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1. Introduction 

The recent interest in superstring theories as fundamental theories of all in- 

teractions”’ has been accompanied by attempts12-151 to understand the structure 

of string perturbation theory a la Polyako? Using this approach, much progress 

has been made recently on issues such as finiteness and vacuum stability to arbi- 

trary order in the perturbative expansion!‘-‘K’ With a few exceptions,(‘-9’1S-1s1 

almost all of the recent work on string perturbation theory has been within the 

context of a flat space-time background. Ideally one would like to achieve the 

same kind of understanding for arbitrary backgrounds, such as Calabi-Yau com- 

pactifications!161 However, the complexity of the interacting two-dimensional 

conformal field theories corresponding to Calabi-Yau backgrounds has blocked 

progress in computing arbitrary scattering amplitudes. On the other hand, orb- 

ifolds ” ‘I and related vacua1161 describable in terms of free twc+dimensional fields 

can give rise to phenomenologically interesting models, and yet being free theo- 

ries they still may be treated exactly. Our theme in this paper will be to illustrate 

some of the main aspects of string perturbation theory on orbifold backgrounds, 

where the point group of the orbifold is a cyclic group - ZN for some integer N. 

String perturbation theory a la Polyakov entails calculation of correlation 

functions of vertex operators on Riemann surfaces of successively higher genera. 

Vertex operators for string theories compactified on orbifolds are of two types. 

There is a class of vertex operators that describe the emission of states in the 

untwisted sector of the theory. Those can be written explicitly in terms of the 

free fields (Xp, q!+, etc.) representing the fundamental degrees of freedom on the 

world-sheet. Correlation functions of such vertices are almost as straightforward 

to compute as those of the flat ten-dimensional theory. However, there is another 

class of vertex operators on orbifolds that describe the emission of states in 

twisted sectors. These involve conformal fields known as twist fields!10-221 These 

fields do not possess a simple local representation in terms of the fundamental 

fields on the world-sheet; indeed the fundamental fields are multi-valued around 
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the twist fields. Consequently, correlation functions of these fields are usually 

calculated rather indirectly. 

In this paper we calculate correlation functions of an arbitrary collection 

of ZN twist fields on a Riemann surface R of arbitrary genus g by following 

the approach described in ref. [21] for the calculation of twist field correlation 

functions on the sphere. In this approach (henceforth referred to as the stress- 

tensor method) the idea that the stress tensor is the generator of deformations of 

the surface R - plus the local and global properties of twist fields - are used to 

derive integrable first order differential equations for the twist correlators. The 

same idea has been used to calculate spin field correlation functions at genus 

one “I “” and at arbitrary genus. As we shall see, the stress tensor method is 

also a powerful tool for calculation of twist field correlators at arbitrary genus, 

even though the global properties of the twist fields differ somewhat from those 

of the spin fields. Here we focus on the correlations of the fields u which twist 

the bosonic coordinates X’. Correlations of twist fields for fermionic coordinates 

+I can be handled similarly; their correlations are simple generalizations of the 

spin field correlations of refs. [4,.11]. 

An alternative approach to calculating ZN twist field correlation functions 

on a Riemann surface R is to consider an appropriate N-fold covering surface 

5 for R (of higher genus than R), on which the fundamental fields X’, T/J’, etc., 

are single-valued. This approach has been used “O’ to explicitly calculate certain 

twist correlators on the sphere, and also’231 to calculate arbitrary-genus vacuum 

amplitudes (for some values of N), which could then be factorized “‘I to yield 

lower-genus twist correlators. In the covering-surface approach one needs to re- 

late the moduli characterizing the Riemann surface R with twist fields inserted at 

points z; to the moduli of the N-fold cover fi; this relation can be quite compli- 

cated for general twist configurations. Yet another way to calculate twist correla- 

tion functions would be to explicitly construct the twist field as an ‘intertwining 
IlQ,251 operator’ which acts between the Fock spaces of different twisted sectors. 

This operator approach also could be unwieldly for arbitrary collections of twists 
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on higher-genus surfaces. 

We should remark that certain one-loop amplitudes for untwisted states in 

orbifold and related backgrounds have already been calculated explicitly. One- 

loop amplitudes of arbitrary numbers of untwisted external states for a 2s bosonic 

orbifold were calculated in ref. [26]. Also, the general one-loop calculation in 

ref. [14] of the Fayet-Iliopoulus D-term in an arbitrary background was accompa- 

nied by more explicit results for the Spin(32)/2 2 h t e erotic string on a 2s orbifold. 

More specifically, the one-loop mass for a U(l)-charged scalar which is induced 

by the D-term was computed directly, and also by factorizing an amplitude for 

four untwisted space-time fermions onto the scalar pole. One-loop scattering 

amplitudes for three untwisted particles for ZN orbifolds of the heterotic string 

were recently calculated in ref. [27]. N on-renormalization of Yukawa couplings 

at one-loop was exhibited when the orbifold preserves a four-dimensional super- 

symmetry, in agreement with general te’o’ arguments. For superstring models in 

which the internal degrees of freedom are free fermions with periodic or antiperi- 

odic boundary conditions, the one-loop vacuum amplitude has been shown PI 

to vanish when space-time supersymmetry is present, again in accord with gen- 

““’ eral arguments. Non-supersymmetric models in which the one-loop vacuum 

amplitude vanishes have been constructed by I291 Moore. 

