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ABSTRACT 

I discuss the importance of the electromagnetic penguin (EMP) contribution 

to 8. I confirm the corrections to earlier calculations found by Buras and Gerard 

(BG). Incorporating these corrections, I calculate the Wilson coefficients of the 

EMP operators using the full anomalous dimension matrices, and also using the 

large N (number of colors) approach of BG. I disagree with BG on the coeffi- 

cient of the EMP operator dominant at large N: my result is of opposite sign 

and smaller in magnitude. This means that for large N the EMP contribution 

increases 8, but by less than 1 %. I also find that this Wilson coefficient is poorly 

estimated in the large N approach. I agree with the BG result for the coefficient 

of the EMP operator subdominant at large N. This coefficient is large, and is well 

estimated using the large N anomalous dimension matrices. I emphasize that the 

crucial factor determining the EMP contribution to c’ is the size of the hadronic 

matrix elements of the subdominant EMP operator. Though suppressed at large 

N, it increases 8 by 5-20% if one assumes vacuum insertion approximation, and 

by up to 100% if one uses the results from a recent lattice calculation. 
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1. Introduction 

It is of great importance to reduce the uncertainties in the theoretical cal- 

-5 culation of e’/c. Together with experimental measurements, particularly that of 

- Z- z the top quark mass, this would allow a stringent test of the standard model with 

three generations. This letter comments on part of the theoretical calculation of 

E’ - the contribution of the electromagnetic penguin (EMP) operators. 

Some time ago Bijnens and Wise”’ pointed out that a variety of factors 

combine to enhance the contribution of EMP operators to 8. More recently, 

Donoghue et aZiQ1 made a detailed estimate of this contribution, and concluded 

that it reduces e’ by about 20%. However, a very recent paper of Bums and 

Gerardi31 finds errors in both the earlier papers. Ref. 1 had missed some terms 

in the anomalous dimension matrix, while Ref. 2 had used the wrong sign for the 

matrix elements of the EMP operators. The combined effect of these two errors, 

estimated in the large N (number of colors) approach of Ref. 4, was to decrease 

the size of the EMP contribution. Bums and Gerard estimated that it reduced 

c’ by 5-7%, which, as they stressed, is a very small contribution. 

The purpose of this note is threefold. First, I want to point out a numerical 

error in the results of Buras and Gerard. Although I agree with their formulae, 

I disagree with their numerical value for the Wilson coefficient (Zs) of the EMP 

operator dominant at large N (0s ). My result is of opposite sign to theirs, and 

is also smaller in magnitude. On the other hand, I agree with their result for the 

coefficient (rr) of the subdominant EMP operator (Or ). 

The second purpose is to display the Wilson coefficients of the EMP operators 

calculated including the corrections found by Buras and Gerard, but with no 

approximations in the anomalous dimension matrices. This allows one to separate 

the effects of the corrections from those of the large N approximation. I display 

these coefficients as a function of the renormalization scale for a variety of values 

of mt and Agco. I also show the Wilson coefficient of the strong interaction 

operator which provides the dominant contribution to 8. Previous estimates 
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have only provided the coefficients at the scale appropriate to the method of 

estimation of hadronic matrix elements being employed. Since these scales range 

from .l GeV to 2.5 GeV, it is useful to combine all of them in a single curve. 

>-= -- The final, and most important, purpose is to point out how sensitively the 

J EMP contribution to c’ depends on the value of certain hadronic matrix elements. 

To parameterize these matrix element I introduce three “B parameters”. Bs 

determines the strong interaction contribution, while Br and Bs determine the 

contributions of the subdominant and dominant EMP operators, respectively. If 

all the B parameters are positive, as seems most likely, then, given the signs of the 

corrected Wilson coefficients, the EMP contribution always increases the size of 

8. However, the smallness of Zs implies that Bs is essentially irrelevant. For large 

N, where Br = 0, the EMP contribution is proportional to Bs and increases c’ by 

at most 1%. That the effect is small is in accord with the general conclusions of 

Buras and Gerard. My additional correction simply makes it smaller. In vacuum 

insertion approximation, in which all the B parameters are 1 by design, the part 

proportional to Br can push the contribution of the EMP up to 20%. And if one 

uses preliminary lattice results from Ref. 5, in which the EMP are enhanced, but 

the strong interaction operators suppressed, the EMP may contribute as much 

as the strong interaction operators to 8. 

