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ABSTRACT 

In our previous paper, we defined multistring vertices by conformally mapping 

string states onto the complex plane. In this paper, we prove the combination 

rules for these vertices: The contraction of two vertices by the natural inner 

product on the string Hilbert space yields just the composite vertex which would 

have been obtained by gluing together the two world-sheets in an appropriate 

fashion. 



1. Introduction 

The theory of strings contains many facets in which opposite analytical 

viewpoints-geometric or algebraic arguments, abstract or concretely physical 

reasoning-are knit together elegantly by the underlying formalism. In this se- 

ries of papers, we explore the foundations of string dynamics, the formulation 

of a field theory of strings, in an attempt to unify various viewpoints on this 

subject into a coherent-whole. Just as with string theory more generally, string 

field theory has been discussed from an essentially geometrical point of view and 

and from a viewpoint closely rooted in the Hilbert space picture of strings. On 

the one hand, string field theory ‘can be viewed as a way of breaking down the 

analytic world-sheets of Polyakov’s space-time approach to string dynamics Ill 

into more elementary string interaction vertices. On the other hand, the the- 

ory can be considered as summarizing the dynamics of the local quantum fields 

associated with the various modes of string excitation. Both aspects have been 

exemplified by the development of light cone string field [21 theory. 

The relation between these two pictures is easy to imagine intuitively but 

not at all straightforward to derive precisely. We have found it useful to connect 

each viewpoint to conformally-invariant two-dimensional quantum field theory, 

using the beautiful formalism of Belavin, Polyakov, and Zamolodchikov 131 (BPZ) 

and its application to string theory by Friedan 141 and Friedan, Martinet and 

Shenker.151 In the first paper of this series (referred to henceforth as I), we 

showed how to write the kinetic energy terms and couplings of string modes as 

expectation values in the BPZ two-dimensional Hilbert space. We also sketched, 

in the simplest special case, how the natural inner product in the space of string 

modes, carried into the two-dimensional formalism following BPZ, takes on a 

geometrical interpretation as a gluing of pieces of world-sheet, and we claimed 

that this connection was, in fact, completely general. In Witten’s formulation 
161 of the open string theory, which he presented entirely in terms of world-sheet 

geometry, the proof of gauge-invariance depends on the form of the surface which 
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results from such a gluing procedure. Our method thus allowed us to prove the 

gauge-invariance of Witten’s open-string action explicitly, in terms of transfor- 

mations on the string field components, by connecting such transformations to 

Witten’s geometrical operations. 

In this paper, we will complete the analysis begun in I by deriving the con- 

nection between the string mode expansion and world-sheet geometry in its full 

detail, at least for the case of the bosonic string. In I, we constructed off-shell 

multi-string vertices explicitly in terms of mappings of conformal field theory 

operators onto the complex plane. Here, we will study the new vertex produced 

by the contraction of two of these vertices with the conformal field theory innner 

product of BPZ. We will show that the resulting vertex is precisely the one which 

results from mapping the original operators onto a new plane formed by gluing 

together the planes used to define the original vertices. This structure was mo- 

tivated in I by the analysis of a special case of the relation. Here we will present 

the complete proof of this gluing identity. 

Our analysis will procede as follows: We will assume that the reader is famil- 

iar with the notation and formalism that we have presented in I. To this, we must 

add some further elements of the formalism of 2-dimensional conformal field the- 

ory; these will be reviewed in Section 2. IA Section 3, we will review the precise 

statement of the gluing identity and then begin the proof. This first part of the 

discussion will concern the terms in the vertex containing coordinate mode oper- 

ators. This discussion should already make clear how we interpret mode operator 

contractions as building up analytic functions on the glued world-surface. The 

remaining sections of the paper will extend this analysis to the other elements of 

the vertex. Section 4 will present some further analysis of the coordinate mode 

osciallators which extends to the coordinate zero modes. Section 5 will gener- 

alize this analysis to general bosonized ghost system. Section 6 will present an 

alternative argument for the reparametrization ghosts in their fermionic formu- 

lation. Overall factors of determinants arising from the contraction are discussed 

in sections 5.3 and 6.3. There we will demonstrate that these factors cancel as 
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expected when the total central charge of the string conformal field theory equals 

zero. 

Throughout this paper we will not distinguish “Green functions” from “Neu- 

mann functions” when we refer to them in the text. Also, we will frequently call 

“function” what is really a conformal tensor, for example the Green “function” 

of the fermi ghosts (b,,(z)cw(w)). In 11 a cases of interest we define these objects 

explicitly. 

5 



2. More Conformal Field Theory 

The analysis of this paper relies on the formulation of string field theory in 

terms of conformal field theory vacuum expectation values which was presented 

in I. This treatment made essential use of the formalism for conformal field the- 

ory developed by Belavin, Polyakov, and Zamolodchikov (BPZ); the essential 

elements of this formalism were reviewed in Section 2 of I. For the analysis that 

we will present here, we will need to make use of two further sets of results in 

conformal field theory-the bosonization of fermions and the treatment of finite, 

as opposed to infinitesimal, conformal transformations. This chapter will review 

these new elements of the formalism. 

2.1. THE BOSONIZED GHOST SYSTEM 

Since this section is devoted mostly to fixing conventions, let us start by 

listing the Euclidean actions for the conformal fields that will appear later. For 

the open string we write the action for coordinate and free bosonized fields as 

s 
1 

z,open = - 2X J 
d2z,,/ijgabd,xp&,x”~,, (24 

and 

S#,open = -& 
J 

d2z&igab&f!@,@ - 2 
/ 

Q ds k@ - G 
J 

d2z,/ijR(2)@ . (2.2) 

In (2.2), ds is the line element of the boundary, k is the extrinsic curvature of the 

boundary, and Rt2) is the curvature of the world sheet. Since we are working in 

the conformal gauge, the world sheet metric gab is just &&b, up to some conformal 

factor. The general tree-level world sheet of the open string may be mapped 

conformally to the half-sphere, which we represent as the upper half complex 

plane, and then gab = &&. We may locate the curvature at infinity, so that 

Id21 = 47r+o). Th’ 1s curvature then acts as a background charge, which we will 
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have to saturate in correlation functions. The action for the field @  describes, in 

the conformal gauge, a ghost system equivalent to tensor fields b,..., and c~“‘~ of 

type X and 1 - A. The curvature terms are weighted by Q = ~(1 - 2X). We also 

allowed different statistics of the ghost systems, namely fermionic b, c for E = +l 

and bosonic character for E = -1. 

For the closed string we choose 

Sz,closed = & 
/ 

d2z,/ijgabd,Xp&,XVyp,, (2.3) 

and 

S+,closed = -& 
J 

Q d2z,/ijgabd,@&@ - G 
I 

Q dskQi - G 
J 

d2z,/ijR c2)tD . (2.4) 

Here the tree level world sheet is taken to be the complex plane, with Rt2) = 

87r6(00). 

If we keep the ghosts in their original fermionic form, the ghost action looks 

the same for the open and closed string: 

& = & 
J 

d2.+jgabbca&cc . P-5) 

In the conformal gauge this action also describes ghost systems with arbitrary 

conformal dimension A. However, the zero mode structure will of course be 

different for each case. For the usual reparametrization ghosts of the bosonic 

string X = 2, and this action is equivalent to (2.2) or (2.4) with Q = -3 and 

E = +1. 

We now display the two point functions derived from the above actions. For 

the open string 

(Xp(z,Z)Xv(w,F)) = -iqPVln Iz - 201~12 - ;iLi12 

(@(z,Z)f!i(w,-i-ir)) = i In 1s - u~(~Iz - Sj2 
(2.6) 
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and if we decompose X~(Z,Z) = +(x”(z) + z~(z)) and similarly a, then 

(zp(z)su(w)) = -rf” In(z - w) 

b#++(w>> = f ln(z - w) . 
P-7) 

For the closed string 

(Xp(z,Z)X”(w,w)) = -vcLu In (2 - w12 

(@(z,Z)@(w,7D)) = cln (2 - w12 
P-8) 

and we get, with X~(Z,Z) = Z(Z) + Z(Z) and similarly for @  : 

(Zp(Z)Zu(w)) = (kp(z)iEY(w)) = -qPVln(z - w) 

(4(44(w)) = (&4&w)) = El+ - 4 - P-9) 

In this paper, we will study correlators on world-sheets with the topology of a 

plane or sphere; then it will always suffice to study the analytic correlators, since 

the two point functions satisfying the appropriate reality conditions are generated 

by the decomposition of X(z, Z) in a canonical way. Let us introduce a shorthand 

notation for this process and define the analytic averages 

ln(z - w),.,. G i (ln(z-w)+ln(Z-w)+In(z-W)+In(Z-Ti?)) (2.10) 

for the open string and 

ln(z - w)..,. E ln(z - w) + ln(Z - W) (2.11) 

for the closed string. 



The fermionic ghosts have, for both the open and closed case: 

(c(z)b(w)) = -L z-w (2.12) 

This implies the correspondence c(z) = e+(z), b(z) = e-4(Z) for the reparametriza- 

tion ghosts. The correlators for conformal fields can be translated into commu- 

tators of their Fourier modes. Here we write down only the ones for the field 4, 

since all the others were already given in I. If we define 

d,qs(z) = j(z) = 2 j,z+-l , 

n=-co 

(2.13) 

one finds 

[hG7z] = ~~~n,-tn - (2.14) 

The field j( z is the ghost current. It provides the link between the fermionic ) 

and the bosonized formalism: 

j(z) = - : b(z)c(z) := Jlw[-b(z)c(w) + A] = dz4 . (2.15) 

2.2. FINITE CONFORMAL TRANSFORMATIONS 

Even though classically j( ) z is a primary conformal field of weight 1, normal 

ordering induces an anomalous affine term in the transformation law: 

f[.i(z)l = f’($lf(z)) + $%14fr(z)) (2.16) 

In the &vertex this will be reflected in extra terms with coefficients Q or Q2 

when we compare it to the vertex for the X-coordinates. The transformation law 

(2.16) is of course precisely what is needed to leave the actions (2.2) and (2.4) 

invariant, if we transform the metric (and the curvatures) at the same time. 
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An affine transformation rule also appears for the energy momentum tensor. 

