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ABSTRACT 

The physical nature of beamstrahlung during beam-beam interaction in lin- 
ear colliders is reviewed. We first make the distinction between a dense beam 
and a dilute beam. We then review the characteristics of synchrotron radiation 
(SR) and bremsstrahlung, and argue that for a wide range of beam parameters 
beamstrahlung is SR in nature, even if the beam is dilute. Some issues concern- 
ing the specific conditions in beamstrahlung as SR are then discussed. Finally 
we suggest that in order to suppress beamstrahlung energy loss and to improve 
energy resolution, it is desirable to partition a bunch into a train of bunchlets, 
where the length of each bunchlet is shorter than the SR convergence length. 

1. INTRODUCTION 

For future c+e- linear colliders with center of msss energy at the TeV range, and luminosity around 
loss cm-l set-I, it is inevitable that the c+e- bunches be focused down to miniscule dimensions. The 
high density of charged particles at the interaction point would provide strong electromagnetic fields 
viewed by the particles of the oncoming beam. The bending of particle trajectories under the influence of 
these E M  fields is called disruption.‘) During this bending particles would radiate, causing an energy loss 
of the beam; this is called beamstrahlung.2) Both effects of disruption and beamstrahlung are important 
to the design of linear colliders.3) 

While disruption with negligible energy loss, which is a purely classical phenomena, is in principle 
understood (although in practice, the effect is convolutional and therefore needs computer simulations 
for detailed description of the phenomena), the nature of beamstrahlung still needs to be further clarified. 
In this paper we review the beamstrahlung in various beam parameter regimes. We then point out that 
it is desirable to partition each e+e- bunch into a train of bunchlets with longitudinal standard deviation 
u: shorter than the synchrotron radiation convergence length &R. 

2. 0ENSE BEAM vs. DILUTE BEAM 

In the laboratory frame (also the center-of-mass frame) of a linear collider, an electron encountering 
a positron with an impact parameter b would have an effective interaction time AtI - b/ye, where c 
is the speed of light, due to the fact that the fields associated with relativistic particles span about an 
opening angle A@ - l/r. In turn, the corresponding effective distance of traverse through the fields of 
the oncoming particle is 

A4 = eAhtl - 6 . 
7 
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Fig. 1. Schematic diagram of a dense beam. 

2.1 Dense beam 

Consider an electron encountering the entire flux of the oncoming positron bunch. The flux 
is roughly 

where AL2 = uL/N is the mean longitudinal separation of target particles. The target beam is considered 
to be dense if AL1 w A&. Taking a typical value of impact parameter to be one standard deviation in 
the transverse direction , i.e., b - a,, the condition for a dense beam translates into 

ZWl . 

In this case the background field provided by the particles in the oncoming bunch is continuous. 
(See Fig. 1.) For example, the Stanford Linear Collider (SLC) beam parameters are 7 = lo’, number 
of particles per bunch N = 5 x lOlo, o, = 1 mm, and u, = 1 pm at the interaction point. Thus, 
Nu,/yu, Z 500 w 1, and the beams are dense. 

2.2 Dilute beam 

A beam is said to be dilute if AL2 < ALr, or 

E<l. 

In this case the background field becomes discrete and the test particle would see the granularity of the 
target bunch. (See Fig. 2.) For example, in the conceptual accelerator of 5 TeV + 5 TeV discussed by 
Richter,‘) 7 = lo’, N = 4.1 x lo*, a, - 1OB3 mm and ur - 10m3 pm, we have Nu,/yu, N 0.04 < 1. 

The beams are therefore quite dilute. 

Fig. 2. Schematic diagram of a dilute beam. 
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In one version of the CLIC parameters,5l where 7 = 2 x 106, N = 5.4 x log, uz = 0.5 mm and 
u, = 65 nm, we find Nu,/7u* u 0.35 5 1. Therefore the beam is marginally dilute. 

3. SYNCHROTRON RADIATION AND BREMSSTRAIILUNG 

In terms of the physical nature of beamstrahlung, two well-known radiation mechanisms come 
into mind, i.e., synchrotron radiation (SR) and bremsstrahlung (BR). Each mechanism has a different 
characteristic length. 