2. Wilson Coefficients 

I use the basis of operators 01 - 0s defined in Ref. 1. The imaginary parts 

of the Wilson coefficients of these operators are denoted Zr - Zs, and are defined 

so that 

My coefficients are related to those of Ref. 3 by Zr-e = 2 &;-s -and &,s = 

2oemFr,s, and to those of Ref. 1 by Zr-s = 2 El-s. 01 - 0s are the operators 

generated by mixing due to the strong interactions. 0s and 0s are the strong 
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interaction penguin operators. Or - 0s mix with the EMP operators, 07 and Os, 

only through diagrams involving photons. Thus both ‘E; and Zs are proportional 

to aem. 

s 1, In the imaginary part of NW, the dominant contributions to Kaon decays 
2 

come from the operators Os, 07 and 0s. The issue in the following is the sizes 

of these contributions, and in particular the size of the electromagnetic penguins 

relative to the strong interaction penguins. Thus I shall mainly consider Fe, Zr 

and Zs. 

The one loop renormalization group (RG) equations determine the Z.. to be: 

tn mb 

dty’(t) exp dty6 (t) exp 
Cn mt 

Zi =(1,1~0~0~0~0~0~0) 
(24 

where t = h q, and the symbol T implies a momentum ordering of the anomalous 

dimension matrices 7 f. In this equation, Zi and si are row vectors, and the factor 

in curly braces is a matrix. The superscript on 7 indicates the number of light 

flavors. Equation (2.1) displays the formula for m, < ~1 < ma; similar formulae 

apply for other momentum ranges. The t dependence comes in through the 

factors of aa in the 7 f. For aa I use the form suggested byRef. 6: 

h(t) = 
27r 

bf(t -&zAf) ' af=ll-3 . 2f (2.2) 

The Af are chosen so that cyB is continuous. I treat the thresholds as abrupt, 

using the standard one loop effective field theory matching. It is likely that, for 

the Zi, a more complete treatment of threshold effects is not necessary”] . 

The full 8 x 8 anomalous dimension matrices 7f were first given in Ref. 1. 
Buras and Gerard”‘pointed out that diagrams involving a photon dressing the 

operators 0s and Oe had been overlooked. These diagrams give two additional 
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contributions to the 7f: 

757 --+ 767 + zf!?.t 
4 - 

* - 2a 3 
(2.3) 

T= :, 768 + 768 + 
CYem - - 4 
27r 3 . 

z 
The subscripts refer to the elements of the anomalous dimension matrices. 

Because of the structure of the anomalous dimension matrices, only Zr and 

&3 are altered by the additions (2.3). It turns out that the major effect is on &3. 

This is simply seen in the large N approximation used by Refs. 3 and 7. In this 

approach one only keeps the operators O* = 02 f Or, 06, Or and 0s. Since 0s 

does not appear in this approximation, the change to r57 is irrelevant, and so 

Zr is completely unaffected. In this restricted basis the approximate anomalous 

dimension matrix ( yf ) is, for f = 3,4,5 

(3 - $) %I 0 $QB $(I+ N)aem 0 

0 ( -3-j+g f&7 &(I- N)acm 0 
1 ?G 0 0 -3N&, 0 $crem 

0 0 0 0 -3a, 

0 0 0 0 -3N++, 

The relevant part of T6 is equal to the top left 2 x 2 submatrix of y314j5. I have 

kept N explicit, though it is set to 3 in calculations. 

The new term due to Equation (2.3) appears as the $oern in the last column, 

third row. It is the same in the large N approximation as in the exact anomalous 

dimension matrix. It drives zs in the opposite direction to the original 77s (= 

-3~~) term. Buras and Gerard claim that the new term wins this competition, 

so that :a is driven positive. It is this claim that I take issue with. 

The advantage of the approximate Tf is that it is easy to calculate Zi(p) 

analytically. I focus on zs. This only becomes non-zero at scales below mt. Just 
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below mt one finds 

A2 2 
- 

- - FE(P) = (2n)2 g hmh(mt)[5z2 - S] +O(A3) i - 
_ - 

5 = [Qd(mt)/a3(mw)]6/23 A = h(p/mt) . 1 

I stress that this is only true for the approximate anomalous dimension matrix 5. 

The sign of zs hinges on whether z is greater or less than zc E (7/5)li3 = 1.119: 
if x > xc then zs is positive, if x < xc then &j is negative. For the parameters 

used by Ref. 3 (A4 = 0.3 GeV, mt = 40 GeV), and in fact for all allowed values of 

these parameters, x < xc, and thus zs starts out negative. I find that it remains 

negative as ~1 decreases, for nearly all parameters. In particular, as shown in Fig. 

2, it remains negative for 44 = 0.3 GeV, mt = 40 GeV, in disagreement with the 

results of Buras and Gerard. The results for ‘E;, on the other hand, which are 

shown in Fig. 1, are in agreement with those of Buras and Gerard. 

I now present my results for the Zi without the large N approximation. I 

calculate them by diagonalizing the 7f numerically. One check is that I reproduce 

the values quoted by Ref. 6 for Zr through & and those of Ref. 1 (using the 

uncorrected 7f) for & and &. I use the same numerical method to calculate the 

coefficients in the large N approximation (following the prescription of Ref. 7 for 

as), and a second check is to compare with the analytic results of Ref. 7. For all 

calculations, I use m, = 1.5 GeV, rnb = 4.5 GeV and mw = 82 GeV. 