The coefficient in front of the inhomogeneous term is the well known conformal 

anomaly. For example, if we define 

T&(z) = ; : a,zqz)d,zp(z) : 

T;;(z) = -A : b(z)&c(z) : +(1- X) : &b(z)c(z) := 

T:‘(z) = ;[: j(z).@) : -Q&j(z)] , 

then 

where 

{f, z} = f”‘(Z) 3 ( f”(Z) )2 ~-- 

f’(z) 2 f’(z) 

(2.17) 

(2.18) 

(2.19) 

is the Schwartzian derivative and the coefficients of the conformal anomaly are, 

in D-dimensional spacetime, 

cx = D 

cbc = c+ = 1 - 3~9~ 
(2.20) 

Note that for Q = -3 and D = 26 the total conformal anomaly cx + cbc vanishes 

and T,, = Tz + 2’:: transforms as a true primary conformal field of weight 2. 

The Fourier components of the energy momentum tensor L, generate in- 

finitesimal conformal transformations. A finite transformation then has the form 

(2.21) 

where 

Uf = exp(v-,L,) . (2.22) 

For a scalar field \E, i.e. for d = 0, UJ has the representation Uf = exp(v(z)a,), 

with V(Z) = V,Z- ‘+l. The vector field V(Z) generates the transformation f, and 
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explicitly the two are related by the differential equation 

+)&f(z) = Mz)) * (2.23) 

Sometimes it is simpler to replace V(Z) by tv( ) z , and derive a differential equation 

with respect to the parameter t. If we set 

ft(z) = cPJ(%)% , (2.24) 

then it is easy to show that ft(z) satisfies 

wm = Qt(z)) ;fo(z) = z . (2.25) 

Let us integrate this equation for V(Z) = zk+l, V-1, = 1. We obtain the solutions 

k=O: ft(z) = etz 

k#o: 
ft(z) = (1 - t;zk)‘,k ’ 

(2.26) 

Alternatively, we may develop ft(z) in a series around t = 0. Then we obtain 

t2 t3 
j-t(z) = z + tv(z) + ,+)v’(z) + r (+)(v’(z),” + ~“(z)v”(z)) + O(t4) . (2.27) . 

These results are useful because they allow us to check all our general formulae 

about gluing explicitly using a perturbation expansion in small t. 

A conformal transformation has a simple form when it acts on primary fields, 

and since we defined operators as contour intergrals of such fields, the transformed 

modes have the form 

f[xlL] = f gz”+d-lf[qz)] * (2.28) 

The transform of the state (01 is of course (01 Uf , but this formula is somewhat 

awkward, since the exponent of Uf contains creation as well as annihilation opera- 

tors. It turns out that one can explicitly write down a normal ordered expression. 
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We will discuss here only the simplest case in detail, namely the nonzero modes 

of the field X. The arguments easily generalize to all the fields we consider. Let 

us now show that 

(fl = (01 uf = (01 exp[-+hN~mam] (2.29) 

where the coefficients N,f, are precisely the moments of the mapped Green func- 

tion ( a,zawz)- 

N;,= : 
n f 

*z-n (f’(z)) i f g w-m (f’(4) (f(z) $(w))’ 7 27rrz (2-W 

-which appeared in the mode representation of the vertex in I. We will assume 

that f(z) is analytic in a neighbourhood of z = 0. First notice that, for all n, m 

, even at negative values, 

(f I a-,a-, . . . lo> = (f[a-n]f[a-m] ‘*‘) . (2.31) 

Therefore, (f ] f-‘[a-,] = 0 for all n > 0. But by (2.21) this means (f 1 Uj-‘aen = 

0, and since the SL(2) invariant vacuum (0] is uniquely determined by (0] a-, = 0 

for all n > 0 and (010) = 1, we conclude (f ] = (O] Uf. Note that (f ] = (O] if and 

only if f(z) is a SL(2, C) mapping. (2.31) is then derived as follows: by SL(2) 

invariance we may choose f (0) = 0 and hence 

. (2.32) 

Then of course Uy” 10) = 0 and 

(01 qa-,a-, . . . IO) = (01 UfU-~U~lUfU-mU~l *. ’ IO) = (f [U-n] f [U-m] ’ ’ *) 

(2.33) 

by (2.21) and (2.28). Using similar methods one can establish 

110 f oI>,g f UGlfol lo>, = exp (-ia-n(-)nNim(-)ma-m) lo), = (f IB 11~~) , 

(2.34) 

where I is the inversion Iz = -l/z and ]XAB) is the BPZ inner product, discussed 
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in I. With these definitions, 

In the course of gluing we will encounter expressions of the form 

_ (f1,tI Q(z) II 0 f2@ 0 I) , (2.36) 

where q(z) is some primary conformal field located at z or a product of the latter 

at different positions on the complex plane. Let us manipulate this expression 

into the form 

(9 Pwl) 9 (2.37) 

for some function g(z). First we write (2.36) as 

PI f1,t P(z)] w;’ 10) - (2.38) 

We then note that U1 contains only L, with n 2 2, whereas UT’ is an exponential 

of L-k with k 2 2. There exists a theorem [71 in the theory of Lie groups that 

assures us that for sufficiently small s and t the product of the two may be written 

as 

exP (g vZ!Cm)nL-n) exP ( ngl V!iLrn) 

(2.39) 

for some vector fields vt3) (z) and V(~)(Z). In general, the right hand side of 

this equation is multiplied by a constant, namely (01 UIUF1 IO). However, if the 
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conformal anomaly is zero, (01 L, IO) = 0 f or all n, and therefore this constant is 

in fact 1. If we insert (2.39) into (2.38), the exponential containing V(~)(Z) reduces 

to 1, since all the Virasoro operators in the exponent annihilate the vacuum IO). 

Applying the same reasoning once more we now write (2.38) as 

(01 UIof301 f Pw 4&d lo> (2.40) 

and identify-f3 with IO fly,’ o g o I to obtain (2.37). We may expand (2.36) to 

obtain g(z) as a series in s and t: 

g(z) = z + tv(l)(z) + sIJ2)(z) + ;t2v(‘)(z)&v(‘)(z) + ;s21v(2)(Z)azIv@)(z) 

+ stv(‘)(z)d,Iv(2) (z) Ip+l + Iv(2)(z)a,v(‘)(z) rP+l + O(s3, s2t, st2, t3) . 
P22 Pl-2 

(2.41) 

g(z) is not analytic around either 0 or 00. Rather, it has a convergent series 

expansion in powers of z only inside an annulus with finite radii. The outer 

radius is the radius of convergence of fl (z), while the inner one is the inverse of 

the radius of convergence of fz(z). 



3. Gluing Coordinate Operators 

We now begin the proper subject matter of this paper, the proof that operator 

contractions of string field theory vertices act precisely to sew together regions of 

Riemann surface to form the conformal field theory on the world-sheet. Specif- 

ically, we will prove the following result, which we refer to as the Generalized 

Gluing and Resmoothing Theorem (GGRT): Let (V{Ai)CI be a BRST-invariant 

multi-string vertex of the form that we have presented in I. The Ai denote strings 

and, for each, a state in the Hilbert space of that string, defined by a boundary 

condition on a unit circle. C denotes one additional string and an additional 

state; we will act on this state with the Hilbert space contraction. The vertex 

function is defined as the functional integral over the complex plane subject to 

boundary conditions corresponding to the images of the boundary conditions 

which define each string state for Ai, C under a corresponding conformal trans- 

formation hAi, hc. This vertex can be written in terms of a conformal field 

theory vacuum expectation value as 

(‘{A’)CI n IA’) ’ lC> = (n(hAi [OAi] > hc [O,] ) s 
i i 

(3.1) 

The physical interpretation of this expression, and its connection to more familiar 

formulae for the multi-string vertex, has been presented in I. Let (V{Bj)DI be 

defined similarly. Let 11~0) be the BPZ inner product for the Hilbert space of 

the string conformal field theory; this object is written explicitly in I. Our aim is 

to compute the fused vertex 

(v{Ai)(Bj}l = (v{Ai}CI (v{Bj}DI bd (3.2) 

Intuitively, this object should be given as a conformal field theory matrix element 

on the Riemann surface formed by cutting out the images of the unit circles 

defining C and D and then gluing the resulting pieces together, as suggested in 

Fig. 1. 
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A more precise statement of the construction is shown in Fig. 2. We may 

define the gluing procedure more carefully by mapping both holes to unit circles, 

inverting the Bj plane in its unit circle by the mapping Iz = -l/z, and then 

gluing the pieces together. If hc and ho are not transformations in SL(2,C) 

neither they nor their inverses will map the exterior of the hole to the exterior of 

a unit circle in a l-to-l manner. Thus, the glued surface will possess branch-cut 

singularities. The Riemann surface, however, still has the topology of a plane. 

