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ABSTRACT 

We show that magnetic monopoles with mass greater than Mcr;t N Mpl J&, 

corresponding to a grand unification scale Mw 2 G M p i ,  are unstable to grav- 

itational collapse: they will form magnetic black holes. They evaporate via 

Hawking radiation until they reach M,,, cv Mcr;t and thereafter remain as ex- 

treme Reissner-Nordstrom holes with zero Hawking temperature. We point out a 

striking analogy between thc: structu:e of monopoles and the mechanics of black 

holes, which becomes an idcntity for magnetic black holes. 
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In grand unified theories of the strong, weak and electromagnetic interac- 

tions, including the currently fashionable superstring models’, the symmetry 

breaking scale, characterized by the gauge vector boson mass M w ,  is close to 

the Planck energy, Mpi = ( ~ L c ~ / G ) ’ / ~  = 1.3 x 10’’ GeV, the scale characteristic 

of grpvitational interactions. Such theories generically contain stable magnetic 

monopoles2. Since they are heavier than the vector bosons, Mmon N Mw/cr, it 

is natural to ask how gravity affects the structure of monopoles. In this letter, 

we show that classical monopole solutions of energy Mmon X Mpl/Jcr are unsta- 

ble to gravitational collapse and ultimately become magnetically charged black 

holes3. 

These magnetic black holes are interesting in several respects. First, mono- 

poles are one of the few hopes for a direct experimental probe of unification. 

Because they are stable, there may be a relic population of monopoles in the 

universe today, remnants of a symmetry breaking phase transition in the early 

universe, and experiments are underway to detect them. This work suggests that, 

in fact, black holes may be detected in the laboratory. 

Second, it is well known that the properties of black holes suggest a deep 

connection between the dynamics of strong gravitational fields and the laws of 

thermodynamics4. In particle theories, magnetic monopoles serve as a similar 

arena for the study of strong gauge fields. The interplay between non-linear fields 

in general relativity and non-perturbative fields in gauge theories of elementary 

particles may help to indicate how black hole thermodynamics emerges from a 

‘supertheory’ in which gravity and gauge interactions are eventually unified. 

Third, these objects raise anew some old and partIy unsettIed issues of general 

relativity, such as the endstate of gravitational collapse, the cosmic censorship 
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hypothesis (which states that spacetime singularities are always demurely hidden 

behind event horizons instead of being naked), and the ultimate fate of evapo- 

rating black holes. 

In spontaneously broken gauge theories, monopoles arise as stable, spheri- 

cally symmetric, static solutions of finite energy to the classical field equations2. 

Consider the simplest model with monopoles, an SU(2)  gauge theory with Higgs 

triplet $", gauge fields W t ,  and gauge coupling e. The scalar field vacuum ex- 

pectation value, (4ada)1/2 = u ,  breaks the symmetry to U ( ~ ) E M  and gives mass 

to two components of the vector field, M$ = eu. The magnetic charge g = l / e  of 

the monopole is distributed over a core of radius R,, giving rise to a long range 

magnetic field B' = (g / r2) i  on scales r 2 R,. Its magnetostatic energy is thus of 

order 

Emag N 1 2 / B2d3r _N 2?rg2/R,. 

Unlike Dirac's point monopole (R ,  -+ O), the 't Hooft-Polyakov monopole is an 

extended, nonsingular object. 

The stability of the classical monopole solution, and thus the conservation 

of magnetic charge, are ensured by the topology of the gauge field vacuum. Far 

from the monopole core, 4" takes on the hedgehog configuration, 4" = ur"/r, 

which cannot he  'unwound' by a nonsingular gauge transformatnn. For this 

configuration to be nonsingular, at the origin the scalar field must be pinned at 

the symmetry restoring value 4" = 0, far from the vacuum state. The gradient 

of the scalar field is concentrated at r N R,, falling off exponentially at larger 
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radii; the energy stored in the scalar field is thus 

Re - 1 (&4)’d3r 3: 1 1  (T)d3r  42 N 2nR,v 2 
2 2 r  Escarar - 

0 

The balance between the terms in eqs.(l) and (2) makes the core stable. 

Minimizing the total energy with respect to R,, one finds the core radius is 

R, H MG’, and the monopole energy is 

Since the magnetic energy density falls off as l / r 4  and the scalar energy density 

even faster, the bulk of the monopole mass is stored in the core. In this estimate, 

we have not included the potential energy, U ( 4 )  = (X/8)(42 - u2)2 N Xu4/8, 

associated with the scalar field trapped in the core. As a result, eqn.(3) turns 

out to be a rigorous lower limit on the monopole mass, the Bogolmony-Prasad- 

Sommerfield (BPS) bound5. 

What happens to this picture if we include the effects of gravity on the 

monopole? Not surprisingly, the existence of nonsingular, time independent, 

‘topologically stable’ solutions to the coupled gauge and gravitational field equa- 

tions can be proven6; these solutions just describe the curvature of space in the 

vicinity of the monopole. But we must now inquire whether such configurations 

are gravitationally stable as well3. 