This paper is organized as follows: In section 2 we review some pertinent facts 

about twist fields and outline the stress tensor method for calculating their corre- 

lation functions. It will be convenient to split the coordinate field X into classical 

solutions X,1 and a quantum fluctuation XqU, and to first calculate the quantum 

correlator ZqU corresponding to the path integral for X,, only. In section 3 we 

calculate ZqU for an arbitrary configuration of ZN twist fields on the torus. This 

exercise is a useful warm-up for the arbitrary-genus case because it avoids certain 

technical complications occurring for genus g 2 2. The extension to arbitrary 

genus is carried out in section 4. Section 5 incorporates the contributions from 

the classical solutions X,l; various properties of the full twist correlator are also 

analyzed there. Section 6 contains our conclusions. In Appendix A we collect a 
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few useful properties of theta functions on Riemann surfaces. In Appendix B we 

describe how to explicitly find a basis for the ‘closed loops’ on a Riemann surface 

with an arbitrary configuration of twist fields inserted. One needs to integrate 

certain ‘cut abelian differentials’ along these closed loops in the construction of 

the twist correlation function. 

2. Twist Fields and the Stress Tensor Method 

In this section we briefly review the properties of twist fields’10’20’21’221 and the 

stress tensor method’30”‘2’1 for determining their correlation functions, following 

the notation of ref. [21]. Twist fields are conformal fields which create states in 

the twisted sectors of the orbifold Hilbert space. In these sectors the coordinate 

fields X’ are not periodic on the world-sheet cylinder; instead they undergo some 

orthogonal rotation plus a translation, X’ t @ jXj + u’. The transformation 

(8, u) is an element of the space group of the orbifold. In other words, the string 

in this sector only closes on the space-time torus modulo the rotation @ j. We 

consider here ZN orbifolds, in which all the rotations are powers of a single 

rotation Bo of order N; 8o is an automorphism of some even-dimensional lattice 

A defining the space-time torus from which the orbifold is constructed. 

We choose a complex basis for the coordinates Xi in order to diagonalize 

eij, then focus on one of the complex coordinates, say X = -&(X1 + iX2), 

X = -&(X1 - iX2). Since 8o has order N, X will acquire a phase eZnikjN 

(k E {0,1,2 ,..., N-l}) under 8. This behavior on the world-sheet cylinder in 

the twisted sector fixes the local phase behavior (monodromy) of X(Z,Z) near 

any twist field, independently of the location of other conformal fields, and inde- 

pendently of the world-sheet topology: 

X(ze 2*i, z_e-2ri) = e2*ikiNX(z,Z) + U, (24 

where we have mapped the twist field location to the origin z = 0. Thus ZN 

twist fields can be represented as order-N branch points for the multi-valued 
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field X on the world-sheet Riemann surface, and there is a ZN-valued sheet 

index associated with each point on the surface (See figure 1). Actually, each 

twist field is associated via (2.1) with not just a single space group element (f3, u) 

but an entire conjugacy class of the space group. For the ZN case, each conjugacy 

class has a fixed rotation 8, and u runs over some’coset of the lattice A. The 

different cosets of A for a given 0 correspond to twisted states located at different 

fixed points of 8 on the space-time torus. (See refs. (17,20,21] for details.) 

Equation (2.1) holds for any twist field creating a state in a given twisted 

sector. Now we specialize to those twist fields, denoted by a(z,~), which create 

twisted sector ground states la) = a(O) IO). G round states are annihilated by 

the positive-frequency mode operators (Y,-k/N and &m+k/N which occur in the 

Laurent expansions of the fields t3,X and a,??: 

am-k/N Ia> = 0, m > 0, 

fim+k/N Ia> = 0, m 2 0. 

This determines the integer power of the singularity as the fields a,X and a,x 

(and similarly asX and 3,x) approach o: 

a,x u(w, a) - (z - W)-(l-k’N) T(W,tq + *a* , 

a,x a(w,tq - (2 - W)-k’N T’(W,fi) + *a- , 

&X a(w,s) - (E - tB)-klN f(w,TB) + *** , 

L&x u(w,Tq - tz _ ti)-(l-W) ?‘(w,a) + --* , 

(2.2) 

where the fields r, r’, etc., create excited states in the twisted sector. 

Equations (2.2) contain all the local information necessary to construct cor- 

relation functions for ax, ax, 8X and ax in the presence of twist fields. On 

the other hand, the information about the translation u in eq. (2.1) has been 

lost in passing to eqs. (2.2). This information reappears in global monodromy 

conditions on the correlation functions, which describe how X and x change 
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when they are carried around collections of twist fields, rather than just single 

twists. In particular, define a ‘closed loop’ 7 on the Riemann surface R to be a 

loop which encloses a collection of fields with net twist zero, i.e. the product of 

the corresponding point group elements is the identity. Around such a loop X 

(also x) is not rotated but merely translated, 

A,X= f dz l&X+ jdz &X=u7. 