Thus, there exists a mapping g which carries this covering surface into a plane, 

smoothing out the branch cuts. The GGRT states that the contraction (3.2) is 

given by mapping all of the string states Ai, Bj to this smoothed surface in the 

natural way: 

(V~A~){B~}I n IA4 @ n 1%) = (n[(‘Ai [‘Ai]) n(hBj [~aj])) 3 (3.3) 

i i i i 

where 

iLAi = g 0 h;’ 0 hAi 

iLBi = g o Ioh;’ ohB i' 

To prove this identity, we must compute the Hilbert space inner product 

indicated in (3.2). In Section 7 of I, we carried out this computation for the special 

case in which hc and ho were both SL(2, C) t ransformations. That assumption 

allowed us some powerful simplifications which enabled us to perform the entire 

analysis explicitly. We now confront the general case. Here we must deal with 

two new complications. First, since the mappings hc and ho will, in general, 

have singularities outside the unit circle, the property that the diagonal Neumann 

coefficients vanish (eqs. (7.8), (7.22) of I) no longer apply. In addition, we lose 

the special simplifications that we used in the off-diagonal terms (eqs. (7.7), 

(7.20), (7.23) of I). T o carry through our analysis without these simplifications, 

we will need to work at a higher level of abstraction, while still keeping the results 

of the previous calculation as a guide. 
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As in our previous discussion, it is easiest to begin by analyzing the Neumann 

coefficients of the glued vertex multiplying pairs of coordinate mode operators 

an. To compute these coefficients, we need to work out the following matrix 

element: 

(01, go (OID exp -~a~N~~a~ - a~iN~i~a~ 

- exp 1 D DD D 
- ijan Nn mum 

_ .*i 
nN 

*iDaD 
nmm 

- exp lo>, @ lo>, ’ 

(3.5) 
(In this equation, summations over i and j and mode numbers n and m should be 

understood.) Using the commutation relations of the mode operators, eq. (2.14) 

of I, we can interpret the last exponential factor in (3.5) as yielding a contraction 

whose value is 

( a: a:) E En, = (-l)nn6nm . (3.6) 

This contraction can be applied to the two exponentials arising from the vertices, 

to reduce the matrix element (3.5) to the form 

exp a$; [NAiCE(l - NDDENCCE)-lNDBi] 
nm 

a% 

IL Ai - -a 
2n 

[NAiCE(l-NDDENCcE)-lNDDENCAi a2 
1 nm 

1 B. - -a 
2 n 

J [N*iDENCcE(l- NDD ENCCE)-lNDBk] nma$ 

SD,. 

(3.7) 

The final factor D, is a c-number expressing the sum of all contractions which 
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D, = exp -itr log(1 - NDDENcCE) 
( > 

(3.8) = 
[ 

-d/2 

det(l- NDDENCCE) . 1 
d = 26 is the dimension of space-time. Let us store this factor away for the 

moment and-return to deal with it in Section 5.3. 

do not link to external operators a$ or a,8j: 

Matrix products of Neumann coefficients of the sort displayed in (3.7) are 

a familiar feature of detailed analyses of string field theory vertices, such as 

Cremmer and Gervais [*I and Green and Schwarzlgl have given for the light- 

cone gauge. In this literature, however, their appearance, rearrangement, and 

disappearance always seems a bit mysterious. Since we need to work with these 

expressions in their full generality, it will be important for us to understand them 

physically. In fact, the main idea of our proof of the GGRT is to endow these 

objects with a clear physical interpretation-as the Fourier coefficients of Green’s 

functions on the glued world-sheet. 

Of the various terms in (3.7), the most accessible is the new quadratic term 

which joins afi to am . Bi By extracting from the Neumann coefficients the Fourier 

transform defined in eq. (7.11) of I, we can write this term in the form 

where 

3;,,%(z) = 
f 

& z-kh;(z)wZ(hr(z)) 
2m 

for any one-form wZ(z) and 

$CD(z,w) = 3gu[ cz ‘,p] (E(l-NDDENccE)-l)ke 

(3-g) 

(3.10) 

(3.11) 
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The complete term quadratic in aAi operators is obtained by combining the 

second line of (3.7) with the quadratic term present from the beginning in the 

vertex. This gives as the full expression 

where 

SC&Y) = (z ly)2 + 3qzly)2] 

. E(l- NDDENCCE)-‘NDDE 
>,, “[(V yy)21 ’ 

(3.12) 

(3.13) 

The term quadratic in a*j operators has a similar form. 

The functions $CD (z, w) and $CC(Z, y) have the form of Green’s functions 

on the glued surface. A few properties of these functions are obvious from the 

definitions. Each function has a domain of analyticity on its respective planes. 

These domains are apparent in Fig. 2. $CD(z, w) is analytic in z for z outside 

the image of the state C on the A plane and analytic in w for w outside the image 

of D on the B plane. $CC(Z, y) is analytic in each of its arguments outside the 

image of C on the A plane, except for the double pole at z = y. 

Now we can make a crucial observation: In our construction, the image of the 

boundary of C on the A plane is mapped back to the unit circle in the F plane 

and glued to the image in that plane of the boundary of D. The functions $cc 

and $CD, carried by conformal mapping onto the F plane, define functions which 

are analytic and singled-valued on the Riemann surface which covers this plane, 

respectively, outside and inside of the unit circle, except for the double pole in 

~CC. Since these two functions are not dissimilar, it is plausible that $CD(z, w) 

could in fact be the analytic continuation of the function $CC(Z, y) from the 

exterior into the interior of the unit circle in the F plane. If this were true, the 

composite function would be a single-valued function on the covering surface of 
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F. The image of this function on the G plane of Fig. 2 would be a single-valued, 

meromorphic function on this whole plane which falls off at infinity; further, this 

function would be analytic except for one double pole. There is only one such 

function, 

(3.14) 

where p is the image of z and q is the image of y and w on the G plane. Thus, if 

we can show that $?CD (,%, w) is indeed the continuation of SCC (z, y), we will have 

characterized both objects completely in terms of the smoothing transformation 

g(z)- 

To prove that $CC and $CD are related by analytic continuation, we need 

only prove that they agree at all points on the unit circle of the F plane. To 

make this requirement precise, we must explain how the 5s transform as we move 

from one plane to another. Eq. (3.12), which g ives the new Neumann coefficients 

between Ai operators, expresses these coefficients as the Fourier transform of $CC 

using the specific transform 3n!$ a ppropriate to a field of conformal dimension 1. 

More concretely, we expect that, if $CC(Z, w) can be identified with a Green’s 

function, it will be precisely (a,~ a,,,~) on the glued Riemann surface. Therefore, 

$CC should transform on each variable as a field of dimension 1. Specifically, 

when we transform the point w on the A plane to r = h;‘(w) on the F plane, 

the image of SCC should be 

Slbv) = h',(r) Scc(z,hc(r)) (3.15) 

To transform $CD (z, y), we move in two steps from y to s = ho1 (y), and then 

to t = Is = -l/h,‘(y). The image of $!CD is 

h(G) = -(6+)/h?,(s)) ik&,hD(S)) - (3.16) 

By the statement that $CD is the analytic continuation of $CC, we mean, more 
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precisely, that 

S&v) = Sz(ZJ) - (3.17) 

on the covering surface of the F plane. This equation is equivalent to the inden- 

tification of all of the moments 

f 
dr 

G rn Sl(Z, r) = 
f 

$82(z,t) , (3.18) 

for --00 < n.< 00. 

Let us check (3.18) by inserting the expressions (3.11), (3.13), (3.15), (3.16). 

A first simplification is found by converting the t plane integral on the right-hand 

side of (3.18) to the s plane. We find that we must verify 

f $ fn h',(r)ikc(z,hc(r)) = f 2 t-S>-” h’,(S)$cD (z, b(s)) ; (3.19) 

that is, 

(-n)3&),, [$CC(z,~)] = (-l)nn3c~ [$CD(%u)] - (3.20) 

Note that positive Fourier components of $CD must be compared with negative 

Fourier components of $CC, and vice versa. This turns out to be just what we 

need. For n > 0, the Fourier components of 9~0 can be simplified using the 

relation 

(-1)nn3c~3<U [ tv ‘,,,I = Nff * (-‘In = (NDDE)kn ’ (3.21) 

A similar simplification applies to the left-hand side of (3.20) for n < 0. To 

simplify the negative Fourier components, we need to evaluate 

(-n)3gn),v3$t4 [ cv yll)2] 

(3.22) 
1 

= x 
f 

srnhbk) f $w-kh’,(w) (hc(w) T h&)2 ’ 

The ordering of the contours matters: The w contour is located inside the unit 

circle, but the r contour integral, generated by (3.18), is taken just on the unit 
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circle. Since he(r) is analytic inside the unit circle, we may contract the r contour 

onto the double pole. All dependence on hc cancels in the residue, and (3.22) 

becomes 

(--lt)3&,~<~ [& ‘,,2] = t f 2 nwn--lmk = +,k) . (3.23) 

This argument also applies for n = 0 and gives 0 in that case. To Fourier 

transform ~CC, we also need to compute 

(3.24) 

with z located outside the image of the unit circle under hc. In this case, we 

repeat the first half of the argument just given; since there is now no pole inside 

the r contour, we find 0. 

The identities (3.21), (3.23) 11 a ow us to compare the two sides of (3.20). For 

n > 0,we find: 

3gu [(z ‘,)2] . (~(1 - NDDENCCE)-‘NDDE) ke - % n) 

= 3cu [(z 1+2] (E(l - NDDENcCE)-‘) ke * (NDDE)tn 3 
(3.25) 

which IS true identically. For n = -m < 0, we find 

+ (E(l-N DDENCCE)-INDDE 
) ke ’ (NccE)e,> (3.26) 

= 3gu[(z~uj2] (E(1-NDDENCCE)-1)kt.6(6m) T 

which is also an identity. By a remark in the previous paragraph, both sides 

give 0 for n = 0. We have now completely verified that $CC and $CD form a 
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single meromorphic Green’s function on the glued surface. The series of matrix 

products of Neumann coefficients then defines a multiple-reflection expansion of 

this Green’s function. 