3.1 Synchrotron radiation. 

By synchrotron radiation we mean the radiation of charged particles moving in circular orbits 
under a uniform background magnetic field infinite in extent. Quantum mechanically, the photons are 
emitted in a discrete manner. For each radiated photon, it takes a certain convergence length &R such 
that the radiation process can be completed. This length is found to be 

&R(W) = ; (z)l” , 

where p is the radius of the orbit and wc the critical frequency (wc 3 3cy3/2p). 

When wc is much less than the kinetic energy of the radiating particle & = 7mc2, the radiated 
photons are soft and in large quantity. This corresponds to the classical regime of SR. On the contrary, 
when wc w E, the photons would take away a substantial fraction of the particle’s initial energy; therefore 
the conservation of energy-momentum before and after the radiation process and the noncommutativity 
between the photon field and the particle field have to be properly treated, and we are in the quantum 
mechanical regime. 

A useful Lorentz invariant, dimensionless parameter that indicates the various regimes of SR is T, 
defined as 

T_EL7; ) 
3E (6) 

c 

where B, = m2c3/eh. In the classical regime, T < 1, whereas in the quantum regime, T W  1. 

The applicability of the SR picture to the problem of beamstrahlung can be qualified by the 
following inequality: 

AL2 = $ < &R a ox . (7) 

When this is satisfied, the field provided by the opposite beam can be treated as homogeneous and 
infinite longitudinally. For the transverse dimensions similar arguments apply, i.e., we require that 

&R AetsR - - c Ur . 
7 
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3.2 Bremsstrahlung 

Historically, bremsstrahlung refers to the radiation phenomena caused by the scattering of a test 
particle by target particles. In order for radiation to take place, it is necessary that some momentum 
q be transferred from the radiating particle to the target particles. The minimum of this momentum 
transfer, gmin, corresponds to the situation where the photon momentum k’ is parallel to the momentum 
of the radiating particle: 

Let us define g2 = g: + q:, where qu and ~1 are the longitudinal and transverse components, respectively. 
We can then distinguish two characteristic regions of q values61 The first region is characterized by 
Q  = qL. The momentum transfer is essentially in the direction transverse to the particle’s instantaneous 
motion. In this region the value of ql is determined only by the action of the external field (i.e., the 
scattering angle) and is not associated with the radiation process. In this region of classical momentum 
transfer, the radiation is essentially that in the Born approximation. 

In the second region where q !=a gy w qmin the momentum transfer is not determined by the 
scattering angle of the particle, and the phenomena of quantum diffraction becomes important. From 
the uncertainty principle the virtual photon that carries the minimal momentum transfer can be absorbed 
anywhere within the coherence length Lc, 

Le=tr=- . 2c7i7/ 
Qmin W  (10) 

In a wide range of parameters that we study in beamstrahlung, for example, from SLC, CLIC, 

to the Richter scale, we always find that ql w q,, due to the following observation:‘) For the sake of 
argument, let us consider bunches as uniform cylindrical slugs of charges. The total qI for a test charge 
with impact parameter a, is thus 

qL=2e 
/ 

2Nc2 
dzEl=- . 

UT 

Thus we find 
2.8 x 10’ , SLC ) 

91 - 2JJre H (12) mc QI 
4.3 x 102 ( w 1, CLIC ( 

2.0 x 109 , Richter 5 TeV + 5 TeV . 

Whereas typically 

Therefore q1 W  qI and we have q fi: ~1. This means that the bremsstrahlung coherence length Lc 
is irrelevant to our issue. More importantly, the applicability of bremsstrahlung to the problem of 
beamstrahlung lies only in the domain 

In this regime the spatial extent of the external field is too limited for synchrotron radiation to 
take place. 



4. HEAMSTRAHLUNG AS SYNCHROTRON RA- 

In the parameter regime where SR is applicable to beamstrahlung (i.e., u,/N a .&R a uz), one 
should take into account the specific nature of beam-beam interaction: 

4.1 Uniformity of field strength 

Typically the density distribution varies both longitudinally and transversely across a bunch. For 

round beams where R = u,/us = 1, and define ur = u 3 = us, the distribution function is proportional 

to f&l: 

f = = s exp{-z2/2u,2} 1 - exp{-r2/2uf} 
=l&i 6 r/u, 

9 

and for flat beams (R > l), (14) 

where w(c) is the complex error function. In turn the field strength has the same functional variation. 

