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ABSTRACT 

We isolate logarithmic divergences from bosonic string amplitudes on a 

disc. These divergences are compared with “tadpole” divergences in the 

effective field theory with a covariant cosmological term implied by the 

counting of string coupling constants. We find an inconsistency between the 

two. This is a serious problem which could undermine the ability to remove 

divergences from the bosonic string. 
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I. Introduction 

The equations of motion for background fields in which strings may 

consistently propagate are summarized by the condition that the /3 function of 

the two dimensional world-sheet field theory vanish.l Furthermore these 

equations can be derived from a Lagrangian which resembles and generalizes the 

usual gravity and matter field action. The same Lagrangian may be used to 

generate Feynman diagrams-for scattering amplitudes. The amplitudes reproduce 

the usual string S-matrix elements. 

Recently this idea has been generalized to include the divergent effects 

of string loop corrections. Briefly the idea is that small “fixtures” such as 

handles and holes attached to an otherwise smooth world sheet renormalize the 

effective two dimensional action and correct the /3 functions. In ref. 2 it 

was shown how such an effect for a single handle generates a cosmological 

constant in the Einstein equations. 

Subsequently it was emphasized by Callan et al. and by Seiberg [ref. 31 

that a consistent treatment requires inclusion of the dilaton field background 

along with the gravitational field. 

In this paper we study the consistency of the effective Lagrangian and 

the string amplitudes derived by standard string theory methods when a 

fixture, in this case a hole, is installed on the world sheet. This can be 

done either by computing the fixture corrected /3 function or by direct 

comparison of the effective field theory scattering amplitudes with string 

amplitudes. In the latter case we compare logarithmic divergences in 

string-theoretic amplitudes with the effective-Lagrangian tadpole and mass 

insertion diagrams shown in Fig. 1. These diagrams are also divergent because 

they contain a massless propagator at zero momentum. We find that an obvious 



2 

method of calculation fails to produce consistency between string log 

divergences and effective field theory tadpoles. However, we shall see that 

in addition to log divergences, the string theory also has certain quadratic 

divergences. These quadratic divergences can be eliminated by a 

renormalization of the 2-dimensional cosmological constant. This raises the 

possibility that a careful evaluation may reveal an additional subleading 

logarithmic divergence. -At present we have no evidence that this is so. 

II. Effective Lagrangian 

The effective Lagrangian for massless string states’ can be obtained by 

the following procedure. Introduce background gravitational and dilaton 

fields into the world sheet action: 

(1) 

where r ab(o1’ 2 
o ) is the world sheet metric, g 

w 
(X) -- the 26 dimensional 

metric and $(X) is the dilaton field. The fields gPU(X) and +(X) can be 

thought of as an infinite collection of couplings in the 2-dimensional field 

theory. These couplings become renormalized and satisfy renormalization group 

equations 

(2) 

1 We concentrate on the gravitational and dilaton degrees of freedom. Other 

massless states are ignored. 
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The field equations for g and + are 

c3 m u  = P$) = 0  (3) 

Remarkably, these equations can be derived from a generally covariant action’ 

The order a’ corrections in eq. 4 are higher derivative terms where each 

additional derivative introduces a factor Ja’;-. 1.4 

The processes leading to eq. (4) are string tree graphs with spherical 

world sheet topology. The factor e’ in eq. (4) is understood as follows: the 

path integral for the string 
I 

[DX]e -S has a factor 

(5) 

where Cp 
0 

is the zero momentum part of # and g is the genus,of the world sheet. 

Since for a sphere (g = 0) the effective action must be weighted by e 90 , 

locality requires this to be replaced by e’. 

Let us now consider the correction to the action (I) due to processes 

with a small hole in the world sheet. Such processes occur in the theory of 

coupled open and closed strings. The coupling of the dilaton field +(X) to 

such a world sheet has an extra boundary term given by 

(6) 

where K is the extrinsic curvature of the boundary. For the topology in 
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question the sum 

so that amplitudes all contain the factor e $12 . We expect the corrected 

action to have this factor. The term with the least possible number of 

derivatives is 

(7) 

(8) 

where A is constant. To compute A and investigate the consistency of eq. (5) 

. with string theory we will compare scattering amplitudes derived using (4) and 

(8) with string scattering amplitudes. 

III. String Calculation 

We will consider the scattering of gravitons from a world sheet with the 

topology of a sphere with a hole. We can represent this situation by a plane 

with a hole or radius a centered at position z. For simplicity we will write 

the formulae for the 3-graviton amplitude but the results are general. The 

gravitons enter at zl, z2, and z3. We may hold the radius and location of the 

hole and one of the graviton insertions fixed. Alternatively we can hold the 

3 gravitons fixed and integrate the radius a and location z. The latter form 



where the expectation value is computed on the plane with a hole of radius a 

centered at z. The integration over z covers the whole plane excluding only 

those regions which would cause one of the zi to be in the hole (Fig. 2). 