We can now identify the image of the two $s on the smoothed plane as being 

given by $c(p,q) of eq. (3.14). Note that the transformation law for dimension 

1 fields preserves the coefficient of the double pole: The singularity (z - Y)-~ on 

the A plane implies that we must also find (p - q)-2 on the G plane. (3.14) is 

the only function with this singularity. Mapping back to the A and B planes, we 

find 

h+Y) = wMY)(RC(Z) Ti, (y))2 9 
c 

(3.27) . 
scDbw) = ~w%(Y)(j.C(Z) ‘i, 

D 
(y))2 3 

where 

jLc = goh& &, = golohbl. (3.28) 

Inserting these relations into (3.9) and (3.12) gives precisely the form required 

by the GGRT for the coordinate mode operator Neumann coefficients. 
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4. Resummation 

In the previous chapter the main argument for the proof of the GGRT was 

laid out. We showed that the glued Green function has analytic properties that 

identify it uniquely. This will be a recurrent theme in the next sections. How- 

ever, in order to prove in general that the objects we obtain by gluing vertices 

actually correspond to different representations of the same Green function we 

need sharpen our tools-a little and develop some additional technology. We will 

explain the method for the nonzero modes of X, and then apply it to all the 

other sectors of the vertex. 

4.1. NONZERO MODES OF X 

Recall that the terms in the exponent of the glued vertex which are bilinear 

in afL are given by 

’ A. - -a 
2 n 

* NAiAj + NA;CENDDE(~ _ NCCENDDE)-lNCAj 
[ 1 

a, 

nm 

NBiBj + NBiDENCCE(l_ NDDENCCE)-lNDBj 
1 

a. 

nm 

+ ati [NAiCE(l - NDDENCCE)-lNDBj]nma~ . 

We would like to prove that this is nothing but 

where 

fiIJ = 1 du -n 1 dv 
nm n f GY m f Giv 

-m &d~ h[fI(u) - i J(v)] 

and 
&Ai = g o h;’ o hA; 

&Bj = goIoh$ohBj. 
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By a change of variables of the type 

h$ o hAi = z 

or 

the Green functions appearing in (4.3) are all brought to the form 

(4.5) 

(4.6) 

&& ln(s(4 - g(w)) V-7) 

Since the mappings hc,D (u) generally are branched, the above change of variables 

is not well defined for all z, w. However, the mappings are analytic and l-l in 

a neighbourhood of u = 0, and therefore the formulas (4.5) and (4.6) do make 

sense as long as he(z) and hD o I(w) converge as power series. If we introduce 

the radii of convergence RC,D of hc,D , we may write these conditions compactly 

as IzI < Rc; [WI > R,‘. 

We now compare the Green functions obtained from the gluing procedure. 

After coordinate transformations like (4.5) ,(4.6) we obtain the following expres- 

sions: 

d,d, ln(hc(z) - b(w)) + 

1 
f 

du - - 
n 2wi” 

-“d,a, ln(hc(z) - he(u)) [ENDDE(i - N~??~N~~E)-‘] nm 

1 
f 

dv - 
ii? -m&L ln(hc(v) - k(w)) m 

(4.8) 
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for IzI,IwI < Rc, 

d,d, ln(hD 0 I(Z) - ho o I(W)) i- 

1 - 
n f 

e U-ndzdu ln(hD 0 I(Z) - h&k)) [ENcCE(l - NDDENCCE)-l] 
2m nm 

1 
f 

dv - 
m Giv 

-ma,aw ln(hD(v) - ho 0 I(W)) , 

(4.9) 
for IzI, IwI > RG1, and 

1 
f 

du -- - 
n 27rri u -na,a, ln(hc(z) - he(u)) [E(l - NDDENCc~)-‘] nm 

f 

(4.10) 
1 dv - 

m mu 
-“&d, ln(hD(V) - ho 0 I(W)) , 

for IzI < Rc and [WI > R,‘. Of course, we wish to prove that these functions are 

simply analytic continuations of one another, so that we can identify them with 

cYzd, ln(g(z) - g(w)) by the uniqueness of the Green function. For that purpose 

we will no show that, if Rol < 1~1, IwI < Rc , all three expressions are equal to 

azaw [ln(hc(z) - b(w)) + ln(hDoR(z) - hDoR(w)) - In(z - w)] 

f 

du 
- -n3zi3u In 
2xi u 

b(z) - b(u) - Ncc 
Z-U H 

ENDDE(l ENDDE)-‘1 
nm 

1 - 
f 

dv 
2niv 

-ma,f3, In b(v) - b(w) 
m v-w 

+; 
f 

du 
- -nt3,i3, In 
27rri u ( 

“D”~~:~ 1 qD(“)) [ENCCE] nk 

C( 1 - NDDENccE)-‘1 km A f -$ v-mdVt3W In ( hD(vi 1 tg)R(w)) 
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1 -- 
n f 

du 
2?ri” 

-“d,d, In hooR - b(u) 
I(z) - u 

E(l-N CCENDDE e-1 
) 1 nm 

1 - 
m f 

dv 
- -“d,d, In 
27rriv 

b(v) - b(w) 
v-w 

1 -- b(z) - b(u) 
n Z-U 

E(l- NDD ENCCE)-‘] 
nm 

1 
f 

dv - 
m 52 

-mf3,a, In 

(4.11) 

The calculation is straightforward. First, note that the function 

f 
du 
52 -%&ln(h&) - b(u)) (4.12) 

is not analytic across the integration contour, due to the singularity of the inte- 

grand in z - u. By adding and subtracting a term ln(z - u) this singularity may 

be isolated: 

f 

du 
- -“d,d, In 
27rF 

b(z) - b(u) 
Z-U 

+nz-n-lO(lzl > 1~1) , (4.13) 

where the 0 function in the last term is the Heaviside step function for the region 

of the complex plane outside the integration contour. Now we observe that 

NDD - 1 du mn 1 dw 
nm - n f 52 pn f 5sw 

-m dud, In hD(u) - hD(w) 

u-w > 
, (4.14) 

i.e. that the integrand of the diagonal Neumann function coefficients may be 

written as an analytic function in z - w. When we replace (4.12) by (4.13) in 
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(4.9) , the extra terms can be summed. For example: 

c nz -n-l n(-)n N-f: = 
n>l 

z--(-i) n+l i?,n-1 1 
(n-l)!; - 

1 
f 

dw -- - -“d,d,ln ho 0 I(z) - b(w) 
m 27ri w I(z) -w * 

(4.15) 

Of course, the conversion of contour integrals into derivatives is only permitted 

if the integrand is analytic. That is the reason why one has to rewrite NDD in 

the form (4.14) . Applying this resummation formula and the identity 

( 1- NCCENDD E>-’ = l-l- NCCENDD E(l- NCcENDDE)-1 (4.16) 

repeatedly one finally arrives at (4.11). Th e conditions on the arguments of the 

Green function that we stated for this formula are precisely those that imply that 

the required extra terms in (4.13) are present and that the series they give rise 

to can be summed in the way shown. 

Let us discuss briefly the relation between this calculation and that of the 

previous section. The method we employed here to demonstrate the equivalence 

of (4.8) , (4.9) and (4.10) , namely deriving a common form of those functions in 

the annular region Rkl < 121, IwI < Rc, had as its counterpart the calculation 

of contour integrals. We chose R,’ < 1 < Rc and took moments of the Green 

function on the unit circle IzI = 1 or IwI = 1. For the afl oscillators the two 

methods are obviously equivalent. However, while in the nonzero mode sector 

taking contour integrals is a very natural thing to do, the zero modes are more 

conveniently dealt with by the resummation technique we just described. Let us 

now apply the new method and study the the terms in the exponent of the glued 

vertex which are bilinear in ai. 
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4.2. ZERO MODES OF X 

We will now discuss the following terms in the exponent of the glued vertex: 

1 
ii c PAi PAj 

Gi 
‘Ai (0) - hAj (0)) + Nt’EM,D,DNg$j 

1 
5 E: PB; PBj 

i,i 
‘Bi (0) - hBj(O)) + N,B’fMEzNgF 

+ExpAi pBj N,A’EMf,CNf,fj 
i,j 1 a.a. ’ 

where we have defined 

Mcc = ENCCE(l - NDDENCCE -’ nm [ ) 1 nm 

MDD = nm [ 
ENDDE(l - Ncc ENDDE)-‘1 

nm 

McD =[E(l- NCCENDDE)-‘1 nm nm 

ENCCE) -‘] 
nm 

a.a. 

a.a. 

(4.17) 

(4.18) 

and used momentum conservation c pAi + c pBi = 0 to simplify the expressions. 

The absolute values appear in (4.17) by virtue of the decompositions that link 

(2.6) with (2.7) and (2.8) with (2.9). The Green functions that appear in (4.17) 

take, after the change of variables (4.5) and (4.6) , the form 

ln(h&) - he(w)) + k f 2 uAn& ln(hc(z) - he(u)) 

MDDL 
f 

dv 
(4.19) 

nm m 2?riv -m& ln(hc(v) - b(w)) 
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-1 

for 1~1, lwl < Rc, 

ln(hD 0 I(Z) - ho 0 I(w)) + 

1 
n f 

du - - Umndu ln(hD 0 I(Z) - hD(U)) 
27ri 

MC& 
f 

dv 
nm m Giv 

-md, ln(hD(v) - hD o I(w)) 

(4.20) 

for IzI, lull >-Rbl, and 

1 
n f 

du -- - umnaU ln(hc(z) - hc(u))Mfzi f 2 vU-mc?V ln(hD(v) - hDol(w)) , 
27ri 

(4.21) 

for IzI < Rc and IwI > R,‘. These formulas differ from (4.8) , (4.9) and 

(4.10) only by the derivatives a,, ~3,. The reason is quite obvious: momentum 

conserT:Uxtion lets any possible integration constants disappear. It is now clear 

how we proceed. Resummation yields just (4.11) without d,, a, . We have 

therefore shown that the glued Neumann coefficients are given in terms of a 

function which in both arguments is analytic on the glued surface, except for a 

logarithmic singularity as the two arguments approach each other. We therefore 

identify it as the scalar Green function, which has the form ln(g(z) -g(w)), up to 

functions depending on one of the arguments only. These do not appear in the 

vertex by virtue of momentum conservation, and hence (4.17) can be written as 

c 1 

ifi 

ZPAi~~~A'PAj -k): ~PB~&~~-+PB~ 

i#i 

where 

li’DIoJ = In @I(O) - kJ(o)),.,. 

