SLAC – PUB – 4312 April 1987 (T/E)

An Upper Limit on the Decay $D^0 \rightarrow \mu e^*$

WOLFGANG STOCKHAUSEN[†] Representing the Mark III Collaboration

Stanford Linear Accelerator Center Stanford University, Stanford, California, 94305

ABSTRACT

A search for the lepton family number violating decay $D^0 \rightarrow \mu e$ is reported. No signal is observed in a data sample of 9.3 pb⁻¹ collected at the $\psi(3770)$ resonance with the Mark III detector, where $0.18 \pm 0.06 \pm 0.05$ background events are expected. A 90% confidence level upper limit on the branching fraction $B(D^0 \rightarrow \mu e)$ of 1.5×10^{-4} is obtained.

> Talk presented at the XXIInd Rencontres De Moriond Les Arcs, France, March 8-15, 1987

^{*} Work supported by the Department of Energy, under contracts DE-AC03-76SF00515.

<u>Caltech</u>: D. Coffman, G. Dubois, G. Eigen, D. Hitlin, C. Matthews, Y. Zhu. <u>Santa Cruz</u>: D. Dorfan, C. Heusch, L. Köpke, W. Lockman, R. Partridge, H. Sadrozinski, A. Seiden, M. Scarlatella, T. Schalk, S. Watson, A. Weinstein, R. Xu. <u>Illinois</u>: G. Blaylock, J. Brown, B. Eisenstein, T. Freese, G. Gladding, J. M. Izen, C. Simopoulos, I. Stockdale, B. Tripsas, J. Thaler, A. Wattenberg, B. Wisniewski. <u>SLAC</u>: J. Adler, T. Bolton, K. Bunnell, R. Cassell, D. Coward, C. Grab, U. Mallik, R. Mozley, A. Odian, D. Pitman, R. Schindler, W. Stockhausen, W. Toki, F. Villa, S. Wasserbaech. <u>Washington</u>: T. Burnett, V. Cook, A. D. Guy, R. Mir, P. Mockett, B. Nemati, L. Parrish, H. Willutzki.

Motivated by the interest in lepton family number violating processes^[1] and the lack of experimental information the decay mode^[2] $D^0 \rightarrow \mu e$ is investigated. This decay could be induced by massive leptoquarks which are predicted in various extensions of the Standard Model.^[3] We present the most sensitive search to date for the decay $D^0 \rightarrow \mu e$.

The data, 9.3 pb⁻¹, were taken with the MARK III detector at the SLAC e^+e^- storage ring SPEAR at a c.m. energy of 3.77 GeV. This luminosity corresponds to $41400^{+3100}_{-2700} \pm$ 2700 produced D^0 's.^[4] The data are first searched for events containing at least two lepton candidates: one muon and one electron. The kinematics of the two-body D^0 decay require that both leptons have momentum p > 0.75 GeV/c in the laboratory frame. Leptons are selected on the basis of the energy deposited in the shower counter, the momentum as determined with the drift chamber, the time-of-flight measured with scintillation counters, and range in the muon system.

The two main sources of background to the decay $D^0 \rightarrow \mu e$ are hadronic charged twobody D^0 decays, and $\tau^+\tau^-$ pairs. The rejection of $D^0 \rightarrow K^-\pi^+$, $\pi^+\pi^-$ decays through the lepton selection described above is augmented by use of the two-body decay kinematics. The invariant mass M_{inv} of each two-body combination is calculated using electron and muon masses. The $K^-\pi^+$ decays of the D^0 contaminating the sample are kinematically reflected to lower masses (fig. 1). All candidate pairs with M_{inv} differing from the D^0 mass by more than 0.05 GeV/ c^2 are rejected. This cut does not reject the Cabibbo-suppressed decay $D^0 \rightarrow \pi^+\pi^-$. Thus, although the absolute rate of $D^0 \rightarrow \pi^+\pi^-$ is small, it remains a significant

Fig. 1. Monte Carlo generated distributions of M_{inv} for the μe signal and for the $K^-\pi^+$ and $\pi^+\pi^-$ backgrounds. The invariant mass is required to lie within $\pm 0.05 \,\text{GeV}/c^2$ of the D^0 mass. Lepton selection criteria have already been applied.