7 7 
P-3) 

Here uy runs over some coset of the lattice A which is given by all possible 

products of space group elements (Oi, vi) for the twist fields which are encircled 

by -/!211 So a closed loop returns to its starting point on the Riemann surface on 

the same sheet for X. The particular sheet is irrelevant, as two loops which differ 

only by the sheet index give rise to different elements u of the same coset of A 

in (2.3). Similarly, a closed loop which winds only around a single twist field is 

always trivial. 

It is convenient to split X into a classical piece and a quantum fluctuation, 

x = xc1 + xp, such that the quantum piece does not change around each closed 

loop 7: 

A,X,, = 
f 

dz 8,X,, + 
f 

ds &X - 0. qu - (2.4 
7 7 

Because the functional integral for X is gaussian even in the presence of twists, 

the complete twist correlation function for a product of n complex pairs (X,x) 

of orbifold coordinates takes the form’20*211 

2 = n(uj) = fi z,‘il C e-Sc’(u”), 

i i=l v,B 
(2.5) 

where Zqu is the quantum correlation function, i.e. Zqu is evaluated using the 



global monodromy conditions (2.4) for X. The classical action 

S,l(V,iq = &Jd2ri: (&Xf,&Xfl + &x:,&r;,) 
R i=l 

(24 

is a sum of contributions from each complex pair. The sum over (v,B) in (2.5) is 

a sum over all classical solutions Xil(z, Z; v, a) obeying (2.3) for some vector v7 

in the appropriate coset of A, for all closed loops 7. Note that there may be a 

coupling between the different complex dimensions in this sum over cosets, so the 

full correlator need not decompose into a product of correlators for each complex 

pair of dimensions. On the other hand, the quantum contribution Z,, = ni Z,(? 

does decompose and so may be treated one complex dimension at a time. 

Now we review briefly how to calculate ZqU via the stress tensor method. 

The stress tensor T(z) enables one to derive simple differential equations for 

correlation functions of primary fields ~(z,z) in conformal field theory, due to 

the operator product expansion (OPE) 

Hence if one can determine the expectation value for the stress tensor in the 

presence of primary fields, 

tTCz) I-Ii di(zi, zi)) 
Wz))) = (j-Ji ($+, Zi)) ’ (2.8) 

then one may evaluate the residue of the simple pole in (2.8) as z ---$ Zi in order 

to obtain the logarithmic derivative of the primary field correlator with respect 

t0 Zi, 

Repeating this procedure for each zi, and then integrating the first-order differen- 

tial equations, one obtains the full zi-dependence of the correlator (ni 4i(zi, Zi)). 
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If the correlator is being evaluated on a genus g Riemann surface, it will 

also depend on the 3g - 3 moduli r; of the surface. This dependence can be 

determined ““‘l * m a similar fashion by integrating the stress tensor expectation 

value ((Z’(z))) with respect to the Beltrami differentials. In fact one in general 

only needs to carry out this integration for ((T(z))) with no primary fields in- 

serted, which yields the genus g partition function. The reason is that only a 

multiplicative prefactor f(r;, ?i) for (ni 4i(zi, Zi)) is left undetermined by the zi 

integrations. Assuming that one knows the tree-level operator products of the 

&i, one can factorize the correlator onto the identity operator evaluated on the 

genus g surface, and thereby determine f(ri, Fi) in terms of the genus g partition 

function. 

The virtue of the stress tensor method for orbifold backgrounds is that the 

free fields d,X, azX, a,;iZ and ~9zx have precisely the same OPE’s as in a flat 

background, 

-a,xa,x - (z Iw)’ + w4 + *** 9 

d~Xa,x - finite. 
(2.10) 

Therefore ((T(z))) ’ t 1s rivial to extract from the Green’s function in the presence 

of twist fields, 

g(Z,W;Zi,Zj) E 
(-aZxaUJX~fcl Oi(Zi, Ei)) 

(nfi.i.1 bi(Zi, %)) ’ 

One simply lets w -+ z and subtracts the double pole singularity: 

The auxiliary Green’s function 

h(E,W;Zi,Ej) E 
(-aZXauJXn~=l Oi(Zi, Zi)) 

(l-I,“=, bi(Zi, %)) 

(2.11) 

(2.12) 

(2.13) 

is also required in order to fully determine g(z, w) via the global monodromy 

constraints (2.4) on X,x. In the next sections we will use complex function 
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theory on Riemann surfaces to explicitly construct these Green’s functions and 

thereby extract the twist correlators. 