The Green’s function needed to compute (9) is given by 

The second term represents the effect of the hole. Expanding (10) for small a 

gives 

The order a2 contribution to the propagator is identical to the effect of the 

operator 

(12) 

inserted at the point z. Thus to obtain the coefficient of the logarithmic 

divergence in the amplitude (g) we expand the integrand to order a2 and 

This expression schematically summarizes the logarithmic divergence relevant 

for our purposes. An analogous expression for a multi-tachyon amplitude was 
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derived in ref. 9. In section (V) the consequences of eq. (13) for the 

p-functions and equations of motion will be discussed. 

To compare (9) with effective field theoretic amplitudes we have carried 

out integration over the location and size of the hole. The details of this 

calculation are provided in the appendix. The end result is that the 

insertion of eq. (13) is equivalent to operating with 

(14) 

Thus the log divergent part of the amplitude is given by 

where A 
tree 

is the amplitude with no hole. 

IV. Effective Field Theory Amplitude 

The effective Lagrangian is 

The rule for the a’ dependence in the first term in (16) is that a factor of 

fl is included for each derivative in the higher derivative terms in the 

lagrangian. Calculating with (16) is inconvenient because the term e’R 

introduces mixing between the graviton and dilaton. This may be eliminated by 

29 -- 
a field redefinition. Define a resealing of the metric g d-2 + gF,ne . The 

FLU 

action becomes 5 



The graphs of interest are those of first order in A which we will compare 

with the contribution of the small hole in string theory. These are shown in 

Fig. 1. Each graph contains a zero momentum propagator of the form 

1 

k2 
k2=0 

(18) 

which renders it divergent. This divergence is not unexpected and should be 

identified with the log divergence in the hole size integration in the string 

case. 

To compute the diagrams it is useful to recall the soft dilaton and soft 

graviton emission theorems. The soft dilaton emission amplitude is given by6 

(19) 

where A is the amplitude without the soft dilaton. For our purposes this 

theorem can be derived by observing that the power of e’ multiplying each term 

in the resealed tree level lagrangian (17) is determined by the number of 

derivatives in that term. Multiplying (19) by the dilaton one point function 

from the cosmological term and dilaton propagator 

from eq. (17) we obtain the dilaton contribution of Fig. la. 

(20) 
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Similarly one can compute the soft graviton contribution of Fig. la. The 

combined result has the simple form 

(21) 

Evidently eq. (15) and (21) do not agree. More should be said about the 

external leg and mass insertions of Fig. lb, and c. For our purposes they can 

be separated from the contact terms because their contributions grow linearly 

with the number of external legs. It turns out that our regularization of the 

string amplitudes sets the external leg contributions to zero. A detailed 

discussion of these issues is included in the appendix. 

V. The P Functions 

The results of the previous section can be restated using the language of 

the world sheet beta functions. For our purposes the /3 functions are the 

coefficients of the logarithmically divergent counterterms in the 

two-dimensional string action. In a particular renormalization scheme they 

have the form 

(22) 

As was pointed out recently by several authors, 8 these beta functions are 

actually linear combinations of the ones computed in ref. 1. p-functions can 

be expressed in terms of variations of effective action 

(23) 
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These relations allow us to infer what world sheet insertions we expect to be 

induced at one loop. Substituting the cosmological term into (23) we find 

that, for agreement with the generally covariant effective action, the small 

hole should induce a counterterm proportional to 

According to de-Alwis. 10 

On the other hand, we just saw that the hole naively induces only the 

insertion proportional to :aXZX: 2 
We can see that the discrepancy between our 

calculation and the result required by consistency of /3 functions is an extra 

renormalization of R(2). In terms of string amplitude calculations, this 

discrepancy translates into missing a multiplicative renormalization of the 

tree amplitude. 

The problem can be made to disappear if an additional log divergence can 

be found in string amplitudes. In particular eqns. (21) and (15) suggest a 

missing term of the form 

-2 r log a0 Atree (24) 

The only consistent interpretation of such a term is that the small hole at z 

’ introduces an additional counterterm equal to - -$ (2)(z) log ao. Integrating 

2 This result was emphasized also in ref. 9. 
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over the world sheet would give (24). 

The fact that the coefficient of the missing term is independent of 

spacetime dimension d suggests that it is hiding in the ghost determinant. 

Let us return to eq. (9). In addition to the log divergence, integration over 

a has a quadratic divergence. The coefficient of this divergence is obtained 

by using the leading term in eq. (11). The result is 

(25) 

This divergence can be removed by a renormalization of the 2-dimensional 

cosmological constant. 

The naive separation of quadratic and logarithmic divergences may have 

overlooked an additional logarithmic divergence. At the moment we do not know 

how to verify this. The issues raised in this paper can affect the ultimate 

consistency of string theory. 