It is in principle possible to evaluate the radiation energy loss in this varying field by carrying out 

calculations based on first principles. It is, however, more desirable if there exist simple scaling relations 

where energy loss and other related physical quantities in beamstrahlung can be evaluated based on the 

knowledge of single particle radiation in a uniform field; namely, that of Sokolov and Ternov.*I 

For this purpose it is essential to define an effective SR parameter F for the entire target bunch.gI 

In the case of bi-Gaussian density distribution of Eq. (14), it is found by integrating over the entire 

bunch that 

f N  $ Nt,X,7 2R’i2 
4 mu= 1+R ’ [ 1 (15) 

where rc is the classical electron radius and X, the Compton wavelength. The local T(z, y,z) is then 

related to ?2; via 

4.2 The effect of granularity 

In the case of dilute beams, the fields are physically discrete as viewed by a test particle. Though 

on the average the test particle would bend towards the axis, locally the dilute scattering centers may 

deflect the particle inward or outward stochastically. This “wiggler” effect due to the granularity would 

therefore superimpose some ripples to the smooth trajectory associated with the global bending. The 

mean periodicity of the ripples is expected to be the mean separation between particles AQ = u,/N, 
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with the corresponding frequency 
2 

Wd N cy eN7’ 
A& =T ’ 

Since we are in the regime where A& a p/7, we deduce that 

cyS 
wdwP-wc ’ (18) 

In the case of the Richter scale, wC W E, thus both wC and w,j are kinematically forbidden.lOI The same 
conclusion was reached by Blankenbecler and Drell”) through explicit calculations. 

As for CLIC, even though wc < 6, one can easily verify that wd is still so large that wd W E, 
and would not be seen. We therefore conclude that in a wide range of beam parameters the effect of 
granularity in the case of a dilute beam would not be seen. 

4.3 Finite length of the target 

Given the total power of radiation P(‘F) from an electron and the photon emission rate N(f), one 
can deduce scaling laws of various physical quantities related to beamstrahlung if another parameter T 
is introduced. This is because dimensionally the fractional energy loss per electron is 

It is thus useful to introduce T ss available energy per unit lengths): 

From computer simulations, Noble91 has deduced a set of remarkably simple scaling laws for 
beamstrahlung with negligible disruption based on the two parameters f and r, which includes the 
following relations for average energy loss 6, average photon number (NV), and average photon energy 

(fuJ/O 

where 

and 

fal, 
f W 1 , 

hm= ‘F, fal, 

1.012 ‘F”” , f w 1 ) 

(21) 

are the well-known functions for radiation power and emission rate in SR. For intermediate values of 
f, a numerical table for g(T) and h(y) is necessary, which can be found in the literature. 



4.4 The effect of disruption 

In reality both c+ and c- beams pinch each other into smaller sizes during the collision, forcing the 
value off to change. For disruption parameters D,, D, a 1, the equations of motion in the transverse 
dimensions are 

dz 0. dy 4 -x--* ) -=--* . 
dz us dz u, (22) 

It can be shown that for a given aspect ratio R, D, = D,/R E DIR. Therefore, the bunch size after 
penetrating a distance u. is related to its initial size by 

a’ = Q&-DIR Qu 
-D 

t , ‘=uyc ) (23) 

and the aspect ratio is changed to 

R’ = 6: = &I@-1)/R 
0: 

. 

The beamstrahlung parameter f in Eq. (15) is therefore modified into 

F= (l+R)eD ‘F , forDa . 
1+ ReD(R-‘l/R 1 

(24) 

(25) 

To generalize this expression to arbitrary value of D, we replace the factor eD by a general function 

HD iI2 whose functi onal behavior can only be obtained numerically. So for arbitrary D and R we have 

T = t1 + R)Hi!2 
1 + RH(/-‘)/~~ 1 fr HB(D R)T . 9 (26) 

In the limit for round beams, R = 1, and 

7 = H’12f 
D * (27) 

This equation for the round beam limit agrees with the corresponding expressions in the literature.‘l 

Taking again the example of CLIC, where D = 0.91 and HD = 3.5, we find Y = 0.16 and 
? = &f = 0.29. Plugging 7 into Eq. (20), we find that 6 = 0.10, (N,) = 2.17, and @w/E) = 0.048. 
Other quantities obtained from a computer simulation 131 show that the mean center of mass energy 

squared (S/So) = 0.85, and the rms S/So = 0.18. 