2

background. The second major background source stems from τ pair production. Since this τ background consists mainly of two-prong events accompanied by undetected neutrinos, a cut on the missing energy E_{miss} in two-prong events only eliminates this contamination. Figure 2 shows the expected E_{miss} distribution from Monte Carlo simulations of $D^0 \bar{D}^0 \rightarrow (\mu e + no charged tracks)$ and $\tau^+\tau^-$ production. By rejecting two-prong events with $E_{miss} > 1 \text{ GeV}$, the τ events are removed, with a 2% reduction in μe efficiency.

Fig. 2. Monte Carlo generated distributions of E_{miss} for twoprong events only from $D^0 \overline{D}^0 \rightarrow (\mu e + no charged tracks)$ and from $\tau^+\tau^-$ pair production. As the former channel constitutes 6% of all $D^0 \rightarrow \mu e$ events, the cut at $E_{miss} = 1 \text{ GeV}/c^2$ reduces the $D^0 \rightarrow \mu e$ efficiency by only 2%. All lepton selection criteria have been applied.

After all particle identification and kinematic cuts have been applied, the beamconstrained mass M_{bc} is calculated for each surviving candidate pair by constraining its energy to the beam energy. Two events with $M_{bc} > 1.82 \text{ GeV}/c^2$ are found. A study of the M_{bc} distribution of $D^0 \rightarrow K^-\pi^+$ in the same data sample shows that 90% of those two-body decays lie within $\pm 0.0055 \text{ GeV}/c^2$ of the D^0 mass (fig. 3). No μe candidate falls within this range. The efficiency for $D^0 \rightarrow \mu e$ detection is found to be $0.433 \pm 0.004 \pm 0.029$, while that for $D^0 \rightarrow \pi^+\pi^-$ is $0.0024 \pm 0.0004 \pm 0.0002$. After all analysis cuts, neither $D^0 \rightarrow K^-\pi^+$ decays nor $\tau^+\tau^-$ pair production contribute significantly. The background to a μe signal is estimated to be $0.18 \pm 0.06 \pm 0.05$ originating solely from $\pi^+\pi^-$ events.^[4] The observation of no events of the type $D^0 \rightarrow \mu e$ yields a 90% confidence level (C.L.) upper limit of 2.30 on the total number of signal and background events.

This results in an upper limit on $B(D^0 \to \mu e)$ of 1.5×10^{-4} , when all systematic errors are included. This bound, which is model-independent, is approximately an order of magnitude lower than other model-dependent measurements.^[5]

Fig. 3. M_{bc} distribution for $K^{-}\pi^{+}$ events in the data (used to determine the $\pm 0.0055 \,\text{GeV}/c^2$ cut on M_{bc}). Superimposed are the two closest $D^{0} \rightarrow \mu e$ candidates, that pass all other cuts.

REFERENCES

- 1. H. K. Walter, Fifth Workshop on Grand Unification, K. Kang, H. Fried, P. Frampton, eds., (World Scientific Press, Singapore, 1984), p. 134; F. Boehm, *ibid.*, p. 315.
- 2. Throughout this paper reference to a particle state also implies reference to its charge conjugate.
- W. Buchmüller and D. Wyler, Phys. Lett. B177, 377 (1986);
 W. Buchmüller, CERN-TH-4499/86 (July 1986).
- 4. R. M. Baltrusaitis, et al., Phys. Lett. 56, 2140 (1986).
- 5. H. Palka, et al., CERN-EP/87-10 (1987); a 90% C.L. upper limit of 1.0×10^{-3} is reported. K. Riles, et al., SLAC-PUB-4156 (1986) state 2.1×10^{-3} . These limits rely on knowledge of the production mechanisms, fragmentation functions and D^0 branching ratios.