In general relativity, a necessary condition for the spacetime to be static is 

that the monopole core must be larger than its SchwarzschiId radius7, R, 2 

2GMmOn. Applying this to eqn.(3), we find that monopoles more massive than 

3 



cannot exist in a time independent configuration. From eqn.(3), this implies 

instability' for a vector boson mass M w  X ( e ' / 4 ~ ) ' / ~ M p l .  For a typical gauge 

coupling, a - lo-', the critical vector mass is Mw crl 10'' GeV, corresponding to 

MmOn N 1020 GeV N gm. (Note the critical density is p N M,--it/R: N log2 

gm/cm3!) Although we have used the flat space solution for the monopole mass 

and radius in deriving eqn.(4), the self-consistent solution to the coupled Einstein- 

Yang-Mills-Higgs equations gives a similar estimate for the critical mass3. 

By analogy with stellar collapse, we expect the monopole core will implode 

to a singularity, forming a black hole. Let us perform a gedanken experiment 

to follow the evolution of a supercritical monopole. Imagine starting with a 

marginally subcritical configuration, MmOn = Merit - E .  By an extension of 

Birkhoff's theorem7, on scales r >> R,, the asymptotic solution for the metric has 

the Reissner-Nordstrom form appropriate to the spacetime outside a spherically 

symmetric charged body lo, 

d s 2 = -  ( I-- 2GM + "> d t 2 +  (1 - - 2GM + %)-' dr2  + r 2 d n 2 .  ( 5 )  
r r2 r 

For M 5 Merit, Le., for G M 2  < g2, the spacetime can be extended to a nonsin- 

gular interior. 

Now we add a small increment of mass to the core, enough to push it above 

the stability limit. Again, according to Birkhoff's theorem, the exterior ( r  > R,) 

solution continues to have the static Reissner-Nordstrom form of eqn.(5), even 

the core collapses. Thus, if a black hole fo rm,  the long range magnetic field 
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is left intact: the black hole has magnetic hair. This was to be expected: since 

the magnetic field lines are anchored at infinity, magnetic charge is conserved in 

the evolution of the hole. To lose its charge during collapse, the system would 

have to radiate a magnetically charged particle, i e . ,  a monopole. If, as eqn.(3) 

indicates, all monopoles are heavy, this clearly cannot occur. Furthermore, the 

BPS lower bound on the monopole mass implies that th; collapsing monopole 

cannot shed enough energy through electromagnetic or gravitational radiation to 

go 'subcritical', even if the initial configuration is highly asymmetric. 

For a supercritical monopole, M > Mcr;t, the metric (5) appears to have 

singularities at r* = GM h ( G Z M 2  - Gg2)'/'. However, as in the Schwarzschild 

(g = 0 )  case, these singularities can be removed by a change of coordinates and 

analytical extension of the manifold" to r < r h ,  shown in Fig.1. The surface 

r = r+ is then reinterpreted as an event horizon: an observer who crosses inside 

this surface cannot return again to the same region. Inside the event horizon, in 

region (11) between r = r- and r = r + ,  even light rays emitted radially outward 

(say, from point p in Fig.1) are 'dragged back' and converge toward smaller radii. 

More generally, in cases without spherical symmetry, each closed spacelike two- 

surface S for which both families of null geodesics orthogonal to S are converging 

is said to form a closed trapped surface". 

Although the metric inside the collapsing monopole core (the shaded region 

in Fig.1) is a complicated timedependent function, especially for non-spherically 

symmetric initial conditions, we can nevertheless draw general conclusions about 

the nature of the collapse without a detailed numerical solution. The classical 

stress energy tensor of the vector and scalar fields in the core can be shown to 

satisfy the weak energy condition", T,aV"V* 2 0 for any timelike or null vector 
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V .  From Einstein's equations, Rab - g a b n / 2  f Agab = 8TGTab, this implies that 

light rays (null geodesics) converge under the influencie of gravity, &bV"Vb > - 0 

for any null vector V .  Penrose's theorem13 essentially states that the assumption 

of null geodesic convergence and the existence of a closed trapped surface imply 

that either a spacetime singularity or a Cauchy horizon must form. Note that 

this conclusion holds even if the initial configuration is not spherically symmet- 

ric. Since the evolution beyond the Cauchy horizon (the surface r = r -  in the 

spherically symmetric case) cannot be predicted from data on a spacelike surface 

through the initial configuration, in either case predictability breaks down. 

Surprisingly, if it forms, the singularity does not necessarily occur inside the 

collapsing core. Instead, since the core radius follows a tirnelilte path, it may 

bounce14 before rea.cfmin.g infinite density and reexpand into the other asymptot- 

ically flat region of Fig. 1. As far as observers in the original region (I) from 

which the monopole imploded are concerned, however, the core disappears for- 

ever. Furthermore, the Cauchy horizon, through which the boiiiicing core must 

pass, very likely becomes a singular surface as welIl5, which strongly suggests 

that the monopole core itself coliapses to a singularity. The originally nonsingu- 

lar 't Hooft-Polyakov monopole has  metamorphosed into a Dirac monopole, with 

a (gauge invariant.) singularity of the gauge and gravitational fields at the origin. 

