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ABSTRACT 

We study the four-dimensional gauge theories which are associated with clas- 

sical vacua of the type II superstring, i.e. which correspond to a superconformal 

field theory on the world sheet. Using the fact that gauge symmetry arises from 

a supersymmetric affine Kac-Moody algebra, and demanding unitarity of the un- 

derlying world-sheet field theory, we show that no such vacua can yield the par- 

ticle spectrum of the standard model. Of the gauge theories which are permitted 

by unitarity, we find that many can be constructed explicitly as orbifolds which 

twist the left- and right-moving degrees of freedom of the string asymmetrically; 

among these are three N = 4 supersymmetric models - which have previously 

been constructed in a quite different fashion - and two N = 1 supersymmetric 

models with chiral gauge representations for the massless fermions. 
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1. Introduction 

Recent attempts to extract realistic physics from superstring theories”’ have 

largely focused on the heterotic string!21 Particular compactification schemes for 

the Es @Es heterotic string (e.g., on Calabi-Yau manifolds 13’ or orbifolds ‘I’) give 

rise to a large variety of four-dimensional (4d) models with N = 1 supersymmetry, 

chiral fermions and realistic gauge groups. From the phenomenological point of 

view, the principal problem with this situation is the vast number of quasi- 

realistic models, and the lack at present of any dynamical reason for preferring 

one of them over the others. Without a better understanding of the dynamics 

of compactification, finding a single model which correctly describes the four- 

dimensional world (if such a model exists) is akin to finding a needle in a haystack. 

Loosely speaking, the abundance of 4d models with realistic gauge groups is 

related to the existence of a very large Yang-Mills multiplet in the massless 

spectrum of the ten-dimensional heterotic string. This embarrassment of riches 

has prompted us to consider in this paper the opposite extreme: the type II 

superstring theoryi5’ which has no Yang-Mills fields in ten dimensions. Under 

this circumstance, one might expect that expect that any four-dimensional gauge 

symmetry must arise via a Kaluza-Klein mechanism; unfortunately, it has been 

shown’61 that symmetries generated by this mechanism act the same way on left- 

handed and right-handed fermions. In addition, any space-time supersymmetric 

background for the type II superstring which treats the left- and right-moving 

degrees of freedom symmetrically clearly has N > 1 supersymmetry and thus 

yields a non-chiral model, regardless of how the gauge symmetry may arise. (We 

will see subsequently that in this situation the gauge group is in fact always 

abelian.) 

For these reasons type II superstrings were not considered to be suitable 

for realistic model building until the recent construction by Bluhm et aZ.171 and 

by Kawai et al. w of several type II superstring models that have four flat space- 

time dimensions and gauge groups large enough to contain the standard SU(3) 8 
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W(2) c3 U(1) model. The three models in ref. [7] all have N = 4 space-time su- 

persymmetry in four dimensions, so they contain gauginos - massless fermions 

in the adjoint representation of the gauge group. Additional models constructed 

in ref. [8] also contain massless fermions in non-trivial gauge representations. 

The arguments of the previous paragraph do not apply to these models for two 

reasons: First, the gauge groups do not come entirely from a Kaluza-Klein mech- 

anism, but also utilize inherently stringy states (soliton or winding-type configu- 

rations of the string). (Although the models were constructed out of free fermions 

in [7,8], they will be given a somewhat more geometric interpretation later in this 

paper.) Second, the models treat the left- and right-moving degrees of freedom 

of the string asymmetrically. None of the models in refs. [7,8] contain chiral (4d) 

fermions; however, they leave open the questions as to whether other left-right 

asymmetric constructions can give rise to chiral models and, more importantly, 

whether models with massless fermions in realistic gauge group representations 

can be constructed. 

The aim of this paper is to investigate further the possible gauge groups and 

fermion representations for 4d models based on the type II superstring. We will 

give a complete list of 4d gauge groups that can appear in such models, and will 

show that most of them can be generated by compactifying the type II super- 

string on an asymmetric orbifoldl” that is, an orbifold in which the left- and 

right-moving modes of the bosonic fields coordinatizing the internal space are 

twisted differently. Included in the list of groups are several containing the stan- 

dard model gauge group. We will also show that the three N = 4 supersymmetric 

models in ref. [7] (which also appear in ref. [S]), with gauge groups SU(2)6 (this 

group was first noted by Castellani et al. [I”), SU(4) @ SU(2) and SO(5) @ SU(3) 

can be constructed as asymmetric orbifolds, although their original construction 

was quite different. In particular, the models were first constructed entirely from 

free fermions (replacing the internal bosonic coordinates); the last two of the 

three models used an unconventional form for the world-sheet supersymmetry 

generator TF (z) , which is the dimension 3/2 superpartner of the stress-energy 
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tensor TB(z). The orbifold construction of the models uses the ‘standard’ su- 

persymmetry generator for the internal dimensions, Tpt = -@“aXi. However, 

the Neveu-Schwarz-Ramond fermions $J’ and the bosonic fields ax’ appearing 

in Tpt are twisted. The equivalence between the two types of constructions also 

demonstrates the relation between the two forms of TF. The various other mod- 

els found in [8] may be constructed in turn as asymmetric orbifolds of the three 

N = 4 supersymmetric models (although we will not do this explicitly). On the 

other hand, asymmetric orbifolds also yield models which cannot be described 

using free fermions alone, for example N = 4 supersymmetric models with gauge 

group SU(3)2 or SO(5) @I SU(2)2. 

The existence of a number of four-dimensional N = 4 supersymmetric mod- 

els with gauge groups containing the standard model’s suggests that models with 

chiral fermions (having at most N = 1 supersymmetry) might also exist, and in 

fact construction of such models is particularly straightforward from the orbifold 

point of view. In the N = 4 models mentioned above all four supersymmetries 

arise from modes with the same two-dimensional chirality, say right-moving. The 

gauge symmetries, on the other hand, are due to the presence of left-moving cur- 

rents on the world-sheet. If one twists an N = 4 model by a symmetry which 

breaks all but one of the right-moving supersymmetries, and which simultane- 

ously acts on the left-moving gauge currents, one can build chiral 4d models. 

However, it is difficult to build models whose fermion content approximates that 

of the standard model. In fact, the main result of this paper is to show, on very 

general grounds, that no models based on the type II superstring can possibly 

contain the standard model gauge group and its jermion content! 

Given the strength of this result, it is important to outline the assumptions 

leading to it. In particular, we need to define what we mean by a ‘model based on 

the type II superstring.’ First of all, we define the type II superstring theory itself 

as a theory of closed orientable strings that has local (1,l) world-sheet supersym- 

metry; this definition involves only the geometrical properties of the world sheet. 

(We consider 2d supersymmetry to be a geometrical feature since it makes the 
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world sheet a superspace.) Classical space-time backgrounds in which the string 

might propagate are described in terms of a world-sheet action, i.e. in terms of 

a two-dimensional quantum field theory; we will refer to different backgrounds 

as being different string models (based on the same string theory). For example, 

the flat ten-dimensional space-time background corresponds to the world-sheet 

action of ref. [ll] that describes ten free superfields Xp, ~1 = 0, 1, . . . ,9. One 

of these superfields, namely X0, has negative metric; however, it can be shown 

that negative norm states decouple from the physical amplitudes provided that 

the 2d theory has (1,l) superconformal invariance!12’ In this paper we study 

models with four-dimensional Minkowski space-time left intact; this (apparently) 

requires four of the above superfields - Xot1*2v3 - to be present in the 2d field 

theory describing a given model. We therefore insist on (1,l) superconformal 

invariance of the 2d theory in order to decouple negative norm states created by 

X0. 

A better way to justify our insistence on (1,l) superconformal invariance is 

via the equivalence of this condition to the classical equations of motion of the 

type II superstring!3’13’141 Thus classical superstring vacua correspond to super- 

conformally invariant 2d field theories while solutions of the quantum superstring 

theory that need quantum effects for their stability do not. Hence the arguments 

of this paper apply to classical superstring models only; however, quantum string 

vacua have yet to be constructed. On the other hand, we would like to stress 

that superconformal invariance and existence of 4d Minkowski space-time are the 

only requirements we impose on the models; in particular, we do not assume any 

particular compactification scheme, orbifold or otherwise, space-time supersym- 

metric or not. In fact the superconformal theory which replaces the six ‘missing’ 

spatial dimensions need not have any geometric interpretation at all. 

This paper is organized as follows. In section 2 we discuss relations between 

4d gauge symmetries and properties of the underlying superconformal field the- 

ory. We find that the Lie algebra associated with the gauge group extends to 

a supersymmetric affine Kac-Moody algebral15’ which is generated by purely 
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left-moving (or purely right-moving) supercurrents - world-sheet superfields of 

dimension i. Other sources of gauge bosons, such as the Ramond-Ramond sector 

of the type II superstrings, or both left- and right-moving supercurrents, are ex- 

cluded. The requirement that the superconformal theory replacing the six inter- 

nal coordinates is unitary and has super Virasoro central charge c^ = 6 constrains 

the possible super Kac-Moody algebras and thus allows us to classify the possible 

gauge groups for 4d models based on the type II superstring. In section 3 we de- 

tour from the general approach to construct asymmetric orbifolds which give rise 

to many of the 4d gauge groups permitted by the results of section 2, including 

the three models of ref. [7]. I n addition we describe two chiral N = 1 supersym- 

metric models. In section 4 we return to general considerations, focusing now on 

gauge quantum numbers of massless particles. We find that the representations 

of the 4d gauge group which can appear in the massless spectrum of a type II 

superstring model are severely restricted by the requirement that all physical 

states belong to unitary representations of the entire super Kac-Moody algebra. 

In particular, a 4d model whose gauge group contains SU(3) @  SU(2) @U(l) can 

have either massless SU(3) triplets or massless SU(2) doublets, but never both; 

this rules out the existence of realistic models based on the type II superstring. 

Our conclusions are presented in section 5. 

2. Four-dimensional Gauge Groups 

2.1. SUPERCONFORMAL INVARIANCE 

We begin this section by reviewing the general properties of a model based on 

the type II superstring which satisfies the classical string equations of motion. As 

emphasized in refs. [3,13,14], the latter condition is equivalent to superconformal 

invariance of the 2d field theory describing the model. Together with super- 

reparameterization invariance, this allows us to describe the 2d theory in a locally 

flat superspace parametrized by holomorphic and anti-holomorphic coordinates 

(~,0) and (a,$). Wh t a ever the matter superfields making up the theory, they 
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must give rise to a holomorphic super-stress tensor T(z,8) = TF(z) + OTB(Z) 

and its anti-holomorphic counterpart T(z, $) = T=(Z) + OTB(Z). The operator 

product expansion (OPE) of T(z,8) is given by 

qz1,e1)-q22,e2) = $f + g l/2 
12 

w2, e2) + 212 e12 D$f+ 212 a22’+--- , (2.1) 

where z12 = z1 - z2 - 8ie2 and 0i2 = 8r - e2. In addition to the matter fields, 

there are ghosts for the local super-reparameterization invariance giving rise[16’ 

to a stress tensor Tgh with central charge C^sh = -10; hence i? = 10 is required in 

(2.1) in order for the total superconformal anomaly to cancel (Ztot = 0). 

Expanding T (z, e) in a Laurent series, one has 

T(z,8) = f c C&Z-‘-~/~ + e c L&-n--2 , 
rEZ+n nEZ 

(2.2) 

where IC is either l/2 or 0 according to whether TF and other world-sheet fermions 

satisfy anti-periodic or periodic boundary conditions. These two cases give rise 

respectively to the Neveu-Schwarz (NS) and Ramond (R) versions of the super 

Virasoro algebra, which is the algebra obeyed by the Laurent coefficients L, and 

G, as a consequence of the OPE (2.1): 

[Lm,Ln] = $(m3 - m)bm+n,O + (m - n)L,+, , 

{GnW = $” - $)&+8,0 + 2L,+, , (2.3) 

[LmSr] = (f -r)G,,,+r . 

Superconformal theories of physical interest are not completely arbitrary. 