(4.22) 

(4.23) 

It is now clear that the above analysis may be taken almost verbatim and applied 

to the terms in the vertex linear in the zero and nonzero modes of X. The only 
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term in the vertex fused vertex we have not yet addressed is D,. It will be 

discussed in Section 5.3, together with the corresponding factors from the ghost 

sector, to which we now turn. 
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5. Gluing Bosonized Ghosts 

For the boson field @ representing the ghost system, there is an anomalous 

momentum conservation law on the sphere due to the &function of curvature 

on the world sheet. This fact introduces various complications into the gluing 

procedure. Some of those are purely technical in nature and mainly lengthen 

the formulas the reader should now be familiar with from the previous sections. 

These results are described in section 5.2. More fundamentally important is the 

effect on the factors in the glued vertex which do not contain mode annihilation 

operators. In Section 5.3, we will show that the whole set of these factors-arising 

from the X and the Q! dynamics-combine and cancel. 

5.1. VERTICES 

Let us begin by describing the changes which occur in the definition of the 

vertex. We construct the vertex for the general bosonized ghost system in a way 

almost identical to the procedure for the X field. However, the bosonization 

rules imply the affine transformation law (2.16) for the ghost current, which is 

taken into account by a term in the exponent that is linear in the operators j,. 

Also, the momentum eigenvalues are no longer continuous, but form a discrete 

set. The vertex therefore reads (for arbitrary Q): 

(Vl-.kl = c 6(ql + -‘-+ qk + Q) fi (-a - &II 
91 ,“‘,qk I=1 

where the Neumann function coefficients Nii are the same we defined previously 

for the X-part of the vertex and 

K; = 1 f 
dw 

n 2niw 
-“a, ln(h’,(w)) (5.2) 
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The terms in the exponent containing the coefficient Q are a direct consequence 

of the transformation law (2.16) and the definition of the vertex (3.1). Using 

momentum conservation and (-q - &I ju = (-q - &I q the exponential can be 

simplified to: 

F-3) 

with 

I=J, 

a,a,ln[hr(z) - hJ(w)]l zEo) I#J, 
w=O a.a. 

J/I-’ - - 1 (5.4 

Orn- 2m f 
~w-“~,ln(~~~zln[hr(ur) - hJ(~)]lz=o) 27ra , 

a.a. 

NN’J = 1 dz 1 dw 
nm n f 

yZ-n- 
27rrz m f 

7 W-m &a,,, ln[hl(z) - hJ(w)] . 
27rrz 

The new Green function coefficients are related to the old ones by 

J/i; = NzJ - !KJ 
Om 2 m (5.5) 

N’J =N’J 
nm nm . 

They correspond to different contractions of operators which are equivalent to the 

usual ones inside correlation functions. For example, by momentum conservation 

the following equations hold: 

( 

f[j(z)]e91 4tz1) . . . eqn+tZn) 

> 

= c qiaz ln(f(z) - zi) + iQaz In f’(s) ( eq14(Z1) . . . eqn4(zn)) 
i 1 
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= C qi [a, IQ(z) - zi) - kaz In f/(z)] ( eql+(zl) - - ~eq~+(z~)) 
i 

= Cqi(-)iazln 
i ( 

azazi ln[f(z) -z;] (eql)(Z1)...eqn~(z,)) . 
) 

(5.6) 

In the last line we find the contractions whose moments are the coefficients NL$ 

in equation (5.5). 

It is important to realize that the N’s are based on a different Green function 

than the N’s, since the transformation properties are affected. Under coordinate 

transformations 

the functions change in the following way: 

1+--w) --+1+(z) --s(w)) 
-i In ( azaw ln(z - w)) + -f In (a,a, ln(f(2) - g(w))) . 

(5.8) 
(5-g) 

Let us rewrite the last line so that the affine transformation rule becomes explicit: 

In (Z - w) + In (f(z) - g(w)) - f lnf’(z) - i lng’(w) . (5.10) 

Whereas in section 4 we patched together the Green function according to (5.8), 

now we will have to use (5.10) when we compare different representations. 

Writing the vertex in the fashion (5.3) e iminates 1 all the explicit dependence 

on the background charge Q from the exponent. By this trick the X-exponent 

has been put on the same footing as the @exponent. Upon replacement of E with 

-vpV the expressions derived below will reduce to the formulas obtained in the 

previous sections for the case Q = 0. Of course, various terms will drop out as a 

consequence of proper (instead of anomalous) momentumconservation. Also note 

that SL(2)-invariance is now manifest, since the function d,d, ln[hl(z) - hJ(W)] 
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obviously does not change under SL(2, C) t ransformations, i.e. under hl,J -+ 

T o hz,J with T(z) E SL(2, C). 

As a simple example of such a’vertex we construct the two point function 

(1~~1 =x(~lA@ (-P- QlBexP c f-(-)'?i%? (5.11) 
P n>l 

Its inverse is the inner product: 

IIBC) k c exp(c i(-,“+‘j%%) Iq)B 8 1-q - Q>, . 
9 n>l 

(5.12) 

For later convenience we also define the one point function 

(f, -q - &I - (-q - &I exp [i ~lnN!Q.im] (5.13) 

and its “inversion” 

If, -q - Q> = (f, -q - QIA IJA.) 

f C jn(-)n+l NLk(-)m+l jm 1 1-q - Q) . 
(5.14) 

= exp 
nz0 

We have now displayed all the ingredients needed to evaluate the fused vertex 

(3.2). Using coherent state techniques, in particular the identity 

l=CU /+ 
P 7221 1 

exP(-lan12) exP(-$U--n) IP) C-P - &I exp(-$djn) 1 , 

(5.15) 

one performs the contractions and obtains 

(V{Ai}{Bj}l = C ‘(x QAi + C QBj + Q) n (-QAi - QIAi n (-QBj - Q IB, 
QAi)QBj ’ i i i 

Dj . exp( determinant term ) . exp( q-q term ) 

. exp( j-q term ) . exp( j-j term ) , 
(5.16) 

where the various terms will be explained below, one at a time. We will show that 
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Dj and the exponential of the determinant term, multplied by the correponding 

terms arising in the gluing of X, give just the trivial factor 1. The cancellations 

that take place are somewhat delicate, and are treated in detail in section 5.3. 

The remaining terms then define a new vertex, based on the Green functions of 

the glued surface. 

5.2. AFFINE GLUING 

We will first describe the j-j term, i.e. the nonzero modes of 4. It was 

already noted in (5.5) that the Neumann coefficients coincide with those of the 

nonzero modes of X. That happens simply because the pair of derivatives azaw 

annihilates the affine terms that appeared in (5.10). The result of gluing is 

therefore almost identical to the analogous formula (4.1) for X, namely 

j-j term = -?jti NAiAi + NAiCENDDE(l _ N CCENDDE)-‘NCAj] Jo 

nm 

+ ijfi [NB’Bj + NBiDENCcE(l_ NDDENCCE)-‘NDBj] jz 
nm 

- Ej,Ai [NAiCE(l- N~DENCc~)-'NDBj],,j,fj 

The last equality was shown in sections 3 and 4, and the hatted Neumann coef- 

ficients are defined in (4.3) and (4.4). 

The real challenge in the study of the bosonized ghosts lies in the zero mode 

sector. Two subtleties arise, one associated with the identification of the correct 

Green function, and the other with the cancellation of determinants. Both are 

of course closely related, but we can understand the solution of the first without 

addressing the second by studying the j-q term. Recall that now the Green 

function defining the coefficients NA;I transforms with an affine term. It it given 
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by 
+a, I.(awazln[hI(w) - hJ(l)]) . (5.18) 

We may identify it uniquely by its affine transformation properties, i.e. its an- 

alytic structure for well separated arguments, and its short distance expansion, 

which we study in coordinates where I = J. Then (5.18) takes the form 

1 ~ - f(w - z){hI,w} + 0 ((w - 2)“) , 
w-z 6 

(5.19) 

where {hl, w} is the Schwartzian derivative which already made its appearance 

in section 2.2. The important observations are that there is a pole in w - z with 

residue 1 and no term of order (w - z)O. 

Now that we have characterized the affine Green function, let us examine 

its mutiple reflection expansion that we obtain from the gluing procedure. The 

contractions yield 

j-q terms = 

c 
NAiCMDD 1 NCAi _ 

m0 
NAiCMDC 

i,j 
nm 

/ a.a. 

c 
E jtiqBj .A/$: + NAiCMDD 

1 
J/cc- 

m0 

i,J. ( nm 

c 
*Bi 

’ .In QAj J/ii: + [NBicMcc] J/z: - 

i,j 
nm 

c 
NBiDMCC 

1 
NDBj 

m0 

Gi 
nm 

NAiCMDC 
1 

NDBi 
m0 

nm 
> a.a. 

NBi DMCD 
1 

NCAj 
m0 

nm 
> a.a. 

In the usual way we extract by a change of coordinates the Green functions 

corresponding to (4.8), (4.9), (4.10) and derive the function analogous to (4.11), 
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thus establishing the analyticity of the affine Green function. We will not write 

down all of these formulas. The interested reader can easily derive them by taking 

a z-derivative of the formulas (5.32) to (5.35) below. We will, however, display 

one set, namely for 1~1, IwI < R C. The Green function then has the form 

-+ In (&& ln [b(z) - hc(.)l ) 

where 

(5.22) 

and 

f 
&u-n 
2m && ln[b 0 I(z) - b(u)] (5.23) 

G;(z) = ; f $trn & ln [&& ln(hc(z) - b(u))] (5.24) 

G:(z) = i 
f 

* uan& In [a,a, ln(hD o I(z) - ED)] . 
27ri 

(5.25) 

Let us examine this function for small (z - w). The first term we already know 

to have a simple pole in (z - UI) with residue 1, and no term of order 1. The 

characterization of the affine Green function is complete if for z = UI the last two 

terms cancel, i.e. if 

H,C(z)M,D,DG$) = H,C(z)M,D,CGf$o) . (5.26) 

We have checked this identity for mappings hc,D(z) close to the identity (or 

SL(2) transforms of it). More precisely, we introduced parameters s and t , 
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constructed the expansion (2.27) and verified (5.26) perturbatively for small S, t. 