3. Green’s Functions and Quantum Twist Correlators at One Loop 

In this section we use the stress tensor method to evaluate the quantum 

correlation function Z,, of L twist fields on the torus. We will defer evaluation 

of the classical contribution, and a check of the asymptotic behavior of ZpU, until 

after we have generalized the result for ,& to arbitrary genus in section 4. 

3.1. CUT ABELIAN DIFFERENTIALS AND GREEN’S FUNCTIONS 

Here we determine the Green’s functions g(z, w) and h(z, w) on the torus by 

exploiting the local and global monodromy requirements on a,X and t3,x. First 

consider the local properties which g(z, w) and h(~, w) must satisfy. In addition 

to the usual singularity structure dictated by the OPE’s (2.10), 

g(z, W; Zi) - (z Tw)’ + finite as z + 20, 

h(Ey W; Zi) N finite as z ---t w, 
(34 

they must exhibit the same behavior as aZX, asX and a,r as they approach 

the locations of the L twist fields ai(zi,Zi) (OPE’S (2.2)): 

fJ(Z, W; Zi) N (Z - Zi)--(lw3) i3S Z + Zi, 

- (u) - Zi)-~ i3S W + Zi, 

h(E, W; Zi) - (Z - Zi)-% aS Z + Zi, 

-(W-Zi)-2 aS W +Zi. 

(3.2) 

These local properties are identical to those obeyed by the Green’s functions on 

the sphere. 

10 



The first step in the construction of the Green’s functions is to build certain 

holomorphic and antiholomorphic one-forms which are doubly-periodic on the 

torus yet have the appropriate behavior near the twist fields, as dictated by 

(2.2). We denote such one-forms by (8,X), (8,X), (a,x) and (&x), and refer 

to them as cut (abelian) differentials. When properly normalized (in the next 

section), the cut differentials will also serve as the classical solutions aZXCl, etc., 

in the presence of twist fields. Since h(~, w) remains finite as z + w, it consists of 

the product of an antiholomorphic and a holomorphic cut differential. Similarly 

g(z, w) is written as the sum of two terms, the first developing the required double 

pole as z approaches w and the second consisting of a product of holomorphic 

cut differentials in z and w. 

Now let us construct the cut differentials. To generate the appropriate local 

monodromy, define* 

7N-k(Z) = fi l91(Z - Zi)-(l-%) , 

i=l 

r,(‘) = ~ 191(Z - Zi)-~ . 

(3.3) 

i=l 

While T~-~(z) and r,(w) exhibit the local monodromy of d,X and a,x, the 

transformation properties of theta functions (equations (A.3)) show that they 

are not periodic on the torus. One can make them periodic as z + z + 1 by 

multiplying them by a product of L - M and M theta functions, respectively. 

Here we have defined M = Cf=, $$; M is an integer, because the correlation 

function must have zero net twist on the torus in order not to vanish!1”20’211 Since 

the fraction $$ is defined to be between 0 and 1, we have M 2 1 and M 5 L - 1. 

Thus (3,X) is constructed by multiplying rN-*(z) by nf.Ir”fir(z - Zj). The 

only constraint on the Zj is that zfzIM Zj = Cf=, (1 - $$)zi, SO that (a,X) is 

periodic as z + z + 7. 

* See Appendix A for our &function conventions. 
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A set of linearly independent differentials for (a,X) is 

L-M 

Waft =r~-k(Z)'l(Z-Zai-YN-k) ~ 91(~-z,j) , i=l,...,L-M, 
j#i 

(3.4 

where {zol , . . . , z~=-~} is an arbitrarily chosen set of L-M twist insertion points 

and YNok is determined by periodicity as z -t z + r to be 

YN-k = 2 (I- $)Zi - L~z~j *  

i=l j=l 
(3.5) 

The wzLk( z are linearly independent since by our construction w$~(z~~) = 0 ) 

when i # j. To see that they span the space of cut differentials with appropri- 

ate local monodromy consider the doubly-periodic meromorphic function X(z) 

which is constructed from an arbitrary cut differential wNmk(z) and a reference 

differential, say wgik(z): 

X(z) = wN-k(z) - 
G’k(Z) 

(3.6) 

Given w,-,(z) - and assuming zi # zj for all i # j - one can adjust the 

constants Ci, i > 1, so that the residues of X(z) at the L-M poles zo2,. . . , z&L-M 

and Z,, + YNmk vanish. For these values of Ci, (3.6) has no poles and hence is a 

constant, which we can set to zero by adjusting Cr. 

Similarly, we find a complete set of M linearly independent cut differentials 

for (8,x), 

wp (z) = rk(Z)gl (z -Zpi -K)fi’l(Z-Z~j), i = l,...,M, (3.7) 
j#i 

where 

Yk = c zzi - 2 Zpj 
L ki 

i=l j=l 
(3.8) 

and { zp, , . . . , zpM} are M twist insertion points, not necessarily related to {zoli}. 
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With this basis of cut differentials we now write down the Green’s functions: 

L-M M 

9(z, w) = 9e(Z, W) + c C&j w~f-k(z)w?(w) 
i=l j=l 

and 
MM 

h(Z’, W) = C C Bij i;)*p; (Z)Wk (W) 

i=l j=l 

(3-g) 

where 

&9(z,W) = TN-k(‘+Yk(W) [~~~~“a)]‘~(~,~). 