In particular, four free superfields Xp(z,0,~,8) = X~(Z,.Z) + @W(z) + $$P(z), 

p = 0, 1,2,3 are needed to make four-dimensional Minkowski space-time; other, 

‘internal’ fields should commute with Xp. Thus we have a direct product of two 

superconformal theories, space-time (4d) and internal, whose respective super- 

stress tensors T(4d)(~,e) = -+DXp D2X, and Tint anticommute with each 
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other. It follows from (2.1) that T(z,O) - T(4d)(~,d) + Tint(z,B) gives rise to 

a super Virasoro algebra with central charge c^ = C1(4d) + Zint; since c^ is normal- 

ized to be 1 for a free superfield, C^(4d) = 4 and we need Zint = 6 in order to 

cancel the total superconformal anomaly. Note that while local (on the world 

sheet) properties of the internal and the space-time components of the theory 

need not be related to each other, the boundary conditions obeyed by Tpt and 

by T(4d) = -!&~,aXp should be the same’171 F . (This follows from the fact that the 

world-sheet gravitino couples to the total TF of all matter fields.) Thus we can 

refer to sectors of the Hilbert space as being Neveu-Schwarz (NS) or Ramond (R) 

even when the superconformal theory describing the internal degrees of freedom 

is highly non-trivial. 

2.2. RAMOND-RAMOND VECTOR BOSONS 

The type II superstring has both a left- and a right-moving superconformal 

algebra, so there are four sectors altogether. Clearly states belonging to (R,NS) 
and (NS,R) sectors are space-time fermions while (NS,NS) and (R,R) sectors 

contain space-time bosons. (R,R) bosons are peculiar to the type II superstring, 

so let us take a closer look at them. The first question we would like to ask is 

whether any massless scalar or vector particles could be of this type. In general, 

the answer to this question is yes; for example, consider a type IIA (non-chiral) 

ten-dimensional superstring compactified on a Calabi-Yau manifold or even on a 

torus. In ten dimensions, massless (R,R) b osons form a vector and a three-index 

anti-symmetric tensor of the (10d) Lorentz group. After this compactification, 

they give rise to Bz + 2 massless (4d) vectors and Bs + 2Bi massless scalars. 

(B1,2,3 are the Betti numbers of the manifold.) 

Our next question concerns the couplings of massless (R,R) bosons to other 

massless particles. Consider a vertex operator Ve(k) for an (R,R) scalar. Unlike 

the (NS ,NS) case, this operator must behave like a (4d) spinor with respect to 

both left- and right-moving superconformal algebras. Moreover, these two spinors 

should have opposite helicities and thus opposite chiralities since they combine 
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into a scalar rather than into a vector. Thus the vertex operator should look like 

V”pb(k) or V’lP(k). Due to th e a b sence of any polarization vector, spinor indices 

have to be contracted with k,,+ Ve(k) = k,o$V”2b(k) or k,,a&V~~~(k). 

Massless (R,R) vectors also have vertex operators of spinor-spinor type, but now 

the two spinors have the same chirality. Such bispinors cannot be contracted 

with a polarization vector c” alone, so again the momentum vector k” is required: 

V,(k, c) E k&o:; V@ + a;; V‘+). 

How does an explicit momentum factor in the vertex of an (R,R) boson affect 

its couplings? In a three-point function involving massless particles only, external 

momenta cannot be contracted with themselves or with each other (ki - kj = 0 on 

shell, i, j = 1,2,3). Therefore, all cubic couplings of a massless (R,R) field A to 

other massless fields cannot involve A itself, but only its derivatives. If the other 

two fields are space-time fermions, then we have a coupling of dimension five (or 

more, if other derivatives are present), and thus non-renormalizable. If the other 

two fields are space-time bosons, then one of them must also be of the (R,R) 

type; this gives us a three-boson coupling with at least two derivatives. Again, 

the dimension of such a coupling is at least five, so it is also non-renormalizable. 

Therefore, massless (R,R) bosons do not have any renormalizable cubic couplings, 

such as gauge couplings, to any massless particles. We immediately conclude that 

massless particles are neutral with respect to any gauge groups generated by (R,R) 

gauge bosons; and, as a corollary, all such gauge groups must be abelian. 

2.3. SUPER KAC-MOODY ALGEBRAS 

Phenomenologically, only gauge symmetries that act non-trivially on massless 

particles are relevant. As we have just seen, such symmetries must be generated 

by gauge bosons coming from the (NS,NS) sector, to which we will henceforth 

confine our attention. In the (0,O) picture for the superconformal ghost system I141 

vertex operators for these bosons are superfields of conformal dimension (t , i): 

Va(k, c) = cPDjcP(z, Q Ja(.s, 8) eik’X. (2.4 
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. 

The superfield BXk = @  + BdXp is required here in order to make a four- 

dimensional vector; the conformal dimension of DXp is (0, a). (Of course the 

dimension (i, 0) superfield DXP would have served equally well; this would give 

us the complex conjugate of (2.4).) For k2 = 0 the dimension of eik’X is (0,O); 

thus the dimension of Ja must be (i, 0). This means that J” is a holomorphic 

superfield, i.e. a function of (z, 0) and not (z, e), and that the operator product 

expansion of J(z, 0) with T(z, 0) is given by: 

T(a,e1).Ja(Z2,e2) = 
e12 
-&J"(zz,ez) + g D2Ja(z2,&) + 2 i32Ja(z2,e2) + --- . 

P-5) 

In terms of Laurent series 

Ja(2,e) = P(Z) + e7+) 
= c J,” z -r-l/2 + 8 c Jn” o--l, (2.6) 

rEZ+K nEZ 

where tc is i (0) in the NS (R) sector, (2.5) becomes 

[JA,Ln] = mJA+n, 

[J,“,Lnj = (r + t) JF+n , 

[JA,G] = m Jk+e , 

{JI”, G} = J;+8 . 

(2.7) 

Let us consider the algebra generated by the supercurrents Ja. The product 

of two supercurrents Ja(q,el) and Jb( ~2, 02) must be single-valued as zi --) ~2 , 

so only integral powers of l/212 are allowed in the operator product expansion. 

Since the conformal dimension of Ja is a, the OPE is limited on dimensional 

grounds to 

kabl + e12 
- .ifQbCJC(Z2,B2) + --* , (24 
212 

which means that the Laurent coefficients of the supercurrents - J,” and J,” 
- obey a supersymmetrized affine Kac-Moody algebra[15’ (henceforth called an 
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SKM algebra): 

[ J$, Ji] = Q’ kab&+n,O + if abc Jk+n , 

[Jk, Jr”] = ijabcJ&+r , 

(Jt, J,“> = i kab6p+s,0 . 

(2-g) 

As with the super Virasoro algebra, there is a Neveu-Schwarz (n = f) and a 

Ramond (IC = 0) version of the SKM algebra, whose respective representations 

describe states in the NS and R sectors of the superconformal theory. (The 

boundary conditions on J”(z) must match those on TF(z).) In either sector, zero 

modes of the bosonic currents - J,” - form a closed Lie algebra with structure 

constants fabc; it is this algebra that generates the 4d gauge symmetry. 

Consider the case of a simple gauge group G. Note that although we have 

written (2.8) with an arbitrary matrix kab of Kac-Moody central charges, G- 

invariance requires kab = k - bab. (From now on we assume that supercur- 

rents are normalized such that fabc have their conventional values, which means 

fabc fdbc = CG(adj)Gad, where Cc(adj) is the quadratic Casimir of the adjoint 

representation of the group: Csu(N)(adj) = N, etc.) Moreover, the existence 

of unitary representations of the SKM algebra requires the Kac-Moody central 

charge k to be an integer and 

k E k - CG(adj) (2.10) 

to be non-negative!151 (We will further discuss the restrictions imposed by unitar- 

ity in section 4.) 

The super-stress tensor T SKM for an SKM algebra can be written as a normal- 

ordered product of the supercurrents l15,181* . 

TSKM(z, 0) = 2 :DJa(z, 0) . Ja(z, 0): + & :fabcJo(z, 6’)Jb(z, e)J’(z,S): . 

(2.11) 

(The relation (2.11) is analogous to the construction [lOI of the stress tensor 

TE”(z) for an ordinary, i.e. non-supersymmetric, affine Kac-Moody algebra.) 
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The super-stress tensor TSKM generates a super Virasoro algebra with central 

charge 2 given by[15’181 

d(G) 2d(G) k - CG(adj) i?(G) = 3 + 3 - 
k , (2.12) 

where d(G) is the dimension of G. 

In general the 4d gauge group generated by Jt is not simple, but rather 

a direct product of several simple or abelian subgroups. It is easy to see that 

in this case the SKM algebra is also a direct product of several subalgebras 

(supercurrents belonging to different subalgebras anticommute with each other); 

the value of k may differ from subalgebra to subalgebra. For each subalgebra 

we may use equations (2.11) and (2.12) to compute its share of T and Z; for the 

combined SKM algebra these shares add up. Note that for any non-abelian group 

G, (2.12) gives d(G)/3 5 t(G) < d(G) since CG(adj) 5 k < 00. (In the limit of 

infinite k, resealing the currents in (2.9) and (2.11) shows that one actually has 

an abelian group U(l)d(G) instead of G.) On the other hand, for an abelian group 

Z(G) = d(G) regardless of k; this follows from the fact that abelian supercurrents 

are free superfields (J - DX), whose normalization can absorb any positive k. 

The SKM algebra, whether simple or not, does not have to constitute the 

entire internal superconformal theory. In fact , if ZSKM < 6, there should be 

a ‘left-over’ piece, whose super-stress tensor TL = Tint - TSKM anticommutes 

with Ja and TSKM and has central charge ZL = 6 - ZSKM. This left-over piece is 

rather arbitrary; however, the representations of its super Virasoro algebra must 

be unitary. The latter restriction is actually rather useful since for 15~ < 1 all 

unitary representations of the super Virasoro algebra have been classified~201 and 

the only allowed values of ZL are 

L, =l- 
8 

Cm m(m+2) ’ 
m=2,3,4 ,... . (2.13) 

Thus , either ZSKM < 5 or ZSKM - - , - 5 + 8/m(m + 2) for some integer m 2 2 

(m = 2 corresponds to 15~ = 0 and ZSKM = 6, i.e. Tint = TSKM). Combining 
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this restriction on tSKM with (2.12), we can write down all physically allowed 

SKM algebras and thus give the complete list of 4d gauge groups allowed 

in type II superstrings: 

(4 W2K 
m SU(4)@ W(2), 

(Cl SO(5)@ SU(3), 

(D) SO(S)@ SU(2)@SU(2), 

w SU(3)@ W(3), 

(F) G2, 

(G) all proper subgroups of (A)-(F). 

(2.14) 

Central charges of the allowed SKM algebras are also restricted: algebras (A), 

m (Cl and 6)) must have i = 0 for each of their simple factors; however, i > 0 

is allowed in cases (D) and (G). 

2.4. RIGHT-MOVING SUPERCURRENTS 

There are two remarks to be made with respect to the above result. First, 

we have not shown that all the groups in (2.14) can actually be realized as 4d 

gauge groups of consistent string models; this will be the subject of the next 

section. Second, we have concentrated on the holomorphic SKM algebras, but 

have ignored the anti-holomorphic ones. If both kinds of SKM algebras were 

present in the same string model, we could have doubled the gauge group. We 

are now going to show that this never happens in models with massless fermions. 

In the type II superstring theory fermions belong to the (R,NS) and (NS,R) 

sectors of the Hilbert space; for the sake of definiteness, we will demand the 

presence of massless (R,NS) fermions and concentrate on the consequences for 

the left-handed currents. The key fact about massless states I$) in the Ramond 
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sector is that they satisfy 

Gkt I$) = 0. (2.15) 

The easiest way to deduce (2.15) is to use the light-cone relation between masses 

of states and eigenvalues of LO: (Lb”- - $) I$) = $mass2 I$).* In the Ramond 

sector, Lb”- -+ = (@c-)2 , so massless Ramond states are annihilated by (Gbc*)2. 

Now GbC* is a sum of Gkt and the transverse part of Gtd, which are both her- 

mitian and anticommute with each other. By squaring this decomposition, we 

immediately see that any state annihilated by (Gbc*)2 is also annihilated by 

(Gkt)2 - and thus by G’ bnt itself. This verifies (2.15). Alternatively, we could 

have proved (2.15) in the covariant Neveu-Schwarz-Ramond formalism with the 

help of the Dirac-Ramond equation Gkt I$) = 0 and the fact that massless states 

obey Gid I$) = 0. 