The general argument follows from equation (2.37). The short distance expansion 

--ia,ln (a,$,ln[f(z)-f(w)]) = &-~(z--w){~,T.u}+~(]z-uI]~) (5.27) 

holds for any function f which is analytic around z. We now observe that the 

contraction (5.21) is generated in the correlation function of conformal fields. For 

example, it appears in 

(hc,Olj(z)eql~(wl)... eqn4twn) IIo ho o I,O) (5.28) 

with xi q; = -&, which we know from the argument following (2.37) to be given 

by 

(f[j(z)]f [eq14tw1)] - - - f [eqn4(wn)]) (5.29) 

for some function f(z). Hence (5.27) holds and we have characterized the affine 

Green function. We can now claim that in fact f is identical with the smoothing 

function g. Therefore (5.20) may be put into the form 

(5.30) 

where 

pi - IL -- 
n f 

~z-"a,ln(a,a,ln[fi,(e) - k~bJ~l~~=~)~~ . . (5.31) 

is the Neumann function coefficient generated by the glued surface just as we 

expected. This concludes our dicussion of the j-q terms. 

Now let us extend the analysis to the terms in the exponent of the fused 

vertex that are bilinear in zero modes. First we display the result of performing 
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the contractions in (3.3). One obtains 

determinant term + q-q term = 

- f C QAi q-$ 

ifi 

In (,,a~ In (hAi (z) - ‘Aj (w)) / z=o) 
w=O a.a. 

+iCqAi QAj N,AiEMDDNCAj 
nm m0 - J@fyMtpfg 

i,i _ [ 

_ JfffEMCDJCAi 
nm m0 + Jlo”fM:: N;,D 

I a.a. 

-d C QBi QBj In (adw In (hB; (2) - hBj (W)) 1 zzo) 

i#i w=O a.a. 

+iCPBi QBj JfiE@zNDBj _ NBiD 
m0 0 nM,CmC~ZOD 

i,j 

6 
-- 

2 C 4Ai QBj In ~Z~UI In (‘Ai (z) 

i,i 

E 
-- 

2 c QAi QBj In dzdw In (hD(z) 

i,i 

- 

J a.a. 

- he(w)) 1 *=o ) 
w=O a.a. 

hBj (w)> ( ==o) 
w=O a.a. 

These expressions bear a close resemblance to (5.20) . After all, the Green func- 
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tions defining the coefficients differ only by a derivative and integration constants. 

Therefore we proceed in analogy to the discussion of the j-q terms. The affine 

Green function 

-f ln(LJZLJw ln[hr(z) - hJ(w)]) . (5.33) 

is determined uniquely by its transformation properties under analytic coordinate 

transformations, and its short distance expansion. For I = J and small (z - w) 

we expand it as follows: 

ln(z - w) - &(z - w)2{hl,w} + 0 ((2 - w)~) . (5.34) 

Again, the crucial observation is that terms of order (z - w)O are absent. Clearly, 

then, we will need relations of the type (5.26) to identify the affine Green function 

properly. This might not be entirely unexpected. The careful reader may have 

noticed that, while the vertex (5.3) d oes not contain any term diagonal in the 

zero modes, i.e. with coefficients qii or q&, the fused vertex (5.32) certainly 

does. Note that we cannot use momentum conservation to solve that problem, 

because we would introduce new terms linear in Q and qAi or qBj, and the point 

of (5.3) was to eliminate all expressions of that type. If life were simple, the 

terms multiplying qii and qgj in (5.32) would cancel, an expectation that gains 

credibility by an inspection of the j-q sector, and we would be finished. This 

is not what happens. A few paragraphs ago we noted that there is a second 

subtlety in the gluing of ghosts, which was not touched upon by our discussion of 

the j-q terms. We will explain below that by converting (5.32) in the usual way 

into the four different representations of the affine Green function, one misses the 

expected function (5.33) by a constant, which may depend on hc and ho, but 

not on z or w. In (5.32) th is constant, let us call it k, gives rise to a contribution 

of the form 

E 
-_ 

2 C QAi QAj + C QBi QBj + 2 C QAi QBj (5.35) 
i,j i,i Gi 

k=-;Q2k, 

and this is something we should have been waiting for all along. The determi- 
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nants D, and Dj need to be cancelled; we will show later that they are just the 

determinants of the scalar Laplacian, and therefore we expect a mechanism that 

works by adding up (2.20) to zero: 

cz + c4 = D + 1 - 3cQ2 = 0 (5.36) 

The Q2 part of that equality just appeared in (5.35). 

Now that we have explained how the various pieces in (5.32) fit together, let 

us present the calculations. First, the constant k is given by 

k = KcMDcNDD n nm 

We will motivate its form in section 5.3. The technique of resummation, applied 

to (5.32) plus (5.35) yields the equality of the following four representations of 

the affine Green function: for IzI, IwI < Rc, 

-i In (a,,, In (he(z) - he(w))) - k 

+ 1 G~(z)M,D,DG~(w) - ; G;(z)M,D,CG;(oo) 
4 

- ; Gf$o)M,C,DGg(w) + ; G~(oo)M,c,cG~(oo) ; 
(5.38) 

o I(z) - hD o I(w))) - k 

+ ; Gz(O)M,D,DGg(O) - ; Gz(O)M,D,CG;(w) 

- ; Gf?(z)M,C,DGg(O) + a Gfl(z)M,“,“G:(w) ; 
(5.39) 
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for 121 < Rc , I&I < RD, 

i -- ln (WV ln (b(z) - b(v)) lvco) 

-i ln audw ln (hD(u) - ho O I(w)) luzo) - k 

- + Gf(oo)M,C,DG;(O) + ; Gf?(co)M,C,CG:(w) ; 
(5.40) 

and finally, for 121, IwI < Rc and 1 :I , I$1 < RD , 

i -- ln (a,,, ln (b(z) - h(w)))) 

i ln -- dzaw ln (ho 0 I(%) - ho 0 I(w)) 

- ln(z - W) - k 

- ; F,D(z)M,c,DF,c(w) + ; F,D(z)M,c,cF,D(w) , 
(5.41) 

where 

F,C(z) = i f 2 uwndu In [a,f3, In ] (5.42) 

FE(z) = i f -$ u-ndu In [a$, In 
( 

hD ‘::I; I ,““(“’ 
) 

] . (5.43) 

The identification of the Neumann function requires the correct short distance 

expansion. The identities that guarantee the absence of terms of order (z - w)’ 
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are 

and coordinate transforms of this equation. Again, we have checked them in 

a perturbation expansion of hc,D around the identity, which we performed to 

third order in small parameters. The general argument proceeds as before in the 

paragraph after (5.27). The Green functions (5.38) - (5.41) appear in 

(hc,Ol eQ14(Wl). . . e!ln4(wm) 110 hD 0 I,O) = (f [eql+(wl)] . . . f [eqnd(wn)]) 

(5.45) 

with some f(z). This implies the proper short distance behaviour, and hence 

we can write (5.38) through (5.41) as In (a,c3, ln[g(z) - g(w)]) and bring the 

exponent (5.32) into the form 

- c i#j iqAi &$Aj QAj - C aqBi &zBjQBj i#j 
E -_ 
4 c qAi fi$ Bi 

i,i 
QBj - f C QBifio7AjQAj 

i,i 

+ f Q2 ka.a. 3 

where 

fi&f = ln (Ww ln (b(z) - b(w)) 1 z=o) 
w=O a.a. 

and the functions AA; , iBi are defined by equation (4.4). 

(5.46) 

(5.47) 
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5.3. THE DETERMINANT 

The only pieces of our gluing formula (5.16) that we have not explained yet 

are 
-l/2 

Dj = det(1 -NDDENCC.E) 

and its counterpart for the X- oscillators, 

, (5.48) 

-D/2 

D,- = det(1 - NDDENCCE) . (5.49) 

The task is now to make sense out of these rather unwieldy expressions. First, 

we will motivate our final result by demonstrating that in fact 

I I -l/2 

Dj = det’A+) 
det’A, , (5.50) 

i.e. that we are dealing with determinants of the Laplacian. Then it is quite 

obvious why these determinants should vanish, namely by an argument & la 

Polyakov\” and the fact that we are in the critical dimension and therefore 

the conformal anomaly is zero. However, the actual proof must be somewhat 

involved, since it is well known since the days of light cone string field theory 

that in general, the above determinants are not trivial at all, but provide crucial 

measure factors in the calculation of scattering amplitudes. 