This raises an  apparent paradox. Black holes are expected to radiate particles 

by the Hawking process, their temperature rising in inverse proportion to their 

decreasing mass. We havc shown, however, that these inagnetic black holes carry 

a conserved charge which they cannot radiate away. How then do we reconcile 

topological stability, i . e . ,  charge conservation, with Hawking radiation? 

The answer is well known: for charged black holes, the relation between 
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temperature and mass is changed4, 

and after reaching a maximurn temperature, Tmnz N Mpi/g 5 Mw,  they cool 

as they radiate (see Fig. 2 ) .  As the Hawking temperature approaches TH = 0, 

they reach a minimum mass given by G M 2  = g 2 ;  this is just of order the critical 

mass for collapse, M B H  N Mpl/ , /Z .  This altered mass-temperature relation is 

identical to that for electrically charged black holes, which are also described by 

the Reissner-Nordstrom metric. An important difference is that black holes with 

net electric charge rapidly discharge by emitting light particles of like charge. In 

the magnetic case, since all monopoles are heavy, the black hole cannot discharge. 

As a consequence, due to Hawking radiation, M p ~ / J c u  is the maximum mass for 

't Hooft-Polyakov monopoles. For supercritical monopoles, this upper limit is 

below the BPS lower bound on (nonsingular) monopole masses". 

These cooling magnetic black holes survive in this quiescent configuration 

unless they annihilate with a black hole of opposite charge in a burst of Hawking 

radiation. Amusingly, in the TH t 0 limit, one can construct static multi- 

monopole solutions with arbitrary spatial separations: black holes of like charge 

do not interact with each other, because the magnetic repulsion is precisely can- 

celled by the gravitational a t t r a ~ t i o n ' ~ .  

These results suggest an analogy between charged black holes in general and 

flat space 't Hooft-Polyakov monopoles. Recall the BPS bound on the monopole 

mass is M,,, = 27rRcu2 + 27rg2/R, 2 47rgu, while for charged black holes, the 

third law of thermodynamics, TH > 0, may be written as MBH = r + / G  + 
g2/4r+ 2 gMpl. Thus, BPS monopoles and charged black holes have identical 
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'mass-radius' relations, and the BPS inequality for monopoles has a similar form 

to the third law of black hole thermodynamics. In addition, as the monopole 

approaches the critical mass from below, the BPS bound smoothly evolves into 

the third law for the black hole it will become. 

The laws of black hole mechanics can be used to derive other interesting 

features of collapsed monopoles. For example, in many grand unified theories, 

higher charge ( a  = eg > 1) flat space monopoles are unstable to decay into a 

bunch of n = 1 monopoles. On the other hand, supercritical monopoles obey 

the second law of black hole mechanics, ~ A B H  2 0. Since ABa o( g2, higher 

charge magnetic black holes are classically stable and cannot bifurcate. Also, 

't Hooft Polyakov monopoles are classical lowest energy configurations; quantum 

mechanically, they are pure, coherent states of roughly N N l / a  vector and scalar 

fields. When a supercritical monopole collapses and settIes to a charged TH = 0 

black hole, it ends up with a non-zero Bekenstein-Hawking entropy4, given by 

S = GM$,,/B -N 1/a, just the entropy one would expect if the coherence of the 

original configuration were lost in the collapse. 

Throughout this discussion, we have blithely ignored higher order corrections 

due to quantum gravity. This should be a reasonable approximation if the critical 

vector mass Mw and maximum Hawking temperature are well below the Planck 

scale, i . e . ,  for small coupling, e2 << 1. We note that, the critical monopole mass, 

core radius and event horizon are then significantly above the Planck scale. But 

this is precisely the criterion for one to be able to treat Hawking radiation in 

the usual semi-classical approximation. We conclude that in the small coupling 

regime, our treatment is self-consistent'*. 

In many grand unified theories, monopoles can catalyze the decay of baryons 
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at a strong interaction ratelg, a cross section much larger than naively expected, 

because low energy, s-wave fermions can penetrate to the monopole core and in- 

teract with the baryon-violating heavy vector and scalar bosons. In a subsequent 

paper, we will address the issue of baryan decay catalysis by magnetic black holes 

and astrophysical constraints on their abundance3. 
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FIGURE CAPTIONS 

1) Penrose diagram for a collapsing monopole (shaded region). Light cones 

are at 45", timelike lines at < 45" from the vertical. The surfaces (r = co) 

correspond to null infinity, r = r+ to event horizons, t = r- to Cauchy 

horizons and r = 0 to a timelike singularity. The monopole core is pictured 

as bouncing and reemerging into 'another universe' although in fact this 

will not occur. 

2) Temperaturemass relation for a Schwarzschild black hole and a magnetic 

Reissner-Nordstrom hole. For A4 >> gMpi, the two cases are indistinguish- 

able. 
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