Note added: 

After this paper was written we received a paper by Callan et a1.7 in 

which loop-corrected string equations of motion were derived using BRST 

methods. Although these equations are consistent, it appears that, as far as 

amplitude calculations go, the methods of ref. 7 are equivalent to our 

calculations and do not produce the missing piece in scattering amplitudes. 
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APPENDIX 

In this appendix we present an evaluation of the divergent parts of the 

three-graviton amplitude on a disc. Clearly, eq. (9) contains a quadratic 

divergence proportional to the area of the world sheet 
I 

d2zmand the 

tree-level scattering amplitude. This divergence is usually absorbed by a 

renormalization of the world sheet cosmological constant. Let us proceed now 

to the logarithmic divergences. Obviously, a generic contribution arises from 

the sum of terms in the expectation value of eq. (9). where each propagator is 

in turn replaced by its O(a2) part. This is precisely the part of the 

expectation proportional to an insertion of a2:3X3X: There are two types of 

contractions involved: 

Of course, there are similar contractions involving aX whose contributions can 

be evaluated with identical methods. Let us concentrate on 

CM 
> 

Its contribution to the amplitude on a sphere is -i - 

contribution from O(a2) part of the propagator (11). with a subsequent 

integration over the position of the hole is 

The z-integration is restricted to 

term in (Al) does not contribute. 

use of Green’s theorem: 

the region of Fig. 2. Therefore the second 

The first term can be manipulated with the 



Note that only the contour around z2 contributes to (A2). (Al) finally 

reduces to 

The method illustrated above can be applied in turn to all contractions. 

We find that substituting the O(a2) piece of the propagator into <aXaX>, 

<3X5X>, and <aXzX> integrates to zero, while <axe ik*X > and <sXeikoX>, upon the 

integration over the position of the 

. contribution on a sphere. 

Putting everything together, we 

the insertion of :aXgX: on the world 

hole contribute 7ra2 times their 

find that the log divergence arising from 

sheet is given by 

(A3) 

IF a 
’ - just weighs each piece of the tree amplitude proportionately to its 

a\Fr 
net power in momenta. Since the three-graviton amplitude has contributions 

O(k2). O(k4), and O(k6), this effect can be easily distinguished from the 

multiplicative renormalization of the tree amplitude. 

Although (A3) turns out to be the full answer, we would like to point out 

that there are additional log divergences that turn out to cancel exactly. 

These divergences are proportional to the number of particles being scattered. 

In the field-theoretic interpretation, these are the external leg divergences 

shown in Fig. (1). We find two sources of such divergences. One comes from 
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using all propagators to O(aO). Then the integrand in the d2z integration is 

independent of z. 

We note, however, that the result of the d2z integration still depends on 

2 a through the region (circles of area ra are excluded). This gives rise to a 

contribution n h logaOAtree, where n is the number of external states. 

Another external leg contribution appears if one uses the O(a2) propagator to 

contract, cEIX and 3X from the same graviton vertex with other vertex operators. 

Then the z-integration will give rise to a quadratic divergence cut off at the 

size of the hole. The result of the z-integration is N a4/a2. Therefore, 

after integrating over the size of the hole, the answer is logarithmic in the 

cut off. We find that the two contributions described above cancel each 

other. This indicates that the string S-matrix calculation effectively sets 

the external leg divergences to zero. An independent check on this is a 

calculation of the graviton two-point function on a disc in the path integral 

formalism. 

We represent the disc by an upper half-plane and use the image method to 

determine the propagator: 

Fixing the location of one of the vertex operators by SL(2.R) we find 

where we extended the region of integration by symmetry to the entire complex 
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plane. The expression is w 
dr r 3. If we regularize this expression in the 

Or 

obvious way by 
r 

dr 

5= ’ 
it is proportional to a “pure” quadratic divergence. 

a 

The finite part underlying this divergence is zero. This agrees with the fact 

that the external leg log divergences cancel in the 3-h amplitude. 

In conclusion of this section we would like to point to one more 

important implication of our calculation. Some standard lore of string 

physics which dates back to ref. [S] states that the logarithmic divergence of 

a string diagram is proportional to the zero-momentum dilaton emission 

amplitude. This statement cannot possibly agree with low energy field theory 

due to the presence in it of a tadpole for the trace of the graviton. In fact 

G-- 
/ 3 the dilaton emission amplitude is proportional to 

gijj-2 

which agrees with neither the naive string amplitude (A3) or the result 

implied by effective field theory tadpole analysis. 

Figure Cantions 

1. Three types of diagrams to first order in the cosmological constant that 

give rise to divergences in the effective field theory. Wavy line corresponds 

to a dilaton or a trace of graviton. 

2. The region of integration over z, the position of the center of the hole, 

for a hole of radius a. 
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