I display the results for Fe, Zr/CYcm and zs/‘8ICYcm in a series of plots against ~1. 

Throughout I have kept (Y,, = l/137 independent of ~1. These plots are cut-off 

at the lower end when o,(p) = 1. Figures 1 and 2 show the effects of using the 

corrected anomalous dimension matrices on & and zs for A4 = 0.3 GeV and mt = 

40 GeV. Clearly Zr is little affected by the correction, while zs is considerably 

reduced. However, the sign of zs is unchanged, and is opposite to that found by 

Buras and Gerard. 

The large N approximation (for the same parameter values) is also shown in 

these figures. For further comparison, the results for &, in the full evaluation as 
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well as in the large N evaluation are shown in Fig. 3. The large N approximation 

is reasonable for &j and ‘E;, but poor for zs. However, zs/oem is small, and the 

large N approximation can only hope to do well for large quantities, The figure 

1 z does indicate that care should be taken at small p (where o(i) kz l), since 

z quite large differences between the real answer and its large N approximant can 

develop .” 

The same general comments apply for other values of the parameters A4 and 

mt. Thus I only display the results for the full evaluation of Fe, z7 and zs/oem 

(the latter multiplied by 5), and the large N evaluation of 5 &4/c&m. These 

graphs give some idea of the range of variation of the coefficients. The strong 

interaction penguin ze is in agreement with the calculation of Ref. 6, and I show 

it only to display its rapid variation with ~1, and to compare it to & and zs. In 

addition, it is useful for lattice calculations to have these coefficients for a variety 

of p (= l/lattice spacing). 

;7/hrn is quite large, but varies significantly with A4 and mt. It is almost 

independent of p for p < 3 GeV, a result which is exact for ~1 < m, in the large 

N approximation. &/aem also varies considerably, but, at least for p > 1 GeV, 

it is always small. For the ranges 26 GeV < mt < m, and A4 < .3 GeV, and 

for ~1 such that o&(p) < 1, zs is always negative if the full anomalous dimension 

matrices are used. In large N approximation positive values of zs are obtainable 

in the region of parameter space where mt is small, A4 is large, and ~1 is small. 

An example is given below. Es grows rapidly as ~1 decreases, but only becomes 

comparable to zs and &/ocm at very small ~1, at which point perturbation theory 

is untrustworthy in any case. Lattice calculations require ~1 - 1.5-2.5 GeV, and 

for this range z&3 is always small and negative. 

\ 

* The fact that, in Figure 2, the uncorrected T, and the large N 7, are very close is not 
. significant. I would also like to stress that, were it not for the peculiar factors of bf/ll in 

yee and 788, the large N value of & would grow much faster at small ~1 than in the full 
calculation (see Figure 3). 
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3. Implications for C’/E 

.F 
-- 

3 

The master formulae used by Refs. 3, 2 and 5 are:* 

x & (1 - f&j+,, + nEMP) 

where the generalized B parameters are: 

B6 = (K”)06174 / (~“~06~74,,, 

B8 = (~“108174 / (~“~08~7+,,, 

B7 =3(K”j071+ / (K”1081+= B;' (K"1071?r7r) / (K0~07~7r7r)vIn . 

Reasonable values for the KM parameters si and ci have been used. The matrix 

elements, coefficients, and m, are all to be evaluated at a common scale. nrl+,” 

contains isospin breaking contributions involving z - q and x - 7’ mixing. Ref- 

erence 2 finds fl q+n' = 0.35 -0.45, while Ref. 3 find 0.27, the difference coming 

from the different values of (m, - md)/m, used. Whatever its precise value, this 

term suppresses 8 by a significant amount. 

The term in question here is OEMP. Notice that, if positive, fl~~p increases 

8, now that the correct sign found in Ref. 3 is used. The value of ~ZEMP depends 

upon the coefficients F&s, and on the three B parameters. In the definition8 of 

these B parameters the subscript VIA refers to vacuum insertion approximation. 

Assuming VIA one can estimate all three matrix element in the continuum, and 

the B parameters are constructed to equal 1 in this approximation. 

* I have used the experimental values for c and K + 27r decays. Ref. 3 calculate these 
within their approximation and thus have a slightly different formula. These differences 
do not affect nEMp, however, and this is the main focus of discussion. 
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There are three approaches to calculating the B parameters. The first, used in 

Ref. 2, is to use the vacuum insertion approximation and set B6 =-BT = BE = 1. 