Let us first take a look back at section 4.1 and display some moments of the 

Green function d,a, ln(z - 20) . Define 

D-n,-m = ’ 
f 

&Z-~-J- 
n 2m m f 

& w-md,dw ln(g(,s) - g(w)) 
2m 

D n,m = if$Znif 2 ~~~~~~ In(&) - g(w)) 

Dn,-m = ~f~~n~f~w-ma=~wln(g(2) -g(w)) 

(5.51) 

D-n,m = ifzwrnif gz-naZawln(g(z) -g(W)) , 
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where for the first two expressions the order in which the contour intetgrals are 

performed is irrelevant, whereas in the last two formulae the order is crucial. We 

derive then from (4.11) 

D-,,-, = 
[( 

1- NCCENDD E)-’ Ncc] 
nm 

D n,m = - ’ [ENDDE(l - NCCENDDE)-‘1 1 
n nmm 

(5.52) 

Dn,-m = A(1 - NDDENCCE)-lnm 
n 

D-n,m = ( 1- NCCENDD E)-lnm; , 

and observe that 

det 
D-n,-m Dn,-m 

> ([ 
= det n 1- NDDENCCE 

D-n,m Dn,m 

The determinant we are evaluating is a determinant of moments of the Green 

function. The moments correspond to the nonzero modes of the field X. Since 

the Green function is just the inverse of the Laplacian, we may write the above 

equation as: 

det’A (5.54) 

Dj is then essentially the ratio of the determinant associated with the glued 

surface to the determinant we obtain for NDD = Ncc = 0, i.e. the expression 

we get if the map g can be taken to be the identity. It is now clear that this 

factor is just the change of the determinant of the Laplacian under the map g, 

and the work of Polyakov 111 and Alvarez “‘I has made it clear that this factor 

must vanish between the matter and the ghost fields, if we are in the critical 

dimension. This cancellation must occur for any g. 
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However, from the calculation 

cone string field theory we know 

manner. There one obtains 

dT r 1 
det(1 - NCCENDDE)12 = dz exp c N$$ + NoBif; + T - f(ai,pj) . 

i=1,2 J 
(5.55) 

In this formalism the determinant provides the jacobian for the change of vari- 

ables from the propagator length T in the pplane to the positions 0, 1, x, co of 

the vertex operators on the z-plane and some normalization factors involving 
PI the string lengths cq, pi. Obviously these determinants are nontrivial and can 

combine to 1 only with other terms in the vertex. 

We will now show how that happens. In the same way we proved (2.29) in 

section 2 one can prove that 

of the 4-point scattering amplitude in light- 

that this vanishing happens in a nontrivial 

(f,-q - &I = (-q - Qlexp[~ C .inN~~jm] = (-q - &I Uf . 
n,m>O 

(5.56) 

Note that (-q - &I jc = (-q - &I q , and hence 

II0 f ’ I,O), - (f,Ol, IIDC) 

= exp [f x ,i-n(-)nN~~(-)mj-m + EQ C j-n(-)nNf$] IO), 
n,m>l n>l 

= G lfd WC - 
(5.57) 

In the two pieces (5.56) and (5.57), th e vacua are transformed by unitary trans- 

formations generated by moments of the total energy momentum tensor T,, = 

T& + T&. But this energy momentum tensor has zero central charge and there- 

fore, on the sphere, all of its correlations in the vacuum vanish: 13’ 

(C&)) = l-91 T,,(z) 10) = 0 , (TzzTww) = (-QI TzzTww 10) = 0 , etc. 
(5.58) 
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We thus obtain 

(-91 UhJJ;; lo) = I . (5.59) 

This leads us finally to the formula 

1 = (hc, -QlI o hD 0 I,o) = eXp D+l 
-2 (l - NCCENDDE) + gQ2k 

1 a.a. 

LJ+1 
= det (1 - N ccENDDE)-T - a.a. 

(5.60) 

+ ; Q2 KEM,“,DKg 
1 

. 
a.a. 

We derived (5.60) using general arguments, but we also checked it perturbatively, 

in the same way we demonstrated the equations (5.26) and (5.44). This is of 

course the way to find k. We now combine (5.60) with (5.46) to establish the 

GGRT. The fused vertex contains precisely the terms which the vertex definition 

for the glued surface requires, as stated in equation (3.3). 
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6. Gluing the bc System 

The basic strategy for the proof of the GGRT in the context of fermionic 

ghosts is the same as in the previous sections. However, now we have to account 

for the different tensor character of the conformal fields we are considering and 

the associated zero modes. Here we will concentrate on the reparametrization 

ghosts of the bosonic string, but the generalization of our results to general ghost 

systems will be straightforward. 

The two point function was defined in (2.12)) and since the conformal weights 

of b and c are 2 and -1, the coordinate transformations (5.7) have the effect 

(c(z)b(w)) = 1 + WW12 1 
Z-W f’(4 f(z) - g(w) - 

(6.1) 

The field c(z) has three zero modes, namely Zi(z) = zi+l for i = -l,O, 1. Their 

transformation behaviour is given by 

In I the vertex was constructed out of the Fourier modes of these quantities. We 

obtained 

N1.f - 
f 

dz -n+l 

f 

dw 
Giz SW 

-m-2 Lh’,Cz>12 
nm - 

h’,(w) (h(z) 1:~(4, 
(64 

and 

MJ - 
f 

dw -m-2 
rm - isw 

A simple example is the 2-vertex (JAB I, b ased on hA(Z) = z and hB(z) = -l/z, 
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i.e. 

(1~~1 = t31A @ t31B / 
Sl,SO,S-1 

exp ( $i((-)‘bfi-b?) 

(6.6) 

+ x((-)nb;c; + (-)“+‘c;bf) . 
n>2 

Then, with 

x cC,,bt •k 
n>-1 

and the definition 

P-7) 

(64 
we obtain the inner product 

[IAB)= J exp pi((-)'CAi + Cf) 
Pl,PO,P-1 

+ c((-)“+‘b!,c”, + (-)n&$“n) lo), @ lo), . 
n>2 > 

(6.9) 

In the vertices (6.3) and (6.6) one has to pay close attention to the range of 

the index sums En. It will prove to be convenient if we introduce the following 

matrix notation: 

( > M’ in = Mil, 

tE)nm = (-)“b,m 

( > NIJ 
n j 

- N;iJ 0 - 

( > M,’ ij=M,$ 

(Eo)ij = (-)‘&,j 

(P)ij = Si,-j * 

(6.10) 
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The indices i, j run over the set { -l,O, l}, while n, m 2 2. A lower index 0 on a 

matrix indicates that we are summing on the right side of the matrix only over 

indices j that come from ghost zero modes. For example, the vertex (6.3) now 

takes the form 

(h-kl = I”r (311 1 exp crN’JbJ+clN’ibJ -cMJbJ-cM{bJ , (6.11) 
sl,so~s-1 

( 
> 

I=1 

It is most convenient to begin the gluing procedure by performing the nonzero 

mode contractions. This gives the result: 

= lmAi lm31Bj /,,,...., 1 Dbc 
i i 

e 1, 01 em J 1 Pl,PO,P-1 

exp ( [( 
CAi NAiAjbAj + NAi?bAj 

> 

+ NAiCENDE(l - NCENDE)-l (NCAjbAj + NCtjbAi)] 

+cBi 
[( 

NBiBjbBj + NBi,B’bBj 
> 

+ NBiCENDE(l - NCENDE)-1 (NCBjbBj + NcFbBj)] (6.12) 

-&NAiCE(l _ NDENCE)-~ (NDB,bBj + ND,B’bBf) 

- CBiNBiDE(l_ NCENDE)-~ (NCAjbAj + NctjbAj) 

where 

+ 6C+qB+Ap+t’Dp+rl&p 
1 

1- ENDENC 
> 

(6.13) 
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and where we have defined the row vector 

j4 = - cAiNAi:P 

+cAiNAiCE(l- NDENCE)-'(NfEo-NDENgP) 

_ CBiNBiD 0 Eo 

+cBiNBiDE(l- NCENDE)-'(N,CP-NCENfEo) , 

the column vectors 

B = - MBjbBi - MFbBj + MDE(1 - NCENDE)-~. 

NCAibAi + N CtibAi _ NC&’ NDBjbBj + ND,BjbBj >I , 

C = - MAjbAi - M,A’bAj + MCE(~ _ NDENCE)-‘. 

NDBibBi + NDfibBi _ ND,ZJ NCAjbAj + NC~bAj >I , 
and the (3 by 3) matrices 

D =M$P-MCE(l-NDENCE)-l(NfEo-NDEN~P) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

and 

&=M,DEo-MDE(l-NCENDE)-'(NgP-NCENfEo) . (6.18) 

In the exponent matrices are multiplied according to the following rules: each 

upper index C is connected to an upper index D through a matrix E; only zero 

mode matrices allow the connection of upper indices of the same type, via the link 

P. (6.12) is of course not the final form of the glued vertex, since the expression 
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is still written in terms of three fermionic integrals, of which we will have to 

perform two. The expressions simplify if we do the q and the p integrals. The 

above formula is then multiplied by the zero-mode determinant dbc = det &, so 

that the exponential contining 19, p or r] gets replaced by 

det & sexp [6 (C - DE-‘B) - A&-‘81 . (6.19) 

We will show that this expression is precisely the vertex expected from the 

geometrical gluing picture, multiplied by a factor that cancels the X-determinant 

D,. More explicitly, in the critical dimension, 

(‘{Ai}{Bj}l = D,l n t311 L,,,.,, exP( cWJ bJ+cI~‘,JbJ-g~IbI-g~IbI 
0 

> 
, 

I,J 
(6.20) 

where the indices I, J take the values Ai, Bj for all ;,j and the hatted Neumann 

coefficients are given by the hatted versions of (6.4) and (6.5). The argument 

relies again on the analyticity and singularity structure of the glued Green func- 

tions, which we will now prove. 