The constants Aij and Bij will be determined using global monodromy after 

choosing P(z, w). P(z, w) is uniquely determined - up to shifts in the non- 

singular portion of g(z, w), i.e. shifts in Aij - by the requirement that ge(z, w) 

is doubly-periodic on the torus in the variables z and w, and has the double-pole 

singularity (3.1) as z -+ w. 

One way to construct P(z, w) explicitly is via the parametrization 

M L-M 

P(Z,W) = CCAl;;c(Z,W) n fil(W - Zi) n dl(Z - Zj), (3.10) 
A iEA jE.4’ 

where the sum on A is over all (h) subsets of {1,2,. . . , L} containing exactly 

M elements, and A* is the complement of A in {1,2,. . . , L}. The (k) constants 

CA are chosen to satisfy the M equations CAliEA CA = s, i = 1,. . . , M, which 

also imply that CA CA = 1. FA (z, w) is given by 

FA(z,w) = 191(z-w+uA)sl(z-w+yA--A) 

h(uA) h(lTA - UA) 
(3.11) 

where 

L k. 
YA=~~Zi-~Zj=- 

i=l jEA 

It is easily verified that with P(z, w) as written in (3.10) g8(z, w) is doubly- 

periodic and has a double pole with coefficient CA CA = 1 as z + w, since 
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FA(w, w) = 1 for all (k) sets A. The single pole is absent when the constants 

CA satisfy the above M equations, provided also that ~~=FA(z, w)I,=, = 0 for 

all A. But ~=FA(z, w)j - Z--u) is a meromorphic function of VA with a simple pole 

at VA = 0 and one at VA = YA. Hence it has two zeroes, at say VA = Vi 

and VA = YA - 27:; these choices of VA both give the same function FA(z, w) in 

(3.11), which when inserted into (3.10) (f or each set A) yields a P(z, w) satisfying 

all the required constraints. Note that (h) > M for M # 1, L - 1, so there are 

in general more constants CA than equations for them. The resulting ambiguity 

in {CA} corresponds to a shift in the nonsingular portion of ge, which may be 

absorbed into a shift in Aij in (3.9). 

It turns out that the explicit form (3.10) for P(z, w) is not required to cal- 

culate the twist correlator 2 = (ni oi(zi, Zi)). The following identity is easily 

derived from constraints imposed on P(z, w) by the singularity structure (3.1) of 

g(z, w), and is sufficient to eliminate all explicit dependence of Z,, on P(z, w): 

On the other hand, the expression (3.10) is required in order to explicitly de- 

termine via global monodromy all the constants Aij and Bij occurring in the 

Green’s functions g(z, w) and h(z, w). Explicit forms for the Green’s functions 

are needed to calculate the correlation functions involving fields other than the 

ground state twists Q(Z, z)!“’ 

The global monodromy conditions for g( z, w) and h(z, w) follow from eq. 

(2.4): 

o= 
f 

dz g(z,w) + 
f 

dz h(z,w) (3.13) 

7 7 

for all closed loops 7. The number of independent equations represented by 
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(3.13) is just the number generators of the homology group for the closed loops, 

keeping in mind the equivalence of loops under shifts of the sheet index, etc. We 

show in Appendix B that this number always equals the total number of linearly 

independent cut abelian differentials, namely L + 2g - 2 for arbitrary genus g, 

and also show how to construct the homology generators, which we refer to as a 

basis for the closed loops. It suffices to impose (3.13) on the L + 2g - 2 elements 

of this basis, as we can then invert the global monodromy conditions (3.13) (and 

also similar conditions on the classical solutions). 

For the torus (g = 1) we define the elements of the L by L ‘cut period 

matrix’* to be 

w; = 
f dz w;ll,(z), i= l,...,L-M, 

70 

WL-MSi = a 
f 

dz @(z) , i= l,...,M, 

7a 

(3.14) 

where the ra, a = 1,. . . , L, form a basis for the closed loops. The antiholomor- 

phic differentials L$‘(z) are the conjugates of (3.7) and appear because of the 

antiholomorphic dependence in h(~, w). As long as the twist insertion points zi 

do not coincide, the inverse of Wj exists: 

(3.15) 
a=1 i=l 

With ge(z,w) as previously defined, the Green’s functions satisfying both local 

* Since the cut period matrix defined here has both holomorphic and antiholomorphic 
elements, it does not correspond precisely to (elements of) the usual holomorphic period 
matrix on the covering surface. 
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and global monodromy are given as 

. 9(z, w) = 9&vJ) - w,o~k(z) “c” ,--, 2 (W-l); f 4/ 9e(Y,W), 
a=1 

%W’) = - &‘,B;(E) 5 (W-l);-M+if dy;,Jy,w). 
i=l a=1 

70 

(3.16) 

Although the Green’s functions are unique, the particular representation (3.16) 

is basis-dependent since it requires a choice of L - M points {z,~} and M points 

{zpi}, as well as a basis of linearly independent loops {ra}. 