Now consider the SKM algebra for the non-abelian (simple) group G. As 

‘ls’ shown by Kac and Todorov, eigenvalues of L,SKM in the Ramond sector are 

given by hSKM = d(G)/16 + positive terms. Using Gg = LO - t/16 and (2.12), 

we find that for any non-null (physical) state I$): 

($1 (G:t)2 I+> 2 ($1 (G,SKM)2 I$) 2 d(G)2CqCk(adj) (+I+> > 0 (2.16) 

and equation (2.15) cannot be satisfied. Thus, if a string model has any non- 

abelian factor in the gauge group coming from a holomorphic, i.e. left-moving, 

SKM algebra, then there are no massless (R,NS) fermions in that model; there 

are also no massless (R,R) bosons. Similarly, if the source of a non-abelian 

gauge group is a right-moving (anti-holomorphic) SKM algebra, then there are 

no massless fermions of the (NS,R) type. Consequently, if both left-moving and 

right-moving non-abelian SKM algebras are present, then there are no massless 

* The definition of Lbc* used here was chosen for compatibility with the super Virasoro 
algebra (2.3); it differs from the usual light-cone convention for the Ramond sector by an 
additive f. 
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fermions at all! I”’ In order to avoid such a calamity, only left-moving SKM al- 

gebras should be allowed in string models of phenomenological interest; then all 

massless bosons come from the (NS,NS) sector and all massless fermions come 

from the (NS,R) sector. (We choose this convention rather than its opposite by 

analogy with the heterotic string convention.) As a corollary, all type II super- 

string models that treat left- and right-moving degrees of freedom symmetrically 

are excluded. 

The problem with the above argument is that it does not apply to abelian 

gauge groups. And in fact there do exist string models with massless fermions 

and with abelian gauge bosons coming from both left- and right-moving internal 

algebras. For example, the ten-dimensional superstring compactified on a torus 

has all of these features. However, one can show that massless (NS,R) fermions 

are always neutral with respect to charges arising from any right-handed cur- 

rents!“’ (Similarly any massless (R,NS) f ermions are neutral with respect to 

left-handed charges.) The argument is based on (2.15) and on commutation rela- 

tions (2.7). Let IT/J) b e a massless (NS,R) state and let ?(.z, $) be a right-moving 

supercurrent. The charge operator is 7: - the zero mode of the bosonic part of 

3” - so the charge of I$) is given by 

But the latter expression vanishes because a massless state I+) satisfies ($1 CFt = 

0 = i$” 1~)) (th’ 1s is just the right-moving version of (2.15) and its hermitian 

conjugate). 

While decoupling of the abelian gauge groups generated by right-moving su- 

percurrents from massless fermions is already sufficient to render such groups 

phenomenologically worthless, their very presence also causes phenomenological 

problems. Specifically, the existence of a free right-moving superfield Ja is in- 

compatible with having a chiral4d gauge theory. The easiest way to see this is to 

notice that the contribution of the fermionic current .?= to the stress tensor TB 
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and to the GSO projector (-l)F is in no way distinguishable from contributions 

of fermionic partners 4’” of space-time dimensions Xp. So, as far as right-moving 

fermions are concerned, there are five (or more) flat space-time dimensions, just 

like in the case of a toroidal compactification. Consequently, Ramond states form 

spinor representations not just of the ordinary Lorentz group SO(1,3), but of 

SO(l, 4) (or an even bigger Lorentz-like group, if there are several supercurrents 

J”). With respect to SO(1,3), th ese bigger spinors transform as non-chiral pairs 

(2 + 2) of Lorentz spinors. Thus, for every left-handed 4d fermion there is a 

right-handed one with the same internal quantum numbers and uice versa; in 

particular, all gauge interaction are vector-like. 

Let us now summarize the results of this section. We have considered the 

most general classical solutions of the type II superstring that incorporate flat 

four-dimensional Minkowski space-time and thus lead to effective 4d field theo- 

ries at sufficiently low energies. If the effective 4d theory contains both a non- 

abelian gauge group and massless fermions that are chiral (these are basic fea- 

tures of any realistic model), then the gauge group is one of the groups listed in 

(2.14). Moreover, only left-right asymmetric solutions can have these features: 

The gauge group should be generated by the left-moving SKM algebra, while 

massless fermions come just from the (NS,R) sector of the superstring; also, only 

the (NS,NS) sector contains massless bosons. 

3. Explicit Models via Asymmetric Orbifolds 

3.1. GENERAL CONSIDERATIONS 

In this section we show how to construct various 4d type II models which ex- 

plicitly realize many of the gauge groups permitted by the considerations of the 

previous section. Those considerations involve only classical (tree-level) string 

physics; they rely only on local properties of a 2d superconformal theory as for- 

mulated on the two-sphere, without regard to the theory’s consistent extension to 
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Riemann surfaces of higher genus. We are now interested in constructing models 

which are also consistent at the quantum level, i.e. for which higher-loop string 

amplitudes can be defined. Thus we require the 2d theory to be invariant under 

modular transformations - diffeomorphisms of higher-genus surfaces which are 

not continuously connected to the identity. 

We could try to construct modular-invariant models directly in terms of the 

representations of the super Kac-Moody algebra which they contain. At one 

loop this might be feasible, using the known modular transformation properties 

of partition functions for representations of Kac-Moody algebras!221 However 

at higher loops this approach appears difficult. On the other hand, orbifold 

techniques provide an efficient way to construct string models which are modular- 

invariant to all orders in the loop ‘231 expansion. The general orbifold construction 

starts with some initial modular-invariant string model with a first-quantized 

action and Hilbert space which both have some discrete symmetry P; then one 

twists the initial model by the group P in order to construct a new model. 

The procedure of twisting a model by P has two steps. One first projects out 

those states in the original Hilbert space which are not invariant under P. The 

surviving states form the untwisted sector of the new model. Then one adds 

states in twisted sectors, where the boundary conditions on the fields in the 

original action are modified - the string need only close modulo an element of P. 

If the group P is non-abelian the twisting procedure is slightly more complicated; 

for details see reference [4]. W e will be using only abelian (in fact cyclic) groups 

P in this paper. 

The orbifolds we consider here start from a generalized toroidal compactifi- 

cation’24’2s1 of the type II superstring. The metric of the internal six-dimensional 

space is that of a torus, but we also allow for constant background values (Bij) 

of the anti-symmetric tensor field. In any compactification of this kind, the 

eigenvalues pi and pi of the left- and right-moving zero-modes of the internal 

coordinates X’(z, Z) (; = 1,. . . , 6) lie on an even, self-dual Lorentzian lattice of 
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signature (6,6), lY6p6 = {(pi, &)}.* These models have N = 8 supersymmetry 

in four dimensions, with four supersymmetries each coming from left- and right- 

moving fermion zero-modes. The gauge group is U(1)6 @  U(1)6, with 6 U(l)‘s 

each from left- and right-moving supercurrents (the internal free superfields DX’ 

and DXi). 

To construct models with more interesting gauge groups, we will twist these 

N = 8 models by rotations of the lattice I’ ‘a6 taking lattice points to lattice 

points, i.e. automorphisms of I? 6*6. We will accompany these rotations by trans- 

lations or shifts (vL,v~) on the lattice. The general transformation we consider 

therefore takes 

Xi(z) + wFXi(z) + 274 , 

X&(z) + w;x;(z) + 274 , 
(3-l) 

where WL and WR are SO(6) rotations and the combined rotation (w~,wR) is an 

automorphism of I?. Equation (3.1) is a somewhat schematic representation 

of an asymmetric twist, because there is only one center-of-mass coordinate for 

the field Xi(z,z) = Xi(z) + X~(Z). The proper definition is as an action on the 

bosonic Hilbert space, which takes lp~; pi) + e2ni(p~‘u~-PR’uR) IWL~L; WR~R), 

etc!” In order to preserve the world-sheet supersymmetry generators TF(z) = 
-$q$iaXi and FF(z) = -i$iaX’ ( see the previous section), the fermions tii and 

Gi must transform in the same way as dXi and aXi respectively: 

@(z) --) w$p(z) , 

$‘(a) + w$p(f) . (3.2) 

so we can denote an arbitrary element of P by (WL, VL; WR, 21~); this completely 

specifies its action on the fields Xi, $J~ and 6’. 

* Strictly speaking, all lattices I’e~e are equivalent under SO(6,6) rotations; but the generic 
SO(6,6) rotation does not commute with the left- and right-moving Hamiltonians LO and 
Lo, so different embeddings of l?e*e with respect to the division into left- and right-moving 
zero-modes lead to different physics. When we refer to o lattice I’s*e we really mean an 
embedding of the lattice I’e*e into the momentum space of left- and right-moving zero 
modes. 
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In the previous section we saw that if there are to be any massless fermions in 

a 4d model then all gauge bosons that couple to them must arise from, say, left- 

moving supercurrents. Now we would like to show that in an orbifold model these 

gauge bosons come only from the sectors of the Hilbert space that are twisted 

by elements of P of the form (WL,VL; l,O), that is, from the sectors in which the 

right-moving fields X& and di are completely untwisted. Consider the vector in- 

dex p on a gauge boson whose gauge index is given by left-moving supercurrents, 

as in eq. (2.4). Th e vector index requires the use of a right-moving Minkowski 

oscillator such as T,V~,~ , which raises the E;o eigenvalue (the ‘right-moving en- 

ergy’) by at least one-half unit. (Note that the Minkowski field $p is necessarily 

untwisted.) We can ignore the ‘left-moving energy’ (Lo eigenvalue) in this discus- 

sion. Given the energy cost of the vector index, a massless vector particle requires 

the vacuum energy to be -i or lower. The untwisted NS sector indeed has vac- 

uum energy -3; in order to complete the proof we have to show that all twisted 

sectors (with respect to the right-moving fields) have higher vacuum energies. 

This follows from the fact that a complex free boson with boundary conditions 

twisted by e21rib with 0 5 /3 < 1 (Le. aX(e2ffiz) = e2”‘PaX(z)) contributes 

$(l - P) - & (3.3) 

to the vacuum energy,[l’ while the contribution of a complex fermion with the 

same boundary conditions has the same absolute value but the opposite sign. 

The expression (3.3) is minimized for periodic bosons (p = 0) and anti-periodic 

fermions (/3 = l/2), just the combinations which occur in the untwisted NS sector; 

any other combination will thus have higher vacuum energy. This argument 

excludes any non-trivial rotation WR # 1,” and the case against a non-zero shift 

* We must be a little more careful in the exceptional case of the twist which rotates one 
of the right-handed superfields by 27r (p = 1). This twist does not actually change the 
boundary conditions on any of the fields, and hence does not change the vacuum energy. 
However, it does alter the GSO projection (see below), so that the state ~,!?‘r,~ is projected 
out by GSO. Hence there are no twisted massless vectors in this case either. 
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2)~ is even simpler: Sectors with VR # 0 do not contain states with PR = 0, and 

pR # 0 Costs $.I; > 0 energy Units. 

Consider now the model obtained by twisting the initial toroidal compactifi- 

cation, not by P but by the (normal) subgroup PL of P consisting of all elements 

of P of the form (WL,VL; l,O). Then the part of the gauge group of the P model 

coming from left-handed currents is contained in the gauge group of the PL 

model. This is because, as we have just shown, all such P gauge bosons come 

from sectors twisted by elements of PL. If they survive the projection onto P- 

invariant states, then clearly they also survive the projection onto PL-invariant 

states, since PL E P! So if we are interested only in the maximal gauge sym- 

metries of 4d type II models, we can confine ourselves to studying the P = PL 

models, in which the right-handed fields have been left completely untwisted - 

thus they are examples of asymmetric orbijolds!“’ 

If we are to generate models with non-abelian gauge symmetry, we know 

from section 2 that there must be no massless (R,NS) states. In particular 

we must break all four left-moving supersymmetries, by projecting out the four 

(R,NS) gravitinos of the toroidal compactification. This can be done by choosing 

rotations WL which do not sit in an SU(3) subgroup of SO(6). However, we 

must also ensure that no massless (R,NS) states appear in any of the twisted 

sectors. But in the Ramond sector, whether twisted or not, the vacuum energy 

contributions from X$, and from T,LJ’ always cancel. One way to avoid massless 

twisted (R,NS) states is by having a nonzero shift VL in each twisted sector. 

Then the lowest energy (R,NS) state has nonzero momentum pi and therefore 

’ 2 positive energy, zpL. Since the PL models of interest all have N = 4 space-time 

supersymmetry, we will refer to them as N = 4 models, and to the generalized 

toroidal compactifications as N = 8 models. 

