerical 

lattice calculations are brute force methods, which of themselves may lead to 

the correct answers without yielding any physical insight into the results. One 

should certainly not give up analytic approximations, such as the l/NC expansion 

discussed here -by Bardeen. la’ A final comment is that, in the present calculation, 

we are using the quenched approximation. This means that we do not include 

internal quark loops in the lattice part of the calculation, though they are in- 

cluded in the perturbative calculations. This distinction is illustrated in Figure 

What do we want to calculate? The original motivation, and one which re- 

mains central, is to calculate the masses and decay constants of hadrons, and 

check that their ratios agree with those in the particle data book. This would 

provide a detailed non-perturbative check of the validity of &CD. This goal has by 

no means been attained. The properties of the light meson states come out rea- 

sonably (f~/h, mK/mp, . . . ), but, even on the largest lattices available, the ratio 

mpro~on/mp comes out too high.[5-‘1 Nevertheless, encouraged by the successes 

for light mesons, we and others are attempting to extract further information 

about the structure of these lattice mesons. It is information about weak decays 

of kaons, such as illustrated in Figure 1, that I will concentrate on here. 

As illustrated in Figure 1, what we need to calculate are the matrix elements 

(ME) of the effective weak Hamiltonian between hadronic states. The following 

table summarizes the ME that we, and our competition,‘6’s1 are trying to cal- 

culate. The labels “staggered” and “Wilson” refer to the two practical ways of 

putting fermions, in this case quarks, onto the lattice. In present calculations we 

use staggered fermions, while our competition uses Wilson fermions. I will not 

discuss the relative merits of the two methods, nor, indeed, why there is a choice 

to be made. Both methods should give the same answers for small enough lattice 

spacing. 
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Label Matrix Element Application staggered Wilson 

ME1 

ME2* (K’jRe XwI7rr(l= 0)) 

ME3* (KOjRe XWI~~~_~F(I = 2)) 

E 

AI = h rule 

AI= f rule 

soon now[87Ql 

soon soon [‘I 

soon now [%Ql 

ME4* (KOIIm Uw Irr(l= 0)) 4 (strong) now “I 

ME5* (KOIIm XwI7r7r(l= 2)) c’ (electromagnetic) now12’ 

not yet 

now [%91 

For technical reasons, only with staggered fermions can one calculate the strong 

interaction contribution to 6’ at present. In fact, this, and the electromagnetic 

contribution to c’, are all that we have results on now. We have data for the 

other ME, but the signal is swamped by statistical errors and/or “wrap-around” 

contributions.““’ The “soon” in the table means that we are engaged in a bigger 

and better calculation which will reduce the statistical errors, and also avoids 

the wrap-around contributions. We hope to have results in 6-12 months. Thus 

the only point where both we and the competition calculate the same quantity 

is ME5, and on this we agree. For a discussion of the Wilson fermion results for 

ME1 and ME3 see the talks of Soni”] and Martinelli”’ . 

If we can succeed in calculating the ME in the table, then we can really pin 

down the QCD part of the properties of Kaons. ME1 gives us the “B parameter” 

needed in the estimate of E. If we know this, and we know mt, and we measure 

the KM parameters s2 and s3 from B meson decays, then we can deduce the 

KM phase 6. ME2 and ME3 will provide a stringent test of QCD because they 

are directly related to K” and K+ decays respectively. In particular, the ratio 

ME2/ME3 must come out to be 22, this large number being due to the AI = l/2 

rule. Finally, if we can calculate ME4 and ME5, we have the ingredients for a 

first principles prediction of ~‘/c. It is these possibilities that motivate the various 

groups to carry out these laborious calculations. 
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I will spend the rest of the talk discussing our measurement of ME4 and 

ME5, and its implications for E’/E. The first issue is to explain the asterixes 

beside the last 4 matrix elements in the table. These indicate that we do not, in 

fact, measure K + zz amplitudes, for our lattices are too small to accommodate 

the zr7~ final state, and, furthermore, our techniques are too weak. Instead, we 

use lowest order current algebra to relate the K + zz amplitude to a K + z 

amplitude which we can calculate on the lattice.[“’ This is an approximation 

which one hopes works to about 30%. 

The final ingredient we need is the effective weak Hamiltonian. In fact, for 

ME4 and ME5 we only need its imaginary part. We use the standard renor- 

malization group technology to sum up the leading perturbative contributions 

represented by the region between the inner and outer boxes of Figure 1. This 

gives us NW at the scale at which the lattice gluons become active, roughly the in- 

verse lattice spacing, in our case 1.7 GeV. At this scale, it turns out that Im &is 

dominated by three operators, 06, Or, and 08, defined, for example, in Ref. 2. 06 

is the strong interaction penguin operator, while 07 and 0s are electromagnetic 

penguin operators. One has Im Xw M $$ (~1~2~2~3~6) c&, F;Oi . The Zi are the 

Wilson coefficients, which I find to be[12’ -Fe = .08 - .09 (.12 - .15), -Z7/a,, = 

.15 - .22 (.ll - .18), and -&/&m = .Ol - .02 (.Ol - .03). The various num- 

bers are for AQCD = .l (.3) GeVand mt = 30 - 70 GeV. The coefficients of the 

electromagnetic penguins, i?7 and zs, are proportional to aem. 