6.1. NONZERO MODES 

The Neumann coefficients are just moments of the Green function. The gluing 

procedure provides us with four different forms of this function, and in this section 

we will outline how one proves their equality. The conversion of Fourier modes 

into Green functions and the change of coordinates (5.7) is accomplished by the 
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following replacements: 

NAiAj j M412 . . h',(w) b(z) -_lhc(w) 

Ni4’; + g,“(z) = f 
du 

sz" 

--n-2Pm12 

h',(u) hc(&c(u) 

Nzpj + U:(w) = 
f 

dv 
jFiv 

-ma+1 wz(v)12 
h',(w) b(v) -_lhc(w) 

(6.21) 

for 1~1, lull < Rc and 

NBiBj --+ [(b 0 I)'(z)]" -1 
. . h', (4 b(z) - ho 0 I(w) 

Nyif? + S,“(z) = 
f 

du mnv2 [(b 0 I)‘(z)]” -1 
ic h’, (4 ho 0 I(z) - b(u) 

NEBj --) Xi(w) = 
f 

dv --m+1 M412 
2) (ho o I)‘(w) hD(v) --i; 0 I(w) 

(6.22) 

for IzI, /WI > Ro’. Using these substitutions we derive the representations 

hm12 
h&(w) b(z) T1k+) 

+ S;(z) E(l- NDENCE)-lNDE 
1 

xi (4 
nm 

+ Cji”(.z) PE-lMDE(l - NCENDE)-1 1 x,c (4 
im 
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- E(l-NDENCE)-'(N,DEo-NDENgP) 

1 
(6.23) 

E-lMDE(l - NC ENDE)-1 xii (4 
nm 

for IzI, lwl < Rc, and 

- S;(z) E(l- NDENCE)-’ 
1 

Jcz (4 

nm 

- +$jF(Z)[PE-l]ij (hD o;j,(w, [b o l)(w)li+l 

- g”(z) I’&-lMDE(l - NcENDE)-‘N% 1 X:(w) 
im 

+ g,“(z) E(l- NDENCE)-’ (NfEo - NDEN,CP) &-l 1 . ni 
[(b 0 I) (w)]j+’ 

(b 0 I)‘(w) 
+ [MDE(l - NCENDE)-‘NCE] jmU,“(w) 1 

(6.24) 

for IzI < Rc and IwI > Ro’. The most convenient way of showing the equivalence 

of these two expressions consists of applying the contour integral method. Since in 

this paper we wish to be explicit in the proof of the GGRT, let us do this exercise 

in some detail as a model for all the other cases, i.e. the other forms of the Green 

function and the different representations of the Killing vectors. The contour 

integral in w is taken in the strip Rc > [WI > Ro’, or RD > lwmll > Rc’. We 

now list a set of identities which are well defined and in which the ordering of 
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contours is determined by virtue of the bounds on [WI and Iw-l I. f ?riw dw --k-2 1 

~lhc(w)1’+’ 

= Mix 0 fork 2 -1 for k 

5 -2 

0 for k > 2 

f 
dw 
2zw 

-k-2 
(hc 0:)1(w) lhc ’ loli+’ = - [MDElik for k 5 1 

f 
dw - -k-qogw) = 
27riw f 

f 

dv . ix 
-m+l [h’,(v)l2 

h’,(w) b(v) %+u) 

6 m,k for k 2 -1 

Ngt for k 5 -2 

f 
dw - -k-2)(,D(W) = 
2niw f 

%,-k-2 . 
27rZ 

i 
-Emk for k 2 2 

f 

dv 
. - 

2ziv 
-m+l [hb(v)l2 

(ho o I)‘(w) hD(v) -ii: 0 I(w) = 1 - [NDE],, for k 5 1 

(6.25) 
Upon substitution in (6.23) and (6.24) one sees after a little algebra that the 

two expressions indeed represent the same function. Notice that the precise 

mechanism is different for the zero modes, i.e. for k = -1, 0,l and for the nonzero 

modes, i.e. for InI 2 2. 

It is now clear how to proceed for the other two representations of the Green 

function. Alternatively, we could have employed the resummation technique and 

rewritten (6.23) and (6.24) in terms of the analytic function 

veJ)12 1 
h’,(z) he(z) : he(w) - - Z-W 

(6.26) 

and its coordinate transforms. Again, after some algebra the equality of the two 
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representations becomes apparent. Therefore, we may identify the expressions 

given above with the function 

b’W12 gl(z) g(z) : g(w) + _c ui$$(z)li+l ’ 
i--fl,O 

(6.27) 

where ai are arbitrary constant coefficients. This ambiguity arises because we can 

determine the Green function from its analytic structure only up to the addition 

of zero modes. However, just as in the X-system, where momentum conservation 

made the zero modes irrelevant, these extra terms do not contribute to correlation 

functions. This follows from the Fermi statistics of the ghosts and is made obvious 

in the formula (A.2) in the appendix of I, where we represented the correlator as 

a determinant of a matrix of zero modes and two point functions. Of course, this 

assumes that we can prove the correct zero mode structure of the ghost sector. 

6.2. ZERO MODES 

The coefficients Mi;I are the n-th Fourier modes of the analytic vector fields 

labelled by i. At tree level we have to show that the corresponding quantities, 

i.e. the coefficients of the fermionic variables c, are also just moments of linearly 

independent analytic vector fields. Thus we determine the correlation function of 

three c(z)-fields, or, equivalently the Vandermonde determinant of the zero modes 

(eq. (2.26) of I), up to a constant. The correct normalization of this correlator 

is proved by studying its short distance properties. At this point we have to 

take recourse to a perturbative expansion of the functions hc,D. This situation 

sounds worse than it actually is, because we will prove the proper normalization 

to all orders in the parameters we expand in. 

First, however, let us prove analyticity. As usual, we show that the two 

expressions we obtain for each vector field actually represent the same object. 

The two functions we then have to compare are 

(h&#+' 

h', (4 
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+ MCEND + D&-lMD E(l- NCENDE)% 1 xi (4 
im 

for IzI < Rc and 

- [D&-'lij [(ho 0 I) (z)]j+' 
(b 0 I)'(z) 

- 
K 

MC + D&-lMDENC E(l- NDENCE)-1 
) 1 

%z (4 

im 

for IzI > R,‘. The methods shown above are again applicable to prove that 

these are but two equivalent representations of the same vector field. Notice that 

both functions are linear in MC or M g. Hence linear independence of the glued 

vector fields follows from the linear independence of the vector fields 1, Z, z2 for 

the original vertices. 

We now examine the ghost correlation function 

~~~~~~~lS~~~~~lS~~~~~l> = b(4 - dwNd4 - s(u)l[!d~) - d41 
g’(4g’(w)g’(u) 

. (6.28) 

For (z - WI, IZ - ul, Iw - uI < E this function is equal to 

(z - W)(% - u)(w - u) + O(c2) (6.29) 

if E is sufficiently small. This is the result we seek to prove for the glued zero 

modes. We start by asserting that the glued correlation function is given by 

@cl c(+(w)+) II 0 ho 0 I> , (6.30) 

where (hcl is the part of the vertex (ViAi)cJ that depends only on hc, and 

110 hr, 0 1) - (hDIl&. N ow we make use of a result that will be proved in the 
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next section, namely 

@cl = (01 Uhc; II 0 ho 0 I) = u&,ol IO) . (6.31) 

SL(2) invariance guarantees that both h c z and hD(z) can be chosen to be ( ) 

analytic around z = 0, with hc,D(O) = 0. Therefore 

_ u& = exp (6.32) 

and 

u&,ol = exp (2 v”kb~kL-k) (6.33) 

for some vector fields vc and vD. We replace vc by tvC and vD by svD, with 

s, t small so that a perturbation expansion in these parameters makes sense. 

According to equation (2.39) we may rewrite (6.30) as 

where 

(6.34) 

(6.35) 

and the vector field vA is given by some complicated formula in terms of tvC, svD. 

At this point it is obvious that (6.30) is equal to (f[c(z)c(w)c(u)]) for some 

function f(z) that we may write as f(z) = z + d(z), where d(z) is of order s or t. 

From the form of f( z one immediately derives (6.29), and concludes the proof ) 

that the ghost zero modes are correctly normalized, to any order in s, t. Note 

that f(z) is generally not analytic around z = 0 or z = 00. This is the reason 

why @cl c-lcoc~lO> # 1, contrary to the expectation one might have had from 

(hcl c-1~0~1 IO) = det Mtz = 1. 
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6.3. DETERMINANTS 

As the final step in the proof of gluing for the bc system let us derive the 

cancellation of determinants. Again we start by deriving (fl = (01 Uf. However, 

due to the existence of ghost zero modes the expression 

does not yield the desired information. We therefore define 

WI = (fl = (3) J exp c crnNi{bn - z qiMi:bn 
tll,rlO,V-1 Q-1 

m>2 
n>-1 

(f,31 E (31 exp 

(6.36) 

(6.37) 

The l-point functions (f, 0,3( are uniquely characterized by 

(f, 01 C-n1 . *. b-n, IO> = (f[c-nl] .** f[b-n,]) ; (f,O13) = 1 

(f, 31 c-n1 * * * b-n, 10) = (C-lCoClf[C-nl] . * * f[b-n,]) ; 

Consequently 

(f, 01 f-l [Cn] = 0 for n>2 

(f,Ol f-‘[bn] = 0 for n> -1 

(f,310) = 1 - 

(6.38) 

(6.39) 

and 
(f, 31 f-‘[cn] = 0 for n> -1 

(f,31 f-‘[bn] = 0 for n>2. 
(6.40) 
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Together with f[O] = Uf OUT’ these equations imply 

WI = (01 u.f ; (f,3] = (31 u, * (6.41) 

Then 

(flA IIAd = u&~ 10) (6.42) 

and now the-product (&, 311 o h D o I, 0) is nontrivial. But then we can again ap- 

ply the logic used at the end of Section 5.3. By combining the ghost factor the the 

factor (hcII o ho o 1) from the X dynamics, we find a structure (31 Uhc Ui,’ IO), 

with transformations Uh generated by an energy-momentum tensor with central 

charge c = 0. As before, we find that inclusion of the terms from X gives 

(hc,3110 ho 0 &O) = 1 - (6.43) 

All that remains is to translate this result into the specific form needed for the 

proof of (6.20). If there are no external states, all the terms with indices A;, 

Bj vanish; in addition, use of (hc,31 eliminates the variable 8. The remain- 

ing fermionic integrations give the zero mode determinant det & we encountered 

before. Then, finally, 

1 = det (1 - NCCENDDE)-13det (1 - NCEND) det & 
(6.44) 

= Da&&x . 

This completes our proof of the gluing identity. 
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FIGURE CAPTIONS 

1) Simple representation of gluing. 

2) Precise representation of gluing. 
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