The right-moving U(1)6 gauge symmetry of the N = 8 models survives in 

t If P is non-abelian, the projections are not in general onto P-invariant states, but one can 
show that the same conclusion still holds, using the fact that PL is a normal subgroup of 
P. 
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the N = 4 models, but the massless (NS,R) f ermions are neutral with respect to 

this symmetry (see section 2), which will in any case be broken if one breaks the 

space-time supersymmetry to N = 1 by further twisting. So we will omit the 

U(1)6 factor when discussing the gauge group of an N = 4 model. Starting from 

a few different lattices PI6 and twisting by discrete groups PL such as 22 or Zs, 

we can generate a variety of N = 4 models, whose gauge groups include all even 

rank groups in the list (2.14). (S ome of our constructions use a succession of 

cyclic twists.) We would like to give some details of the orbifold construction of 

these models, but first we need to describe a special class of lattices l?p6 which 

have automorphisms acting only on the left-moving zero-modes pi. 

The generic toroidal compactification does not admit purely left-moving sym- 

metries. However, suppose we choose “‘I pi and pR to lie on the weight lattice 

Aw($) of a semi-simple, simply-laced Lie algebra 5 of rank six, and restrict the 

difference pi - PR to lie on the root lattice AR (5). If AR($) is normalized so 

that all roots Q of 5 have length a2 = 2, then AR($) is even and is the dual 

lattice of Aw($j), and it is easily verified that the lattice 

r"'"($) E {(PL,PR)) 3 PL,PRE Aw($) , PL-PRE AR($), 

is even and self-dual. The Lie algebra 9 should not be confused with the gauge 

group G of a 4d model constructed using l?@(S); the two groups bear no direct 

relation to each other. 

Consider now which automorphisms of I?($) can act only on the pL. 

Clearly they must take (cq0) to ( o’, 0), where CII and o.’ are roots of 5, so they 

must be elements of the automorphism group of AR($). But the automorphisms 

must also take a weight X in Aw($) t o weights X’ differing from X by a root vector; 

this means they must be in the Weyl group of ,$ - the group of automorphisms 

generated by reflections in the hyperplanes orthogonal to the simple roots of 5. 

Indeed, a reflection in the hyperplane orthogonal to QI takes X -+ X - 2(cr. X)CX, 

which differs from X by a root vector, since cx . X is an integer. The remain- 

ing (outer) automorphisms of the root lattice correspond to symmetries of the 
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Dynkin diagram for 9; they exchange weights of representations which transform 

differently under the center of the Lie group for $ and hence do not differ by root 
- 

vectors - for example N f-) N for SU(N). Thus the group of automorphisms 

acting only on the left-moving modes pi of the lattice r616($) is precisely the 

Weyl group W(g). 

As far as the bosons Xi are concerned, any automorphism of the lattice lY616 

is an allowed rotation. However, the fermions $’ impose an additional condi- 

tion, namely that WL (and WR) should preserve parity, i.e., be an element of 

SO(6) rather then O(6). Note that this restriction is important for selecting 

an appropriate subgroup PL c W (5) since the Weyl group W (Jj) does contain 

parity-violating reflections. The reason parity must be preserved is that a Ra- 

mond sector twisted by a parity-violating rotation has an odd number of (real) 

fermionic zero modes and the GSO projection cannot be defined. On the other 

hand, given a well-defined GSO projection one can distinguish between two twists 

that differ by a 27r rotation around some axis and thus act on the bosons in ex- 

actly the same way. Therefore, the proper way to describe a rotation WL is to 

treat it as an element of Spin(G) E SU(4) rather then SO(6) or O(6). 

The only physical condition on PL other than PL c Spin(G) n W (5) is that 

the orbifold model generated by PL should be modular invariant. Modular in- 

variance at one loop, for the case of an abelian group PL, reduces to a simple 

‘level-matching’ condition: [26’ In any twisted sector there should exist physical 

states, which of course must satisfy Lo = z 0. In a sector twisted by an element 

of order fZ, applying twisted oscillators to the vacuum changes the Lo,~o eigen- 

values by multiples of l/f.?. Therefore the left- and right-moving vacuum energies 

in that sector should differ by multiples of l/f?. This condition constrains the 

lengths of shifts VL which can accompany a given rotation WL. One-loop mod- 

ular invariance for the explicit models we construct below is easily verified just 

by noting that there are physical states in every twisted sector. It appears that 

the level-matching conditions are sufficient for an abelian orbifold to be modu- 

lar invariant to all orders; this has been proved”” when P acts arbitrarily on 
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any free world-sheet fermions but acts symmetrically on the bosons. The mod- 

els constructed below involve asymmetric twists of bosons, so the arguments of 

. ref. [23] do not apply directly. However, some of the models can alternatively be 

described entirely in terms of free fermions; then level-matching does suffice for 

all-loop modular invariance. 

3.2. SU(2)6 MODEL 

The first N = 4 model we will construct is the SU(2)6 model of references 

[ 10,7,8], which is also a useful intermediate step in the orbifold construction of the 

two other models of [7,8], with gauge groups SU(4) @  SU(2) and SO(5) @  SU(3). 

The starting point for these three N = 4 models is the N = 8 model which uses 

the Lorentzian lattice I’696 D ( 6). The most convenient way to write this lattice is 

as a union of four conjugacy classes of D6 weight vectors. That is, 

r6’6(D6) = (A& A6) + (vi; v6) + (s‘3; &) + (C6; C,) , (3.4 

where in an orthonormal basis 

A21 = {(n1,.--,722l)}, niE 2, c niE22, 

V21 = {(nl,. . . , n21)}, ni E Z, C 7ti E 22 + 1 , 

Sal = {(nl,. . . ,n21)}, ni E Z + f, Cni E 22 , 

C21 = {(nl,...,nnl)}, %E Z + +, Cni E 22 +l , 

P-5) 

define the four classes of representations of the Lie algebra 021: adjoint, vector, 

spinor and conjugate spinor. Two weight vectors within a given class differ from 

each other by a root vector. 

The N = 8 model using the lattice r6@(D 6 can alternatively be described ) 

in terms of free fermions. One replaces the six bosonic coordinates Xi(z,z) by 

twelve left-moving and twelve right-moving Majorana-Weyl fermions, denoted by 
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xi, pi and X’,F’ respectively. Then one sums over the 22g spin structures for 

the Riemann surface of genus g, treating all twenty-four fermions as one group. 

The sum over spin structures at genus one is a sum over periodic and anti- 

periodic boundary conditions in the Q and r directions on the torus. States in 

the sector of the Hilbert space with anti-periodic (periodic) boundary conditions 

in cr correspond to the entries in (3.4) all being integers (half-integers); the sum 

over r boundary conditions is a GSO projection which discards the (Ag;&), 

(ve; ~46) , (se; c,) and (c,; se) Ck%SSeS. The free-fermion interpretation of this 

N = 8 model will allow us to show explicitly an equivalence between the three 

N = 4 models described in [7,8] and our orbifold construction of them. (We will 

use other lattices later in the section which do not have as simple an interpretation 

in terms of free fermions.) 

The SU(2)6 model is obtained from the above N = 8 model by twisting by 

the group P = PL = 22 generated by 

wL = (-l)FL = (e2riJ12) L , vL = (l,05), wR = 1, vR = 0. 

Here ( e2*iJ12) L denotes a rotation of a pair of internal left-moving free super- 

fields, say DX’ and DX2, by an angle of 27r in the l-2 plane. The shift VL is 

written in the orthonormal basis for I?@(&) with exponents standing for re- 

peated entries, so VL is a weight in the vector representation of DC.* Let us 

concentrate first on the massless spectrum of this model, using light-cone gauge 

for simplicity, and denoting the eight left- (right-) moving NSR fermions by $9‘9’ 

(@‘gi), where p = 1,2 is a light-cone Minkowski index and i = 1,2,. . . ,6 is 

an internal index. The 256 massless states of the initial N = 8 model are the 

tensor product of a left-moving and a right-moving N = 4 supermultiplet. Of 

the eight massless left-moving NS states, the pair T/J!,,, IO) has helicity fl, and 

* Precisely the same group element can be used to obtain the non-supersymmetric SO(32) 
heterotic string from the supersymmetric Spin(32)/& heterotic string in ten dimen- 
sions,l”’ if VL is taken to be a vector weight of Die rather than De, and of course 
(-l)pL becomes (-l)pR since the heterotic string NSR fermions are right-moving. 
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the remaining six states $<I/2 IO) have helicity 0. The eight Ramond states, 

$2 . . . $2 IO), form four helicity 3~3 pairs. The right-movers have the same set of 

helicities. States in the left-moving Neveu-Schwarz sector are unaffected by the 

rotation WL; however, left-moving Ramond states acquire a minus sign. The shift 

VL does not affect the massless states because they carry no momentum on the 

lattice. So the projection onto P-invariant states simply removes the 128 (R,NS) 

and (R,R) states from the spectrum, leaving an N = 4 supergravity multiplet 

and a U(1)6 N = 4 Yang-Mills multiplet in the untwisted sector. 

In the twisted sector the Fock space for the T,!J modes is the same as in the 

untwisted sector, but the GSO projection is now onto states with an odd number 

of $@, tisDi excitations (see below). The bosonic zero-modes now lie on the shifted 

lattice 

r6’6(D6) + ‘1; = (v6; A6) + (~46; v6) + (c6; s6) + (s6; c,) . (3.6) 

The NS vacuum IO) with energy -l/2 can be raised up to the massless level using 

the 12 momentumstates (fl, . . . ,O; 0,. . . , 0) (the underline denotes permutations 

of the six left-moving coordinates). These 12 modes (with zero space-time he- 

licity), when tensored with the right-moving N = 4 supermultiplet, complete 

the gauge symmetry from U(1)6 to SU(2)6. To verify that the gauge group is 

SU(2)6 we should compute the charges of the additional 12 vector bosons un- 

der the U(1)6 Cartan subalgebra; we will perform this check shortly using an 

alternative formulation of the same model. 

The N = 4 SU(2)6 model, like the N = 8 l?@($j) model, can be described 

entirely in terms of free fermions. The only difference is that the spin structures 

for the eight left-moving NSR fermions @ ‘I” and for the twenty-four fermions 

xi ,pi, xi,fii are now summed over together, whereas in the N = 8 model they 

were summed over independently. To see the equivalence between these two 

descriptions, we first need to express the translation VL = (1,05) on the lattice 

r6y6($) as an action on the fermions. It is convenient to group the fermions into 
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complex pairs, defining 

xi = ;z(xi + ipi), 4i = &(xi _ api), xi E -$&xi + ipi), 8’ !E -&(Xi - iPi). 

(Note that the bars refer to complex conjugation on the world-sheet rather than 

on the space-time torus.) In general, the translation of a boson by p, X + 

X + 27rp, is equivalent to the rotations x + e2Riflx, 4 + emznif14 acting on 

the corresponding complex fermions. This is apparent from the bosonization 

dictionary*: 

x = -ieiX, qj = -iepix, ax = ixq$. P-7) 

In the case at hand, pr = 1 and pi = 0 for i = 2,. . . ,6. For a single fermion pair x 

and 4 with p = 1, the boundary conditions are unchanged, so it might seem that 

the fermion twist corresponding to VL acts trivially. However, if one continuously 

varies ,0 from 0 to 1, one finds that the fermion number of the vacuum state for 

p = 1 has been changed by one unit from that for /3 = 0. Therefore the GSO 

projection onto even fermion states in the twisted sector selects precisely those 

states which were projected out by GSO in the untwisted sector. (See the first 

example in the appendix of the second reference in [4].) In order to project 

onto P-invariant states we also need the eigenvalues of states in the untwisted 

sector under the twist, remembering that there are two subsectors, with x and 

C$ either both anti-periodic or both periodic. For ,0 = 1 the modes of x and C#J 

have eigenvalue 1, so all states in the anti-periodic (periodic) subsector of the 

untwisted sector have the same eigenvalue: +1(-l). Note that the action of VL 

on the fermions xi and 46; is identical to the action of WL = (-l)FL on the NSR 

fermions $@vi, so the same results hold for the $J system. In the twisted sector the 

condition Lo = z;o requires the states in the anti-periodic (periodic) subsector 

with respect to x and C#J to be tensored with the NS (R) states of the T,LJ system. 

* Our conventions for operator products of free bosons 8X and free Majorana fermions X 
are d,Xd,X - -l/(2 - w)~ +. . . and X(%)X(w) - -l/(z - w). 
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Combining the results for the two systems, one finds that in both the untwisted 

and twisted NS (R) sectors - i.e., $+si anti-periodic (periodic) - xi and 4” are 

also anti-periodic (periodic), and the projection is onto states with even total 

fermion number F+ + F,,+. This verifies that the spin structures for $+j’ and 

xi,& are now summed over together (along with that for xi,@). 