3.2. TWIST CORRELATORS 

The stress tensor expectation value ((T(z))) in the presence of twists is ob- 

tained from the Green’s function g(z,w) in the limit w + z, using eq. (2.12). 

With g(z, w) given by eq. (3.16), and the identity (3.12), we find 

- ~rN-k(z)7k(z)~~~(z,w) I~JU=E -;$j$ (3.17) 

- Lc~;ik(z) 2 (W-l); f dy ge(y,z). 
i=l a=1 

70 

Similarly, the OPE’s between the stress tensor and the twist fields yield differen- 

tial equations for the quantum portion Z,, of the twist correlator (nf., ai): 

fZJZi In Z,, = lim z--rzi Cz - zi)(T(Z)) - ( 
[ 

y ,,1 3 
Z 6 

(3.18) 

where hi = $$f(l - $f) is the conformal dimension of the twist field ci. As 

a check, observe that the l/(z - zi) poles in (3.18) cancel. A similar set of 

differential equations dri In Z,, = . . . are obtained by considering the OPE’s of 

the antiholomorphic stress tensor T’(E) with the twist fields. 
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Because the ith cut abelian differential &t,(z) is more singular than the 

others as z -+ zcri, the last term in the stress tensor (3.17) has a particularly 

simple structure in this limit; hence the differential equations for the L - A4 

variables zai are also simple. So let us first consider the differential equations 

for these variables. To deal with the rest of the insertion points, we can then 

change the set {zai} and thus the basis of abelian differentials so that the point 

that we are differentiating with respect to always occurs in that set. Hence the 

problem of integrating the differential equations for all the twist insertion points 

reduces to showing how to integrate the equations for a particular set (zai}, and 

then showing that changing the set preserves the integrability. The quantum 

correlator ZqU(z;,&) should not depend on which set {zai} was chosen, and this 

will be demonstrated. 

From (3.17) and (3.18), the differential equation for the point .zai is 

~3,~~ In Z,, =i 2 jg, [+ (I- !5) + (I- 2) $1 “s;;;;; -1; 
. 

lL 
rI 

1 
-=pcz, w) I*,, 

- 29:(o) jZai tfl(Zhi - %j) a2 a7-U 

2 (W-‘); f dz w,o+)h;(z) . 
a=1 

ra 

- 

The function Ai which occurs in the last term is given by 

(3.19) 

hi(z) = ,ll~ si(“)p(z, ‘ai) 
w,Qik(z) S:(Z - %a;) n,“,ai ?.91(Z*i - Zj) ' 

(3.20) 
Q* 

By Taylor expanding P(z, zoi) about zai, and using the constraints on it men- 

tioned earlier, the singular behavior of Ai near zoi is easily shown to be 

But this is also the leading singularity of [w,QL~(z)]-‘~,~~w~L~(z) near zai) as 
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long as YNek is non-vanishing. The difference between the two functions is mero- 

morphic with poles at the L - M zeroes of wELr(z). It is therefore equal to 

[wEi+ (z)]-1 C;zr T; w,“c,(z), w h ere the L - M coefficients 2’: are determined 

by equating the residues of the L - M poles and the leftover constant function. 

This establishes the identity 

W~~,(Z)Ai(Z) = az,.W~~,(Z) + LzTjwE<k(*)- t (3.21) 
j=l 

When the expansion (3.21) is inserted into the differential equation (3.19), 

only the T’%! term in the sum over abelian differentials contributes, because of 

(3.15). T,“ is determined by letting z + 2,; in hi(z) - [wNQ’_*(z)]-‘~~,~wNQL~(z): 

T,! = aZP(z, %a;) I*=Zai L--M 9\(Za, - %aj) 
29:(o) l-I,“,,, til(za; - zj) - c jzi fll(zai - z&j) ’ (3.22) 

By applying the identity (3.12) ‘to the P(z,zai) terms in (3.22) and (3.19), we 

find that the P( Z, z&i)-dependence of the correlator disappears. 

After some rearranging, the differential equations in zai for the quantum 

correlator assume a simple form: 

L-M 

+ dzai ln n gl(Zai - Za,)(l-+) fJ t91(tai - Zj)-(l-*)‘l-‘) . 
1 l#i i#% 

1 
(3.23) 

The first term can be rewritten as -aZai In [WI + Cj”?lM Et=, (W-l)Tal.iWLZ’) 

where IWI is the determinant of the cut period matrix W. Evaluation of the 

zai derivatives on IV; (j # i), is similar to the analysis of Ai( There exist 
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coefficients U/i)j such that 

azaiw2&) = Lz upw,*‘-,(z) . (3.24) 
I=1 

This is proved by dividing (3.24) by wElc (z) and using the L - M constants U/i)j 

to match the residues at the L - M poles on each side. The difference between 

the two sides is then a constant which can be absorbed in a redefinition of Uj(i)j. 