Putting all this together one obtains the master formulae 

where the generalized B parameters are: 
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B6 = (K+ppt17r+) / (K+10,8ubtl~+)y~A 

B7 = 3 @+/071x+) / (K+j08/7r+) 

There are many uncertain factors in these formulae. Starting with the least 
. uncertain, R,+, I is known to be in the range .27’13’ to k: .4[141 . The strange 

quark mass, evaluated at a scale of 1.7 GeV, could well be smaller than 125 

MeV, which would decrease c’/c. The product of KM angles is more uncertain, 

and, as just discussed, the Wilson coefficients are very sensitive to AQCD and mt. 

The final uncertainty is in the three B parameters. It is this uncertainty that 

the lattice calculations can reduce or remove. These parameters are defined in 

a similar way to the original B parameter appearing in the evaluation of E. The 

superscript subt refers to a technical detail I will not discuss. In their definitions 

VIA stands for vacuum insertion approximation. This is an approximate way of 

evaluating matrix elements which consist of a product of two factors, say A x B. 

Instead of the exact value (A x B), the VIA uses (A) x (B), an approximation 

which ignores correlations. In Figure 1 VIA would mean not including any gluon 

lines which join the left-hand quark loop to the right-hand loop. VIA is simple 

enough that it can be carried out in the continuum to give an estimate of the 

ME, yielding, by construction, B6 = B7 = Bg = 1. But VIA can also be made on 

the lattice, and so it can serve as a connection between lattice and continuum. 

Lattice measurements of B parameters are less subject to systematic errors than 

those of the matrix elements themselves. 

Figure 2 shows our results for the B parameters.[” The errors shown are 

statistical, and do not account for the systematic error of using the quenched 

approximation. The lattice we use is 123 x 30, a moderate size lattice by today’s 

standards. We have data only for three values of m,mK, and the lightest two lie 

between the physical value (shown in the Figure) and the physical mk. To avoid 

confusion I should stress that on the lattice one has the freedom to vary the quark 
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masses, and thus to consider worlds in which the lattice pions and kaons have 

different masses from the physical ones. The data show that Be is considerably 

below 1 for small m,mK. Thus the correlations included in the calculation of 

ME4 are very important. Bg, on the other hand, is much closer to 1, while B7 is 

very close to 1. 

An important check to be made on our results is that they have the correct 

“chiral behavior”, i.e. that they vary according to the dictates of current alge- 

bra for small m, and ??ZK. ME4 is expected to be proportional to ?nnmK, with 

no constant term, nor any terms proportional to rni or m$. For small enough 

m, and mK one can show that this must be true on the lattice, given the ab- 

sence of “wrap-around” contributions.[‘5’ This let-out means that the argument 

is stronger for the VIA data than for the real ME4, since in VIA there are no 

“wrap-around” contributions. Our results for ME4 /m,mK are shown in Figure 

3. Our three points are too few for a stringent test, but the real ME4 appears 

to have the expected chiral behavior, while the VIA data do not. My optimistic 

interpretation of these data, based on the theoretical arguments just mentioned, 

is as follows. For the real ME4, the lowest two mass points are showing the onset 

of chiral behavior, and this behavior will continue for lower masses. On the other 

hand, the two lowest mass VIA points are in a transition region between high 

mass, where VIA works well, and low mass, where the correct chiral behavior ob- 

tains. Chiral behavior should set in by the physical m,mK. This interpretation 

predicts that the VIA results for ME4 / ?nrmK will continue roughly at the level 

of the lowest mass point for all lower masses. Clearly other interpretations are 

possible, and, more clearly still, lattice data at low masses are needed to resolve 

the issue. 

If we take these results seriously we have B6 M .5, B7 M 1. and B8 w 1.2. 

Relative to VIA, this doubles CIEMP, but the overall effect on c’/c is a reduction 

of 60-70%. The reader can plug her or his favorite values for the uncertain factors 

into the master equations to obtain a value of c’/c. A reasonable range seems 

to be (1 - 2) x lo- 3, below the present limit but accessible by experiments in 
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progress. 

It is worth breaking down the contributions to c’. The smallness of Bg means 

that the strong interaction penguin contributes less than in VIA. On the other 

hand, since Bg > 1, the electromagnetic penguin contribution is slightly in- 

creased. Depending on the values of mt, AQCD, and Rq+Q~, these two changes 

mean that the electromagnetic contribution to c’ may be as large as that of the 

strong penguin, despite being proportional to aem. This surprising result is due to 

a combination of factors. Unlike the strong penguins, electromagnetic penguins 

are not suppressed by the AI = l/2 rule, nor by the requirements of chiral sym- 

metry, and, if our result is true, nor by the combined effects of non-perturbative 

gluons. 

In conclusion, lattice evaluations of the ME of NW are an essential ingredient 

in the theoretical calculations of Kaon weak decay properties. At present, the 

uncertainties in these calculations coming from uncertainties in the KM angles, in 

mt, and in AQCD, are comparable to that coming from the ME of Xw . However, in 

the future, it is likely that the uncertainty coming from the ME will be dominant. 

Although the lattice calculations of these ME are preliminary, they do indicate 

that the results of a complete calculation may differ substantially from those of 

the approximation schemes used previously. 

I thank the organizers for a superb conference, particularly for their astute 

timing relative to SN1987A. Discussions with Peter Clarke, Belen Gavela, John 

Fry, Guido Martinelli, Peter Ratoff and R. D. Schaeffer were very helpful and 

enjoyable. I thank Yosef Nir for his comments on the manuscript. 
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Figure 1. The anatomy of the weak decay K- --+ r-x0. The curly lines are gluons. 
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Figure 2. Lattice results for B parameters. The horizontal bars show the statistical 

error in the lattice values of ,/m. The data are separated horizontally 

for clarity. 
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Figure 3. Testing the chiral behavior of the real ME4 and its values in VIA. 
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