Thus the 18 ‘internal’ fermions tii, x’, & are on an equal footing now, and in 

fact they are just the fermionic components J”(z) of the supercurrents Ja(z,6) 

for the SU(2)6 SKM algebra, up to a normalization factor. To check that the 

group is SU(2)6, one needs the bosonic currents Ja(z), because the J,” commu- 

tation relations are just those of free fermions, for any SKM algebra. The Ja(z) 

are obtained from the J”(z) by a world-sheet supersymmetry transformation, 

generated by 

int _ -1 
TF - 2+ 

i i 

Let us consider a supersymmetry generator of the general form 

(3.8) 

where qa(z) are free Majorana fermions, and fzbc are the structure constants 

for a (simple) Lie algebra G. One can verify’16’2*1 that TF(z) in (3.9) has the 

appropriate super-Virasoro operator product relations. It also generates from 

the fermions ~~(2) the bosonic currents 

Ja(z) = ~f;bc~b(~)~c(~), 

which obey an ordinary Kac-Moody algebra with k = C~(adj), correspond- 

ing to the minimal value i = 0 for the SKM algebra. Note that J”(Z) = 

-i(CG(adj)/2)lj2 qa( ) z are the correctly normalized fermionic currents, so that 

we can also write 

Ja(z) = $f;bcJb(~)JC(~) (3.10) 

for this minimal case. 
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Obviously the six terms of Tpt in (3.8) are of the form (3.9) with G = SU(2) 

Uabc = eabc and CG (adj) = 2)) so all we need to complete the identification of the 

gauge group as G = SU(2)6 ’ 1s to check that all of the supercurrents correspond 

to physical states, i.e. are not projected out. This is indeed the case here: the 

tensor products of the 18 left-moving states $~cr,~ IO), x:1/2 IO), qS<1,2 IO) with 

the right-moving helicity &f pair @ ‘,,, IO) are all physical. (Note that the same 

18 free fermions were present in the original N = 8 model as here, but 12 of the 

above 18 states were projected out by the sum over spin structures, leaving only 

an abelian gauge group.) 

We conclude the discussion of the SU(2)6 model with the remark that just as 

we have fermionized Xi, we can now bosonize the entire system of 20 left-moving 

fermions $J’, xi, @, @ ‘ and 12 right-moving fermions xi, $i. The spin structures 

of all these fermions are summed over together, so the zero-mode eigenvalues for 

the respective bosons belong to the set 

(hOd6) + (AloY6) + (clo;s6) + (&O;c6), (3.11) 

where A21, VZZ, S21, Cal are defined in (3.5). I n our convention the last left-moving 

boson (Hl’) corresponds to the two light-cone Minkowski fields @ ‘, p = 1,2. The 

set (3.11) is not a lattice because we are using light-cone gauge here; however, had 

we used the covariant formulation and incorporated the bosonized superconformal 

ghost zero-modes, we would have found an odd self-dual Lorentzian lattice of 

signature (11, 7)!2p’301 

3.3. SU(4) CQ SU(2) AND SO(5) go SU(3) MODELS 

In this subsection we will construct the other two N = 4 models of refer- 

ences [7,8] as orbifolds. The SU(4) @  SU(2) model can be obtained by twisting 

the N = 8 r6g6(D 6 model by the group P = PL = 24 generated by ) 

WL = diag(C2, C2,1, l), VL = (04, i,O), WR = 1, 1]R = 0. (3.12) 

Here WL and VL are written in the orthonormal basis for I?+(&) described 
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above, and C2 = (y i) exchanges two bosonic coordinates. Note that WL appears 

to have order two, but the actual order of the twist (3.12) acting on the Hilbert 
[311 space is four, due to cocycle factors which appear in twisted vertex operators. 

The square of this transformation is precisely the 22 transformation used in the 

previous subsection to construct the SU(2)6 model. Therefore we can alterna- 

tively describe the SU(4) @  SU(2) model as a 22 orbifold of the SU(2)6 model 

by re-interpreting (3.12) as a 22 transformation of the 2d conformal fields of 

the latter model. Since the SU(2)6 model involves 18 real left-moving fermions 

@, Xi, pi all on the same footing, it is convenient to write the 22 action directly 

on these fermions. Clearly WL just exchanges til f+ ti2, ti3 c) $4, A’ t+ X2, 

x3 - x4, p1 * p2, /.A3 t+ p4; whereas VL takes $5 ---) q5, X5 + -X5, p5 --) -p5. 

We would like to show that this model is equivalent to the SU(4) 8 SU(2) 

model of [7,8]. The general strategy is to alternately bosonize and fermionize 

the model defined by (3.12), until it is rewritten in terms of fermions which are 

totally untwisted, i.e. have the same set of boundary conditions (spin structure) 

as the original SU(2)6 model. Then one writes the world-sheet supersymmetry 

generator TF (z) in terms of the new, untwisted fermions, and one discovers that 

Tpt takes the form (3.9) with group G = SU(4) @  SU(2) - the form in which 

the model has been described in refs. [7,8]. 

The first step is to diagonalize the 22 action of P on the fermions by defining 

(3.13) 

plus the same definitions with $ replaced by X and by ~1. Thus the 8 fermions 

X5,~5,$1,$3,~1,~3,jIi1,~3 are odd under P, whereas the remaining fermions 

are even. The next step is to re-bosonize the new set of 20 real fermions (i.e. 

including also the two fields @ ‘) such that the action of P on the 10 bosons is a 
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pure translation. That is, we let 

& (X5 f ip”) = efiH’, 

-& ($1 * ;$3) = e*iH2, 

-& (‘;’ * ij3) = efiH3, 

5 (hl f ;b3) = efiH4, 

$ (42 5 i,J4> = efiH6, 

5 (i;” * ii\4) = efiH6, 

-& (i2 f ib4) = efiH7, 

-& (ti5 f i+“) = efiH6, 

(3.14) 

the remaining 2 bosons being the original coordinate X6 = Hg (aXi = X6p6), 

plus one boson (H lo) made by combining the two transverse 4d fermions T,P. 

Using the bosonization dictionary (3.7), one sees that the action of P on the new 

bosons is to shift by f in the H 1p213*4 directions, and to leave the other 6 left- 

moving bosons alone. We also need to describe the set of zero-mode eigenvalues 

for the new bosons before P acts on the system, and here we must include the 

right-moving zero-modes as well. But the diagonalization (3.13) does not alter 

the coherent sum over spin structures for the 20 left-moving and 12 right-moving 

fermions, so clearly the zero-mode eigenvalues before shifting are given by the 

same set as for the SU(2)6 model, namely eq. (3.11). 

What effect does a shift of the form ((f)“, 06; 0”) have on this system? The 

answer is that it gives rise to a new set of zero-mode eigenvalues which, like the 

SU(2)6 set, would form an odd self-dual Lorentzian lattice of signature (11,7) 

had we used the covariant formulation. But all such lattices are unique up to 
1321 automorphism, and in our case the automorphism turns out to be a matrix 

acting just on the first four of the ten left-moving coordinates Hi (the shifted 

directions): Mij = Mji = (Mij)-l = bij - f . In other words, we define four 
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new bosons 

&i(z) = M’jHj(,) i,j = 1 4 Y---9 , (3.15) 

to replace the four shifted bosons Hi(z), i = 1,. . . ,4; then the set of zero-mode 

eigenvalues for the newest set of bosons - l?‘, i = 1,. . . ,4, Hi, i = 5,. . . , 10, 
plus the same six right-moving bosons as before - is just the SU(2)6 model’s 

set (3.11). 

Finally we re-fermionize the bosons. The four new bosons give us 8 new real 

fermions 

rl i = --i(,i+ + e-ifii), ti = -$eiBi _ ,-ifi’) , i = 1,. . . ,4, (3.16) 

while from the old bosons we recover the 12 left-moving fermions q2, G4, $J~, $J~, 

i2, 2, x6 , jYi2, fi4, p6, and T,P (p = 1,2) w lc were left invariant by P, as well h’ h 

as all 12 right-moving fermions xi and pi. Again we have a set of 20 + 12 real 

fermions that are free and untwisted, and just as in the original SU(2)6 model 

we have a coherent sum over their spin structures. The only difference between 

the two models is that after the repeated bosonization and re-fermionization the 

world-sheet supersymmetry generator TF(z) no longer has the same form in terms 

of the new set of fermions as it had in terms of the old (SU(2)6) set of fermions. 

Clearly the change in TF is restricted to the piece TF5) that is composed of the 

15 twisted fermions $J’, Xi,pi, 4 = 1,. . . ,5, in terms of which TF5) takes the 

form (3.9) with group G = SU(2)5. We will now see that in terms of the 15 

untwisted fermions q2, I,$~, $I~, i2, i4, fi2, jZ4, qi and ti Tf5) is given by (3.9) 

with G = SU(4) instead. 

First we rewrite Tf5) in terms of the intermediate set of fermions introduced 

in eq. (3.13): 

T(ls) = 
F 

+ & [ Ji”(i”j2” + i4fi4) + p(PjP + pp)] + +5x5p5 }. 

(3.17) 
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Then we use the two bosonizations (3.14), (3.16) and the relation (3.15) between 

Hi and k? to rewrite bilinears of the fermions in (3.17) which are odd under P 

. as bilinears in qi and ei: 

(3.18) 

Substituting (3.18) into (3.17), one writes Tg5) as a trilinear product of the 

untwisted fermions, and it is easy to check that it indeed has the form (3.9) for 

the group SU(4). That the four-dimensional gauge group is SU(4) @  SU(2) then 

follows from the SKM algebra construction’1s’28’ mentioned above, plus the fact 

that all 18 supercurrents correspond to physical states. 

The remaining N = 4 model of refs. [7,8] - the one with gauge group SO(5)@ 

SU(3) - can also be constructed as an orbifold. The construction - and the 

proof of equivalence - will closely parallel those just presented for the SU(4) @  

SU(2) case. Once again we start from the SU(2)6 model, but now we twist it 

by P = PL = 2s generated by 

WL = diag(Cs, l,l,l) , VL = ((6)“) , WR = 1, VR = 0. 

As usual, WL and ~1; are written in an orthonormal basis for I+@(&), and 

C’s cyclically permutes the first three bosonic coordinates. Our first step is to 

write the action of P on the fermions @, xi and 4i of the SU(2)6 model (we 

have to use complex fermions here). The rotation WL permutes the fermions: 

11,l + ti2 + $J~ + $J’, and similarly for xi and +“, i = 1,2,3, and the shift VL 

takes $I~ + $J’, xi + wxi, +i + Q@, i = 1,. . . ,6, where w = e2?ri/3. Therefore 
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the linear combinations 

. $i = & 2 ,i.i+j , gi = -&e ,(i+l).ixj , 

j=l 

Ji = -& 2 ,(i--l).i@ (3.19) 

j=l j=l 

for i = 1,2,3, together with +4j5p6, x4~5~6 and d4p5a6, diagonalize the action of P: 
$2, 22, $2 and x4,5,6 acquire the phase w under P, ql, gl, 4’ and 4415p6 acquire 

8, and G3, f3, 4” and $4~5~6 are left invariant. 