The only coefficients which contribute to (3.23) are the Uj(i)i, because of the 

contraction with (VV-‘,j”, and they are easily determined by letting z + zaj in 

(3.24). We find that 

L-M L 

j#i a=1 

1 
(3.25) 

= &In 19r(Y,-,)~-~-~ . 
I i#i 

Putting all this together, we can now write down the quantum correlator 

which solves the differential equations in all the variables {zai}: 

L-M 

x JJ gl(za; - *aj) fJ Q1(& - *j)-(l-iw2) , (3.26) 

i,j= 1 i,j=l 
i< j i<j 

where f(~;kl,z~ 4 {zai},zi) may d P e en d on the remaining A4 points, the modulus 

r, the twist integers kl and all the antiholomorphic twist insertions 21. 

To find the full zl-dependence, consider the change of basis induced by ex- 

changing one of the L - A4 zai’s for one of the remaining M points. To be 

concrete let or = 1 and let the rest of the oi’s be any set of L - M - 1 other 

insertion points. Denote the basis of cut abelian differentials with this choice 
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Of {%a;} as wEtk(l) , where the extra subscript indicates that zr E {Zai}. Now 

consider changing the basis by letting cyr = a instead, where Z~ is not one of the 

other za’s. (Such a za always is present since M 2 1.) Denote this new basis of 

cut abelian differentials by w,“L, (aI. Since both bases are complete, there exists 

the relation 

L-M 

w,“l,,,,(*) = 1 c; 4’-ql)(*). 
j=l 

(3.27) 

To determine the coefficients Ci , let z + zai for each i. The resulting trans- 

formation of the determinant IWrl, where the subscript denotes the first basis of 

abelian differentials, is 

> 
L-M-1 L-M l91(Zaj - %a) 

n j=2 gl(zOj - %l) . 
(3.28) 

This change in the determinant is cancelled by the change in the additional oi- 

dependent terms in the correlator (3.26), so that (3.26) is invariant under the 

change of basis. Hence (3.26) already contains explicitly the dependence on all 

of the zi. 

The dependence on the antiholomorphic coordinates Ei is found in the same 

way, using Green’s functions g(~,@) and h(z,@). Inspection of the behavior 

(2.2) of 8X and 8x near twist fields shows that the antiholomorphic dependence 
- - is given by simply conjugating all coordinates z, zpi, . . . t) z, zpi, . . . and inter- 

changing ki with N - ki everywhere. Now, the determinant [WI in the quantum 

correlator (3.26) d oes not factorize holomorphically. However, IW) is invariant 

(up to a sign) under complex conjugation accompanied by interchange of differen- 

tials of the type rlvsii with rk, so that it is compatible with the antiholomorphic 
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differential equations. The full quantum correlator is 

Z,, =f(T; kr)lWI-‘~l(Y~-,)L-M-‘Sl(Y~)M-l 

;,j=l 
i<j 

*ai - *Oj) fi ‘l(*pi - *pj) 
i.j= 1 

i<j (3.29) 

Ii ( 
& zi - zj)-u-~w~)gl(zi - zj) 

-g+$ 
, 

i,j= I 
i< j 

The normalization factor f(r; kl) can be determined by factorizing the twist 

correlator on the torus partition function. 

4. Extension to Arbitrary Genus 

We again apply the stress tensor method to calculate the quantum twist 

correlator ZqU, now at arbitrary genus. The basic outline of the calculation is 

identical to the genus one case: We write down the cut abelian differentials and 

from them construct the Green’s functions g(z, w) and h(~, w) using local and 

global monodromy, and from the Green’s functions we subsequently extract the 

stress tensor and differential equations for the correlators. There are complica- 

tions associated with function theory on a Riemann Surface R of genus g > 1, 

and we have listed some relevant mathematical results in Appendix A for conve- 

nience. We also refer the reader to the works of Mumford’ and Fayr21 and to 

the reviews [33,34,35]. 

The local monodromy of the cut abelian differentials can again be generated 

by the functions 7YN--L(~) and rk (z) defined in (3.3) if 9 1 (z - zi) is replaced by 

any Riemann theta function ‘311 of odd characteristic 9[1] (Z- Zi) where Z = 

J;O dz w’(z) is a point on the Jacobian Variety Jac(R) of the Riemann Surface 

R. From now on we will suppress the characteristic label [::I. Now, 9(Z- w’) 

has, in addition to a zero at z = w, ‘spurious’ zeroes at z = Ri, i = 1,. . . , g - 1, 

which are independent of the location of w (see Appendix A). Therefore yN-k(%) 
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and 7k(z) have spurious poles, of order A4 and L - M respectively, at each point 

in the set (I&}. These poles must not appear in the cut differentials. We wish 

to show that the one-forms 

L-M 

(4.1) 

are linearly independent cut differentials for (6),X). Here h2(z) = w’(z) . az4(0) 

enables WELL(%) to transform as a one-form rather than a function. h2,(z) has 

double zeroes at each of the points Ri (see Appendix A) which cancel off spurious 

poles from TN-k(%) in (4.1). Th e ou d bl e zeroes also mean that the ‘square root’ 

h(z) is a well-defined half-order differential, which we will need shortly. The 

vector ?N-k iS a point on JaC(R) defined to make ‘&i-k(%) periodic about B 

cycles: 

L-M 

a$ - c zaj * 

j=l 
(4.2) 

For generic insertion points %i, the vector .Z+ai + i;N-k E Jac(R) is not the 

image y’ of a point y on the Riemann surface R, because the set of vectors y’ is 

only a one complex-dimensional subspace of the g complex-dimensional Jac(R). 