5. BUNCHLETS AND BEAMSTRAHLUNG SUPPRESSION 

From the discussions above, we see that there would be substantial energy loss and energy spread 
through beamstrahlung in future linear colliders. The available center of mass energy for the colliding 
beams would therefore be less, and the energy resolution degraded. One way to suppress the beam- 
strahlung is to partition a typical bunch into a train of bunchlets such that the nature of beamstrahlung 
departs from synchrotron radiation. 



Notice that in the quantum regime of SR the beamstrahlung energy loss 6 u O.~~CY~~‘~/L’. Since 
both f a a;’ and T a u;‘, it is clear that there will be less energy loss for smaller u, if all other 
parameters are fixed. Therefore even in the range where u. > &RI the situation is in favor of short 
bunches when f > 1. What we are suggesting here is to go beyond this point and to work in the 
parameter range where oz < !gR. In this limit the external field becomes so short that the edge effects 
of the field play an essential role in the radiation process. The entire target bunch acts more like a 
nucleus, and the radiation is turning more bremsstrahlung-like. 

First let us compare the following two situations: A magnet with length L, and a similar magnet 
but cut into two halves. Let the two shorter magnets be separated longitudinally such that no interference 
between the-radiation from the separate magnets would occur. In the classical regime where T < 1 
the total power of the radiation is the same for the two cases, except that the shorter magnets tend 
to suppress the lower frequency spectrum in favor of higher frequencies. In the extreme limit where 
the original magnet is cut into a large number of short magnets with length L’ c !gR, the radiation 
power spectrum would become independent of w  up to a maximum frequency w’ H w, (&R/L’) (Fig. 3). 
Radiation is therefore suppressed for w’ > E = 7mc2 or equivalently for 

T>& . (28) 

Under this condition, the high-frequency spectrum beyond the kinetic energy of the radiating particle 
is energetically forbidden, and the total radiation power is reduced. 

Fig. 3. The radiation power spectrum of bunchlets in the two asymptotic limits. 
The cut-off frequency w’ is related to we by w* = w~(&R/L’). 

To invoke this radiation suppression mechanism in beamstrahlung, let us recall that in terms 
of T, 

P -+ . 
7 

(39) 

For T 1 1, and for radiated photons at the kinematic limit E, the convergence length is therefore 

&&4, = &) = ’ 
7 

. (F)1’3 = (f)1’37*r+3 . 

Assuming that a bunch with length u, is now partitioned into n bunchlets, each with length u:, 
the requirement for beamstrahlung suppression is then 

u: c 
3 v3 0 i 

7 XcT-2/3 . 

Next we insist that there is no constructive interference between the radiation from the separate bunch- 
lets. For this purpose we require a photon radiated at the end of a bunchlet to travel long enough through 

a 



the free space such that before both the radiating particle and the photon reach the next bunchlet, there 
is a/2 relative phase difference between the two particles. 

Taking into account the Doppler shift, this translates into the following relation for interbunchlet 
spacing: 

AL’ 2 ; TX, . (31) 

For a 1 + 1 TeV collider, AL’ u 1.2 pm. In the particular case where T - 1, the other condition 
(i.e., Eq. (3O)j requires that ui - .88 pm. We see that both the bunchlet length and the spacing are of 
the order of 1 pm. To retain the same luminosity in this arrangement, we would then have to stretch 
the total length of the bunch by about a factor of two. 

Finally, since the power spectrum of this bunchlet arrangement is approaching a constant 
(i.e., independent of w) in the asymptotic limit, the photon emission rate is thus a l/w, and we 
expect that the rms center of mass energy spread (i.e., the energy resolution) should also be improved 
because the emission probability for hard photons is largely suppressed. Technically, it may be feasible 
to bunch such bunchlet trains by some kind of laser or FEL at - 1 pm wavelength while the beam is still 
at reasonably low energy. More studies are necessary before one can be certain that this is a promising 
scheme. 
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