Next we bosonize: 

$2 = -ieiH1, $1 = -ie-iH’, x4 = -ieiH4, 44 = -i,-iH’, 

22 = -ieiH2, il = -ie-iH2, x5 = -i,iH’, 45 = -ie-iH5, (3.20) 

$2 = -ieiH3, $1 = -ie-iH3, x6 = -i,iH’, 46 = -ie-iH6, 

with the remaining, P-invariant, fermions combining into H’, . . . , HIO. With this 

choice of bosonization P acts like a shift on the Hi; in particular, H’, . . . , H6 

are shifted by g, whereas H’, . . . , HIO are left invariant. Just as in the SU(4) @I 

SU(2) case, one finds that the shift ((i)“,O”; 0”) gives rise to a set of zero-mode 

eigenvalues for the Hi which becomes identical to the original SU(2)6 set (3.11) 

after one performs an appropriate lattice automorphism. In this case the matrix 

for the automorphism affects only the first six Hi: M’J’ = Mji = (M’j)-l = 

6ij - $. So, we redefine the six shifted bosons, H”(z) = M’j&(z) (i = 1,. . . ,6), 

and then re-fermionize them: 

qi = -i(,it’ + e-ifii), ci = sceifii _ e-iEji), i = 1,...,6. (3.21) 

(Re-fermionization also recovers the P-invariant fermions G3, g2, i’, $‘p5a6 and 

$J“ as well as the right-moving fermions.) Once again the model is defined as a 

coherent sum over spin structures for all of these 20 + 12 fermions, and only the 

form of the supersymmetry generator Tpt has changed. 
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In order to reconstruct the new Tkt we first write it in terms of the fermions 
that diagonalize P (eq. (3.19)): 

43(2343 + 2142 + g’i”) + $l(flil + 2243 + 2342) 

+ tj"(g"J" + g'i" + g"(P)] + e +ixiqsi} . 
(3.22) 

i=4 

Then we rewrite Tpt in terms of the final set of fermions G3, z3, d3, ti4J’p6, vi 

and ei, using the two bosonizations (3.20), (3.21) and the relation (3.15) between 

Hi and k” to rewrite not only the fermion bilinears 

pi’ + qpg’ = qlq2 + pp, 

gp + pp = q2q3 + pp, 
4142 + 4241 = r13rll + (3(1 (3.23) 

and xi,,$i = qici _ + 5 ,,j(i , i = 4,5,6 (no sum over i), 
j=l 

but also one trilinear pair 

Substituting (3.23) and (3.24) into (3.22) then gives Tpt in the desired form (3.9) 

with G = SO(5) @  SU(3). The 10 SO(5) fermions are q1p2p3, t1p2j3, G3, g3, 4” 

and -&(ti4 + T,#’ + $6); the 8 SU(3) fermions are ~4~5~6, [4p5s6 and the remaining 

two linear combinations of $4>516. 
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3.4. OTHER N = 4 MODELS 

Let us now describe a new N = 4 orbifold model; its gauge group is SU(3)2, 

which is not contained in the gauge groups of the previous models. Our starting 

point is the N = 8 model that has zero modes of Xi taking values on the lattice 

r6"(E6) 3 (1;l) + (27;27) + (%;27) (3.25) 

where 1, 27 and 27 denote the three conjugacy classes of & weights. Class 1 is 

the root lattice of Es; it COnSiStS of weights of Ee representations of zero triality. 

Weights of representations with triality fl make classes 27 and 21. The easiest 

way to visualize the weight lattice of Es is to describe it in terms of weights of 

the maximal subgroup A2 @I A2 8 AZ: 

-- 
1 = (l,l,l) + (3,3,3) + (3,3,9, 

3 = (1,3,z) + (3,1,3) + (3,&l), 

ii = (l&3) + (3,1,3) + (3,3,1). 

Each of the A2 lattices * is a two-dimensional hexagonal lattice; the three 2-planes 

spanned by these sublattices are orthogonal to each other. 

Unlike r6qD6), the lattice r6’6(&) h as no simple interpretation in terms of 

free fermions, so we are forced to describe this N = 8 model and its orbifolds in 

bosonic language. (The formalism for describing asymmetric orbifolds bosonically 

has been worked out in [9]; we will draw on the results of that paper when 

necessary.) The N = 4 model with gauge group SU(3)2 is obtained by twisting 

the above N = 8 model by P = PL = 2s which is generated by (WL, VL; l,O), 

where WL rotates the plane of the first A2 through an angle of 47r/3, and VL is 

a weight vector for the triplet representation of the second AS. Note that wi is 

a 47r rotation, and hence is trivial on space-time fermions as well as bosons, and 

3v)~ E r”‘“(&), so that (WL,VL; 1,0) indeed has order 3. 

* We use A2 to refer to certain sublattices of l?e*e(Ee) to avoid confusion with the SU(3) 
gauge group factors. 
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Let us follow our bosonic description of the SU(2)6 model and focus on the 

massless spectrum, beginning with the untwisted sector. Since the SO(6) rotation 

WL does not belong to SU(3), it b reaks all four left-moving supersymmetries and 

in fact leaves no massless (R,NS) states. The surviving (NS,NS) and (NS,R) 

states again form an N = 4 supergravity multiplet, and also a U(1)4 super- 

Yang-Mills multiplet. The rank is reduced from 6 to 4 because only four of 

the six internal directions - those tangent to the second and third A2 root 

lattice planes - are left invariant by WL. The generators of U(1)4 form the 

Cartan subalgebra of the SU(3)2 gauge group; gauge bosons corresponding to 

root vectors come from the twisted sectors. 

Following the formalism of ref. [9], we begin the description of the twisted 

sectors by defining I - the sublattice of I?+(&) which is left invariant by WL 
- and its dual lattice I*. Using (Az)~ notations for the left-moving bosonic zero 

modes and &, for the right-moving ones, we can write I as 

I = (6,1,1;1) + (6,3,%;27) + (6,,,3;27), 

The dual lattice I* is obtained by adjoining the vector j which is a weight vector 

for the 3 representation on both the second and third A2 lattices, and has zero 

components in the remaining directions. Hence the index of I in I* is ]I*/11 = 3. 

This index is important because it affects the overall degeneracy factor D for 

states in the twisted sector, which is the generalization to an asymmetric orbifold 

of the number of fixed points (tori) of a symmetric twist (w, v). The general 

formula is “l 

D = det’(1 - w) 

II*/4 ’ 
(3.26) 

where det’(1 - w) omits the unit eigenvalues of w = (WL, WR) and hence is equal 

to 3 in the present case, so that D = 1 here. 

The formula (3.26) may be obtained by making the modular transforma- 

tion r --) -l/r on the trace of (wL,vL;wR,vR) in the untwisted sector. The 
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same transformation also shows that in the twisted sector the bosonic zero-mode 

eigenvalues (p~,p~) lie on the shifted lattice I* + w. In N = 4 models massless 

states are constrained to have pR = 0 while the value of fpi is fixed by the 

requirement that the left-moving energy of the state also vanishes. In the case 

at hand we find that massless states in the singly-twisted sector have 

pL E (ig3,l) + (6,lJ) + (093) 

and pi = i. There are precisely six such vectors pi: (o’, 3,@ + (G,c,3). (Here 

3 (3) refers to the (anti)-triplet weights only rather than to the entire class of 

weights for the appropriate A2 sublattice.) The negatives of these 6 vectors lie 

in I* + 22)~ and therefore give rise to the 6 massless states in the doubly-twisted 

sector; together the 12 states make up the roots of SU(3)2. 

To verify that the 4d gauge group really is SU(3)2 we should construct the 

supercurrents for the 16 states and compare their operator product expansions 

with (2.8). Th e supercurrents for the 4 generators of the Cartan algebra are 

simply i DX’, i = 3,4,5,6 ( coordinates of the second and third A2 planes, which 

are left invariant by WL). The supercurrents for the 12 root vectors are the 

products of a dimension i twist superfield,* which twists the supercoordinates 

DX1p2, and dimension 6 soliton operators eiPL’xL, where pi is a triplet or an 

anti-triplet weight vector of the second or third AZ. Without going into the 

details of twist superfield operator products, it is easy to see that the super- 

current operator products have the right form. Clearly the supercurrents form 

two mutually anticommuting sets of eight, according to whether they involve 

the second or third Aa, because the soliton operator products vanish otherwise. 

Look at one of these two sets. The charges of the 6 twisted states under the 

Cartan currents dX’ (; = 3,4, say) are proportional to pi. But these vectors 

(the 3 + 3 on the A2 weight lattice) form a regular hexagon about the origin, 

* The dimension of the twist field equals the difference between vacuum energies of the 
twisted and the untwistedsectors. See ref. [33] for the theory of twist fields and superfields. 
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just as the roots of SU(3) do, so the Cartan-root operator products are cor- 

rect up to overall normalization. (The unusual normalization arises because we 

are constructing an SU(3) Kac-Moody algebra with k = 3 rather than k = 1.) 

Finally the root-root operator products have the correct general form just as 

a consequence of ‘momentum’ conservation for the soliton operators; the twist 

superfields provide the appropriate fractional powers of z - w to make the right 

singularity. In fact the representation of the k = 3 non-supersymmetric SU(3) 

Kac-Moody algebra which is provided by the above SU(3) supercurrents is iden- 

tical to the parafermionic construction of ref. [34], which has also appeared in the 

mathematical literature in connection with 2 algebras!35’ The soliton operators 

appearing in the construction for central charge k are e ia.X/fi , with (Y a root; 

i.e., the length2’s of the root vectors which appear are effectively resealed by a 

factor of i from the usual normalization (length2 = 2 for long roots). In the 

SU(3) case at hand, the parafermions are particular combinations of twist fields 

and the fermions $3~4~5~6. 

Another N = 4 orbifold model - with 4d gauge group SO(5)@SU(2)@SU(2) 

- can be constructed by a different twisting of the same N = 8 l?96(&) model 

as above. This time we have P = PL = 26, generated by an WL which rotates the 

first A2 plane by 2z/3 rather than 47r/3, so that it has order 6 acting on space- 

time fermions. It is accompanied by a shift VL which is half of a weight vector 

for the triplet (3) re p resentation of the second A2 and half of a 3 vector for the 

third Aa. Without going into the details of the construction, we will simply say 

which generators of the gauge group come from which sector. As usual, Cartan 

generators reside in the untwisted sector. Long roots of SO(5) - which have the 

appropriate length2 = $ for k = 3, i.e. i = 0 - come from the doubly-twisted 

sector and its anti-sector. Two of the short roots of SO(5) (length2 = 5> come 

from the singly-twisted sector and its anti-sector, while the other two come from 

the triply-twisted sector. The latter sector also contains all four roots of the two 

SU(2) factors; these roots have length2 = 1, which corresponds to k = 2, i.e.also 

ii = 0. 
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Both of these &-based N = 4 models have gauge groups of dimension 16 

rather than the 18 of the first three models. Nevertheless, all simple SKM factors 

involved are minimal, i.e. have A = 0 and thus can be fully described in terms of 16 

free fermions (cf. the next section). Hence the super-stress tensor associated with 

the SKM algebras has central charge ZSKM = 16/3 in each case (cf. eq. (2.12)), 

and both models have to incorporate a left-over super Virasoro algebra with 
^L=2- c 3 one in the discrete series of unitary algebras with c^ < 1. In addition 

to zL, we can also determine which eigenvalues hL of Lt occur in the spectra of 

the two models by using the physical state condition LO = Lo, which implies that 

hL + hSKM = hint (modulo 1) 2 , or (modulo 1) in the (R,R) sector. Comparing 

the spectrum of the appropriate LgKM with the spectrum of i& - the latter 

is the same for both models and also for the N = 8 l?Q6(Ee) model - yields 

the same result for both models: NS states have hL = 0 or i (modulo f) while 

Ramond states have hL = $ or i (modulo 1). Note that while all these values 

of hL are allowed for unitary representations of the c^ = 8 algebrai201 there are 

other allowed values of hL, namely hL = & (modulo i), that do not occur here. 

However, the values of hL that we found are the only ones allowed if the left-over 

algebra is extended to an (untwisted) N = 2 super Virasoro a1gebra!361 And in 

fact there is a good reason for the existence of a global N = 2 supersymmetry 

on the world sheet: the U(1) current Cf==, $$!J’ that generates it is preserved by 

any abelian twist. 

The fact that both & orbifolds yield the same left-over algebra may appear 

surprising, but it can easily be explained by comparing the respective twist groups 

P = PL: The square of the 26 generator we have used to make the SO(5) @  

SU(2)2 model is precisely the 2s twist that generates the SU(3)2 model. This 

means that we should be able to start directly from the SU(3)2 model, twist it 

by a 22 group, and get the SO(5) ~sU(2)~ gauge group. If the 22 element twists 

only the fermions that make up the SKM algebra, then the left-over algebra will 

indeed be the same. The required twist does exist: it acts on supercurrents 

of both W(3) ‘s as the adjoint representation of the matrix diag(-1, -l,+l). 
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Eight out of the sixteen currents are left invariant by this 22 twist and form the 

untwisted sector of the new model; the group they generate is SU(2)2 @  U(1)2. 

The twisted sector also contains eight states; their quantum numbers with respect 

to the untwisted group are (2,2,0,0) + (l,l, fl, fl) + (l,l, fl, ~1). It is easy 

to see that the first four twisted states enlarge the SU(2)2 - SO(4) group to 

SO(5) while the last four are the non-Cartan generators of the SU(2)2 algebra. 