This presumably applies best at a scale in the range 0.5 GeV - 1.0 GeV. The 

.- B -- crucial factor is (z7 + 3zs)/3oemzs* At ~1 = 1 GeV, and for mt = 30-to 70 GeV 

= and A4 = 0.1 (0.3) GeV, this factor is 0.56 to 0.69 (0.22 to 0.32) corresponding 

to REMP = 0.13 to 0.16 (0.05 to 0.07). At p such that cy#(h) = 1, the factor is 

0.53 to 0.87 (0.26 to 0.50), and fI EMP is thus 0.12 to 0.20 (0.06 to 0.12). Thus 

the size of CIEMP is not very sensitive to p, but strongly dependent on mt and 

A4. For /L = 1 GeV most of the contribution comes from ‘E;; for smaller Jo, zs 

becomes equally important at large mt. Thus this rough independence of Rcmp 

on /J only follows because & and zs have the same sign. 

The large N approach of Refs. 3 and 7 also sets Be = BE = 1, but has 

B7 = 0. These values are supposed to apply for scales ~1 = 0.8 - 1.0 GeV, at 

which scale the short and long distance physics are matched. The relevant ratio 

of coefficients is Zs/ocmZs. If one uses the large N anomalous dimension matrices, 

and the same ranges of parameters as above, one finds this ratio to be +0.007 to 

+0.021 (-0.003 to +0.013). Note that for mt = 30 GeV and A4 = 0.3 GeV &3 is 

slightly positive at p = 1 GeV. The large A4, small mt region of parameter space 

is the only one for which this happens. As Fig. 2 shows, it does not happen 

for mt = 40 GeV. Furthermore, if on uses the complete 7f to evaluate ‘Es and 

zs, then zs is always negative and &/oern& = 0.013 to 0.031 (0.004 to 0.025). 

However, for both of the methods of evaluation the EMP contribution is very 

small, making at most a 1% contribution 6’. 

The difference between vacuum insertion and large N approximations is in 

the value of B7. While it is true that there are many terms of non-leading order 

in N, among which B7 is only one, the smallness of zs makes it essential to 

attempt a calculation of these terms. Also it is quite possible that there are large 

corrections to the relations Bg = BE = 1. One way to address these issues is 

to attempt a calculation on the lattice of B6,7,8. Such calculations are in their 

infancy, and the numerical results should not be taken too seriously. Reference 
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5 finds Be = 0.5, B7 w 1 and Be = 1.2, for p sz 1.7 GeV. This converts to 

REMP = 0.41 to 0.57 (0.19 to 0.34). Thus the EMP contribution-&larger than 

in the other two approximations, and may be as large as the strong interaction _ - 
: z. penguin contribution, 1 - fI,+,,t. However, this is mainly due to a reduction in .- 

’ the size of the strong interaction penguin, so that, overall, et/e is reduced, by 

60-70010, compared to what it would be if Be = B7 = BE = 1. 

4. Conclusions 

A full evaluation of the coefficients ‘E; and zs shows that only zs is much 

affected by the corrections to the anomalous dimension matrix found by Bums 

and Gerard!31 - cs is considerably reduced in magnitude, but not changed in sign, 

contrary to the result of Ref. 3. 

The consequences of this for c’/~ depend upon the values of mt, 62, ss and 

sg, and upon the parameters Bg, B7 and BE. As far as the EMP contribution is 

concerned, the crucial issue is the size of the matrix element of Or. If, as assumed 

in the vacuum insertion approximation, or as found in the lattice calculation, 

B7 - 1, then the EMP contribution enhances 2, possibly by as much as a factor 

of two. 

Note added: Bums and Gerard now find values for Es of the same sign and 

similar magnitude to those I find. I thank them for clarifying correspondence 

and for comments on the manuscript. 

Acknowledgements: I thank Belen Gavela for bringing the work of Buras and 

Gerard to my attention, Andrzej Bums for discussions, and Fred Gilman for his 

comments on the manuscript. 
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FIGURE CAPTIONS 

1) Results for &(~)/a~~ for A4 = 0.3 GeV, nat = 40 GeV. The ful~~calculation 

-7 is shown by the solid line, the calculation with the older:(&corrected) 
-- 

s anomalous dimension matrices of Ref. 1 is given by the dotte-d line, and 

the large N result is the dashed line. 

2) Results for Zs(p)/cr,,. Format as in Fig. 1. 

3) Results for Fe(p) in large N (dashed) and with full calculation (solid). 

Parameters as in Fig. 1. 

4) Results for Fe(p) (solid), &(p)/cy,, (dashed), 5 x Zs(p)/oem (dot-dashed) 

calculated with the full anomalous dimension matrices, and 5 x Zs(/.~)/o,, 

calculated in large N approximation (dotted). Parameters are A* = 0.3 

GeV, mt = 70 GeV. 

5) Same as Fig. 4 but for A4 = 0.1 GeV, mt = 40 GeV. 

6) Same as Fig. 4 but for A4 = 0.1 GeV, mt = 70 GeV. 
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