Unlike the SU(3)2 case, an SO(5) @  SU(2)2 SKM algebra with c^ 5 6 does 

not have to be minimal: One can have i = 1 for one of the SU(2) factors, while 

keeping i = 0 for the other one and for SO(5). This combination would have 
;SKM = 6 and thus would not need a left-over algebra. Such a model can in fact 

be constructed as an N = 4 orbifold. Again without going into the details, we can 

outline the construction as follows: We start with the N = 8 model whose lattice 

is I’696(D5 + Al). W e twist it by P = PL = &, generated by a 2z/3 rotation 

WL that permutes the first three coordinates of the D5 lattice, accompanied by a 

shift VL which is one third of a vector weight for D5 (along the fourth or fifth 05 

coordinate) plus one third of a root for A 1. It is a straightforward procedure to 

construct the properly normalized root diagram for the non-Cartan generators of 

the gauge group; we find that its geometry indeed fits SO(5) CCISU(~)~. Moreover, 

the root lengths squared are i and i for the SO(5) roots, 1 for the roots of one of 

the SU(2)‘s and $ for the other; this translates into k = (3,2,3) or k = (O,O, 1) 

for the respective gauge group factors. 

For our final example of a P = PL orbifold we present an N = 4 model with 

gauge group G2. This time both bosonic and fermionic techniques will be useful. 

As usual, our starting point is an N = 8 model; its lattice is l?p6(A2 + A2 + 02). 

First, we fermionize the two dimensions corresponding of the 02 sublattice and 

make a 2’2 twist that unifies the spin structure of the resulting fermions with 

the spin structure of the tii (cf. the SU(2)6 model). This twist reduces the 

supersymmetry to N = 4 and enlarges the gauge group to SU(2)2 @  U(1)4; both 

SU(2) factors are minimal. Second, we make a 23 twist that leaves the SU(2)‘s 

alone, rotates the first A2 sublattice by 47r/3 and shifts the second A2 by a weight 
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vector in the 3 class. This time we use the bosonic arguments we’ve developed for 

the SU(3)2 model and find that instead of the Ai lattice we now have a minimal 

SU(3) SKM Ig b a e ra, plus a left-over algebra with E = 4 (presumably a sum of 

two unitary super Virasoro algebras with t = i). So far we have built a model 

with gauge group SU(3) @I SU(2)2, which is interesting by itself since it contains 

the standard model gauge group. 

We have promised a G2 model, however, so another twist is due. The SU(3) 

Lie algebra has an outer 22 automorphism - complex conjugation in an anti- 

hermitian basis - that leaves an SO(3) subalgebra invariant and changes the 

signs of the other five generators. The SU(2)2 algebra also has an outer 22 

automorphism - exchange of the two SU(2) ‘s. Combining these two automor- 

phisms together, we leave six of the 14 generators of SU(3) @  SU(2)2 invariant 

and change the signs of the other eight. Now we can use the fact that we have 

a minimal SKM algebra which can be described in terms of free fermions, since 

we already know how to treat a 22 twist which changes the signs of eight real 

fermions and leaves everything else invariant. The untwisted sector gives rise 

to an SU(2) @  SU(2) SKM lg b a e ra, which is however highly non-minimal: the 

first SU(2) ( su a e b lg b ra of the SU(3)) has k = 4.3 = 12 or & = 10 while the 

second one has k = 2 -2 = 4 or i = 2. The twisted sector yields another eight 

generators which transform with respect to the untwisted subalgebra as (4,2); 

this completes the adjoint representation of G2. If we now compute the root 

lengths of G 2, we find that the short roots have length2 = $ while the long 

roots have length2 = i; this corresponds to k = 4 or f = 0, which agrees with 

the requirement that Z(G2) = y. (The remaining tL = $ is supplied by the 

same left-over algebra as in the SU(3) 8 SU(2)2 model - we have not twisted 

the left-over piece). 

Our main reason for constructing a G2 model was to show that all allowed 4d 

gauge groups that we have explicitly listed in lines (A)-(F) of (2.14) do appear 

in N = 4 orbifold models. Using the same techniques, but starting from different 

lattices I?($) and twisting b y other cyclic groups P = PL = &, we have 
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constructed N = 4 models with all the other allowed gauge groups, except those 

having odd rank. The latter failure is due to the fact that abelian twists always 

preserve a Cartan subalgebra of an even dimension; presumably non-abelian twist 

groups P = PL can be used to make at least some of the allowed odd-rank gauge 

groups. 

3.5. CHIRAL N = 1 MODELS 

By now we have constructed several models with gauge groups large enough 

to contain the standard model, but they were non-chiral because of N = 4 

supersymmetry. Our next question is whether there are chiral models in the 

type II superstring framework. The answer to this question is ‘yes’: we will now 

give an example of a chiral 4d model; this model has (SU(2) 8 U(1))2 gauge 

group and N = 1 space-time supersymmetry. 

The starting point is the previous N = 4 SO(5) @  SU(3) model, which is 

most conveniently described here in terms of untwisted free fermions, using the 

form (3.9) for the supersymmetry generator TiKM. We twist this model by a 

group P = 24 which acts on both left- and right-movers, in order to correlate 

left-moving gauge quantum numbers with right-moving space-time helicities. In 

order to get a chiral theory, we need to break at least three of the four (right- 

moving) space-time supersymmetries. This is accomplished by the right-moving 

rotation 

WR = diag(Cc, CL, -1, -l), 

with Cc = (y -i), and written in the usual orthonormal basis for the D6 lattice. 

One can rewrite WR in terms of the linear combinations of the right-moving 

fermions @, xi, Bi which diagonalize it, and then bosonize those fermions. One 

finds that WR is equivalent to the shift 

6R = (t,a,~,t,o,o;a,a,-~;o) 

acting on the new bosons. The semicolons separate the bosons arising from xi 
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and $i; 4’; $p”, respectively. The distinction between 4 and x,6 is important 

because the spin structures for 4 are summed over separately from the rest of 

the fermions . 

The action of P on the left-moving fermions must be a group automorphism 

in order to preserve the world-sheet supersymmetry generator (3.9). In our case, 

we rotate the SU(3) f ermions by (the adjoint representation of) the matrix 

diag(i, i, -l), while the corresponding SO(5) matrix is diag(Cz, Cc, 1). This 

twist leaves G = SU(2) 8 U(1) @I SU(2)’ @I U(1)’ as the unbroken 4d gauge group. 

If we bosonize the left-moving fermions in a particular way we can describe the 

action of P on them as a shift: 

CL = (~,~,o,o;~,~,~,o,o;o), 

acting on bosons. Here the semicolons separate the bosons Hi; fi’; HIO arising 

from qa; ea; $+, respectively, where va (fa) are the fermionic parts of the SU(3) 

(SO(5)) supercurrents. 

Since P acts as a pure shift on the 10 left-moving and 10 right-moving bosons 

we have defined, it is a straightforward exercise to list all the massless states, sec- 

tor by sector, characterizing them by their lO+ 10 bosonic zero-mode eigenvalues. 

However, in order to compute the gauge charges of the states, we need to identify 

the generators (13,Y; I&,Y’) of the Cartan subalgebra of G as linear combina- 

tions of the fields dHi and a&. Defining Ii by 13(z) = Cf=, I@H’(z), etc., 

and using the known charges of states in the adjoint representations, we find that 

1; = (&-$l,O), I$ = (&$O,l,O), 

y’ = (l,l,O,O) f yi' = (1,1,2,0,0). 
(3.27) 

Gauge charges are given by inner products of these vectors with the vectors of Hi 

and &i eigenvalues for the massless states. Because of N = 1 supersymmetry, 

we need only list the spectrum of massless positive-helicity fermions other than 
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gauginos; the list below gives their SU(2) @  U(1) @  SU(2)’ @I U(1)' charges, 

preceded by the number of times they appear in the spectrum. 

Untwisted sector: l(l,O;l,f2), 2(2,1; l,O), 2(1,0;2,1). 

Singly-twisted sector: 2(2,-i; l,;), 2(1,+;2,+), 2(2,-i;l,-$), 2(1,+;2,-$). 

Doubly-twisted sector: 1(1,&l; 1, fl), 1(2,0;2,0), 2(2,0; 1, -l), 2(1,-1;2,0). 

One can check that the spectrum is anomaly free. 

A second chiral N = 1 model very similar to first one can be constructed 

from the N = 4 SU(2)6 model by twisting by exactly the same group P = 24 

as above. To be precise, P acts as the same shift in an appropriate bosonic 

picture; its action as an isomorphism of the SKM algebra is of course different. 

Specifically, P acts on the generators of four of the six SU(2)‘s as exp(i$&), 

on the fifth SU(2) as exp(iz13), and the sixth SU(2) is left invariant by P. 

Thus the 4d gauge group of the second model is SU(2) @  U(1)5, and all massless 

(non-gauge) fermions are SU (2) singlets. Here we just list their U(1) charges: 

Untwisted sector: l(kl,O,O,O,O), 2(0,1,0,0,0). 

Singly-twisted sector: 2(f3, -i, a, $, f, 

Doubly-twisted sector: l(O,i,i,-4,-i), l(O,~,~,~,~), l(O,-Q,-i,-f,-i), 

2(0,4,-$7$4). 

An underline indicates that all distinct permutations of the charges appear. 

Again the spectrum is anomaly free. One can similarly twist the N = 4 SU(4) @  

SU(2) model by the same group P; however in this case the N = 1 model 

obtained turns out to be non-chiral. 

The results of this section can be summarized as follows: Using asymmet- 

ric orbifolds, we have constructed several modular-invariant classical solutions of 

the type II superstring which lead to supersymmetric gauge theories in four di- 

mensions. In particular, we have reproduced the three models of Bluhm et d. “’ 

The additional models of Kawai et aZ!“1 can be constructed as asymmetric orb- 
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ifolds as well, using the three N = 4 models as intermediate steps.* We have 

also constructed other N = 4 models that are not equivalent to free fermions; 

one of these models has gauge group SU(3)2 which contains the standard model 

group SU(3) @  SU(2) @  U(1). Finally, we have given two chiral models, in which 

massless fermions transform as a non-self-conjugate representation of the gauge 

group. 

4. Gauge Quantum Numbers of Massless Particles 

In the previous section we have seen how to construct several models from the 

type II superstring which have realistic gauge groups, and also models with chiral 

fermions, but we have found no models with realistic group representations for 

the massless fermions. In this section we will see that this problem is a general 

feature of models based on the type II superstring, and is not due merely to 

our lack of imagination in constructing models via asymmetric orbifolds. In 

fact, no classical vacuum of the type II superstring can be consistent 

with the particle spectrum of the standard model. More specifically, 

we will show that in any four-dimensional model whose gauge group contains 

SU(3) c3 SU(2) @  U(l), massless triplets of SU(3) (such as quarks) cannot co- 

exist with massless SU(2) doublets (such as left-handed leptons). To prove this 

general result we return to the algebraic approach used in section 2. In that 

section we classified the different super Kac-Moody (SKM) algebras which can 

be incorporated into a type II model in a way consistent with unitarity and the 

existence of massless chiral fermions. In this section we will see that unitarity 

restricts the possible representations of a given SKM algebra, and therefore also 

limits the possible gauge quantum numbers of massless particles, such that SU(3) 

triplets are incompatible with SU(2) doublets. 

* While this paper was being typed we received [37], in which models similar to those of 
Kawai et al. are constructed using slightly different techniques. 
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Our starting point is the obvious remark that every state in the spectrum of 

a type II model belongs to some representation of the (left-moving) SKM algebra 

associated with the 4d gauge group. This just means that the supercurrent modes 

J,” and J,” act within the Hilbert space of states. The SKM representations of 

interest for string theory are those in which the spectrum of the ‘left-moving 

energy’ operator LO is bounded from below. Since the positive-frequency modes 

of J”(z) and Ja(z) when applied to a state lower its energy, by successively 

applying these operators to any state one must eventually arrive at a state jr) 

which is annihilated by all of these operators: 

Vr,n> 0: J,? jr) = J,” Ir) = 0; (4.1) 

Ir) is called a highest weight or primary state with respect to the SKM algebra. 

Also Ir) must represent the zero-mode subalgebra of the SKM algebra. In the 

NS sector this subalgebra is just the ordinary Lie algebra generated by Jt, so 

JiT 14 = qi) Id (4.2) 

for some representation matrices Ti”,,; eq. (4.2) defines the gauge group repre- 

sentation r under which the state Ir) transforms. In the R sector Ir) must also 

represent the Clifford algebra of fermionic zero-modes Jo”. We will discuss only 

NS sector SKM representations in this section, however - we know from section 

2 that all R states are massive whenever the SKM algebra is non-abelian. 

All states in a model can be constructed by applying the negative-frequency 

modes Jf,, JOn (r,n > 0) to the various highest weight states. The collection of 

states 

J$ . . . J$ Jf’,, . . . J$ Ir) (4.3) 

for a particular highest weight state Ir) is called a highest weight representation. 

Thus each state belongs to some highest weight representation, or is a linear com- 

bination of states in different highest weight representations. Since the operators 
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J$., JQn carry an adjoint index a, all states in a highest weight representation 

transform in the same way under the center of the ordinary Lie group. In par- 

ticular, for the Lie group SU(3) (SU(2)), t t s a es can only have nonzero triality 

(half-integer isospin) if some highest weight state does also. 

In fact, as long as we are interested only in massless particles, we can ignore 

the non-primary states in (4.3), with the exception of gauge bosons and their 

superpartners. The reason is as follows: left-moving energies of states in (4.3) 

differ from each other by integers or half-integers. Thus if the superfield r(z,e) 

that makes a highest-weight state Ir) has positive conformal dimension h, - 

which means that Ir) has energy greater than $ - then all states in (4.3) other 

than Ir) itself have strictly positive energies, i.e. are massive. The only exception 

occurs when r(z, 0) is the identity operator of dimension 0. In this case Ir) is 

just the usual NS vacuum state IO) (which transforms trivially under the Lie 

algebra), and the adjoint states J”,,, IO) are massless. These states give rise 

to the 4d gauge bosons when tensored with the helicity fl right-moving modes 

$:1,2 lb), but th ey can also yield massless scalars or fermions in the adjoint 

representation of the group if tensored with right-moving modes of appropriate 

helicity. For example, gauginos are made by tensoring J”,,, IO) with Iti), which 

is the same right-moving Ramond state that is tensored with +j‘,,, IO) in order 

to make a gravitino. Actually this gaugino t) gravitino relation works both 

ways: If there are massless fermions of type Jf,,, IO) 8 Ia), then $E,,, IO) 8 16) 

is a gravitino, hence there is a space-time supersymmetry, and these adjoint 

fermions are in fact gauginos. If there is more than one Ifi), then there is N > 1 

supersymmetry; such theories are necessarily non-chiral. On the other hand, 

if there is a massless scalar whose vertex contains a left-moving supercurrent 

Ja(z,e), then on dimensional grounds this vertex also contains a superfield of 

dimension (0, i), i.e. a right-moving supercurrent; as we have seen in section 

2, such supercurrents also destroy 4d chirality. Therefore, in chiral models all 

massless states other than gauge bosons and gauginos should be primary with 

respect to the SKM algebra. 
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At this point we have reduced the question ‘What gauge quantum numbers 

can a massless particle have ?’ to the task of classifying unitary highest weight 

representation of SKM algebras and describing how the highest weight states 

transform with respect to the Lie algebra. This has been done by Goddard and 

Olive[381 for the ordinary Kac-Moody algebras and generalized to SKM algebras 

by Kac and Todorov’151; the following couple of paragraphs reproduce their re- 

sults. Unitarity of a highest weight representation is the requirement that all the 

states (4.3) h ave non-negative norm. The hermitian conjugation needed to define 

the norm in a 2d field theory exchanges incoming and outgoing states on the 2d 

cylinder; therefore it exchanges z f-) l/Z in the complex plane. If we choose 

a basis in which the generators Ta = Jg of the Lie algebra G are hermitian, 

then the supercurrents Ja(z, 0) are also self-adjoint under hermitian conjugation, 

which means that their modes satisfy 

(J,a)+ = JL=, , (J,“)+ = J”, . (4.4 

Now consider the state ( Jtl + iJbl) I ) r in the highest weight representation 

generated from a highest weight state Ir). Its norm can be computed as* 

ll(J”l + iJ!Ll) 1r)112 = (rl kG - 2fzbcJ,C Ir) , (4.5) 

and the requirement that the norm is non-negative imposes an upper limit on the 

eigenvalues of T,” . Since the latter eigenvalues are completely determined by the 

Lie algebra for any of its representations, the choice of allowed Lie representations 

for Kac-Moody primary states is severely limited for small kG. For example, 

for SU(2) non-negativity of (4.5) implies 1131 2 k/2, which means that only 

representations of isospin I 5 k/2 are allowed for the highest weight states. For 

other groups one replaces 21 with the so called representation level X,(r) which 

is defined in terms of weight vectors of r[“‘; for G = SU(N), &(r) is equal to 

* It suffices to consider the case where G is simple. 
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the number of columns in the Young tableau of r (which for N = 2 indeed equals 

to 21(r)). T o summarize, highest weight states of a unitary representation must 

have 

xG(r) 5 kG. (4.6) 

On the other hand, representations satisfying (4.6) are integrable - they occur 

in the spectrum of a string propagating on the group manifold (with its radius 

quantized in terms of k) I391 - so they are indeed unitary. 

The condition (4.6) was derived using bosonic currents only, so it applies to 

any Kac-Moody algebra, not necessarily supersymmetric. In fact, for the SKM 

case a stronger condition can be derived, namely 

XG 5 k 3 k - CG(adj) (4.7) 

for all highest weight NS states; the condition for Ramond states is different. This 

stronger restriction follows from the fact that an SKM algebra contains a second 
non-supersymmetric Kac-Moody subalgebra. It is generated by the currents 

j,(z) = Ja(z) + ;fabc:Jb(z) J’(z): (4.8) 

and has central charge equal to &. Note that in order for this second Kac-Moody 
A 

algebra to have any unitary representations one must have k 2 0. Moreover, in 

the minimal case R = 0 this second algebra degenerates: there are no primary 

states other than IO) and all & IO) are null. What this means is that the 

currents j,(z) actually vanish; hence the original bosonic currents Jo(z) can 

be written as bilinears of J”(z) (cf. (3.10)). But the J”(z) are free fermions 

(up to normalization), so their algebra has a unique highest weight state in the 

NS sector, namely the usual Neveu-Schwarz vacuum, which is of course a gauge 

singlet. 
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In the general case one can rewrite the states 

weight representation of the SKM algebra using the 

j,(z) instead of Ja(z): 

(4.3) occurring in a highest 

negative-frequency modes of 

Because the I, commute with the fermionic currents J”(z), this shows that 

the Hilbert space is the tensor product of a free fermion part, J!:, . . . JfFk Ir), 
and an ordinary Kac-Moody part, ?&, . . . jEtn, jr). Again, the free fermion part 

has a unique highest weight state in the NS sector, so there is a one-to-one 

correspondence between unitary NS representations of the SKM algebra with 

central charge k and unitary representations of the ordinary Kac-Moody algebra 

with central charge i, with identical gauge transformation properties for the 

corresponding primary states Ir). This is the main result of ref. [15]. 

Having learned the restrictions on unitary highest weight representations of 

SKM algebras, we can now apply them to the problem at hand - building 

realistic superstring models. As. we have seen in section 2, existence of gluons 

implies an SU(3) SKM algebra, but now eq. (4.7) tells us that the existence of 

quarks - massless color triplets - requires the SKM algebra to be non-minimal: 

&3 2 1, or k3 2 4.* Similarly, existence of IV* and Z” gauge bosons implies an 

SU(2) algebra while existence of weak doublets requires i& 2 1, or k > 3. We will 

now see that while each of the conditions & > 1 and Es 2 1 is quite innocuous 

by itself, together they spell a disaster. Indeed, when substituted into eq. (2.12), 

they yield 

c^ (SU(3) @  SU(2) C3 U(1)) 2 6f, (4.10) 

which exceeds the c^(SKM) 5 6 limit that any 4d models based on the type II su- 

perstring must obey. Thus we are left with the following unpleasant alternatives: 

* Note that if the SU(3) is a subalgebra of a bigger SKM algebra, the latter algebra could be 
minimal. For example, a minimal SU(4) algebra (k = 4 or kd = 0) contains a non-minimal 
SU(3) subalgebra (also k = 4 but & = 1). 

51 



4 Giving up weak doublets. If A2 = 0, then one can have is = 1 (this allows 

quarks) in a model with c^(SKM) = 6. 

4 Giving up quarks. If is = 0, then one can have & = 1 or & = 4. The 

former choice allows weak doublets and requires a c^ = $ left-over algebra 

to achieve Zint = 6. The second alternative has no left-over algebra and 

allows massless states of higher weak isospin. 

0 Giving up the U(1) gauge boson; then one can have is = 1 and & = 2 and 

get Z(SU(3) @  SU(2)) = 6. C uriously, L2 = 2 allows for massless scalars 

or fermions to be weak triplets as well as doublets, so perhaps a model 

containing, say, the Georgi-Glashow model could be constructed. 

0 Or, perhaps, giving up one of the space-time dimensions, instead of a U(1) 

factor (since both contribute 1 to Z). 

Obviously none of the above sacrifices is phenomenologically acceptable, and 

the only real alternative is to give up on the type II superstring itself. Despite 

its ultimate failure, the type II superstring theory comes tantalizingly close to 

producing a realistic model: any-of the important features of the standard model, 

such as chiral fermions, gauge groups containing the SU(3) 8 SU(2) 8 U(l), 

massless quarks or leptons, can be achieved. It is just that we can never have 

all these features at once, i.e. in the same model. Although limit (4.10) exceeds 

the critical value Zint = 6 by a rather modest amount 6c^ = $, this is enough to 

render any classical vacuum+ of the type II superstring incapable of reproducing 

all the particles of the standard model in its massless spectrum. 

t The smallness of 6c^ makes one hope that perhaps quantum string effects can increase 
the critical dimension of the superstring so that (4.10) could be accommodated. At 
present this possibility is of course pure speculation, whose test will have to wait until we 
understand quantum string effects much better than we do now. 
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5. Conclusions 

In this paper we have explored the phenomenological possibilities for classical 

vacua of the type II superstring and have found them lacking. Previous work’7’81 

exhibited four-dimensional models with gauge groups containing the standard 

model’s. We have shown explicitly that those models are in fact asymmetric 

orbifolds. In addition we have constructed asymmetric orbifold models with other 

gauge groups which contain the standard model’s, but which are not subgroups 

of the previously realized groups, and also models with chiral fermions. The 

latter constructions are important because they provide an argument IQ1 that at 

least some asymmetric orbifolds cannot be interpreted as supersymmetric non- 

linear sigma models. The argument assumes that a Kaluza-Klein mechanism is 

responsible for the Cartan subalgebra of any 4d gauge group generated by sigma 

model compactification of the type II superstring. Then it can be shown[61 that all 

4d fermions transform non-chirally under the gauge group. Hence constructions 

resulting in chiral models, such as those in section 3, must be inherently different 

from supersymmetric sigma models. 

The main result of this paper, however, was to show, under some very mild 

assumptions as to what constitutes a model based on the type II superstring, that 

it is not possible to obtain a phenomenologically acceptable model. In particular, 

our proof did not depend on any particular compactification scheme, or even on 

whether the non-Minkowski degrees of freedom could be interpreted as internal 

dimensions at all, so long as they gave rise to a superconformal 2d field theory. 

In view of the physical importance of the question of whether realistic type II 

superstring vacua exist, and also the fact that one can construct classical vacua 

which are not too far from the standard model in their massless particle content, 

it might be worthwhile to see if any of the assumptions leading to the no-go result 

could be relaxed. 

In any case, the general approach described here applies as well to the (0,l) 

superconformal theory describing the compactified heterotic string, although re- 
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strictions from unitarity will be much less stringent. The most obvious applica- 

tion is to show that abelian dimension (0, f) supercurrents in a 4d heterotic string 

model destroy 4d chirality “‘I - non-abelian supercurrents eliminate all massless 

fermions.1201 So all gauge symmetry arises from a left-moving non-supersymmetric 

Kac-Moody algebra with cKM 5 22. B ecause so many quasi-realistic heterotic 

string models satisfy this constraint, one must ask subtler questions than just 

whether massless fermions exist with the gauge quantum numbers of quarks and 

leptons. One will undoubtedly need to apply to the problem more than just the 

string tree-level considerations of sections 2 and 4, for example by incorporating 

as well the constraints of modular invariance; even then one may be unable to 

progress without a better understanding of the dynamics of compactification. 

Finally, some of the specific constructions we gave in section 3 may be of 

use in constructing heterotic string models. For example, the two orbifolds of 

the N = 8 model based on the lattice r6s6(E6) demonstrate how to incorporate 

members of the N = 1 or N = 2 unitary discrete series into modular invariant 

string models in a rather non-trivial fashion (i.e. not just taking direct products of 

discrete systems which are indivi’dually modular invariant). They might therefore 

be useful prototypes for similar constructions in the heterotic string as well. In 

general, modular invariant systems involving members of the discrete series need 

not have any geometric interpretation at all. It may prove fruitful to study the 

exact circumstances under which such models can be interpreted in terms of 

orbifolds or perhaps other generalized geometries. 
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