Due to this fact, the Riemann vanishing theorem (Appendix A) shows that the 

set {Qr,... ,Qg} of zeroes of r9(.Z- Zai - 9,$,-k) is in general disjoint from {I&}.* 

Hence the L - M spurious poles at Ri from TN-k(%) are not quite cancelled by 

the L - M - 1 zeroes from ~j t9(Z- z’Qj); this is why we have used the differential 

h’(z), with a double zero at each Rip in (4.1). Note that wgLk(%) - z - Rj as z 
approaches each Rj. Hence each of these cut abelian differentials vanishes at the 

g- 1 points {Ri} and at the L - M - 1 points {zaj}, j # i. 

* This assumes that ti(z- Z& - PN-k) does not vanish identically - which is the case for 
generic insertion points 21. 
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We have constructed L - M linearly independent differentials for (a,X). But 

they do not span the space of all such cut differentials. This can be seen by 
1331 applying the Riemann-Roth theorem, eq. (A.5), to the meromorphic function 

A(z) = WN--)(z)/W;:k(Z), 

where w N-k(z) is an arbitrary cut differential for (c3,X). Now J,(z) generically has 

simple poles at the points {*aa,. . . ,zaLmM,R1,. . . , R(,-~),QI,. . . ,QB} coming 

from the zeroes of wNQIk(z); the Qj are the zeroes of t9(Z-Zai -FN-,). The divisor 

N corresponding to simple zeroes at these points has degree d[N] = L-M+ 2g - 2. 
Since the degree of the divisor for an abelian differential is 2g - 2 there are no 

nonsingular differentials which are multiples of N and so i[N] = 0. The dimension 

of the space of cut differentials w,-, (z) equals the dimension of the space of 

functions X(z); by eq. (A.5) this number is r[kJ-‘] = L-M+g - 1. Therefore we 

need to add g - 1 independent cut differentials to the set (4.1) in order to have 

a basis. Similar arguments yield a dimension of M + g - 1 for the space of cut 

differentials for (3=x), g’ lving a total of L + 2g - 2 cut abelian differentials. 

Notice that the L - M differentials (4.1) vanish at all but one of the L - M + 
g - 1 special points (zai 3 Rj}, the exception being %a, for some 1. TO fill out a 

basis, it is natural to build g - 1 cut differentials which vanish at all the zai and 

at all but one of the Rj. This can be achieved by considering a theta function 

d(Z) - 19[;:] (‘) ’ h d’ff z wit a 1 erent odd characteristic from that of s(Z). (There are 

20-‘(2g - 1) > 1 odd characteristics for g > 1.) The theta function 8(Z- I?j) has 

a zero at Rj and spurious zeroes at PI,. . . , P8-r. Define the abelian differential 

i2(z) = w’(z) -3,9(O); th e a -or er I h If d d’ff erential L(z) has single zeroes at the Pi. 
Therefore, the cut abelian differentials 

have no singularities except the desired ones (3.2) as z + zi, vanish at the zai 

and at all but one of the Ri, and will fill out our basis of differentials for (a,X). 
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The construction of M + g - 1 independent differentials for (23,x) is entirely 

analogous. For convenience, we will label the complete set as 

wi(z) = wElk(z), i= l,...,L-M, 

Wi+L--M(Z) = wfik(z), 2= - 1 ,... $9 - 1; 

Wi+L-M+g-l(Z) = Wf(*), i= l,...,M, 

Wi+L+g-l(Z) = Wf’(*), t= 1 g-1, ,***, 

(4.4) 

where the {*pi} are a set of A4 insertion points not necessarily related to the 

{zai}, as in the one-loop case. 

The Green’s functions g(z, w) and h(z, w) at arbitrary genus have the same 

local properties as at tree-level and at one loop. Again they are determined by 

local plus global monodromy requirements. The term in g(z, w) which contains 

the double pole is: 

d*, w, = TN-k(*)7k (w) [ ;I!‘;,‘] 2P(%, to). (4.5) 

The half-order differentials enable gs(z, w) (and subsequently g(z, w) ) to trans- 

form correctly in both z and w. The previous constraints on the function P(z, w) 
generalize straightforwardly to the arbitrary genus case, and the parametrization 

(3.10) can be lifted to arbitrary genus by replacing the Jacobi theta functions 

with their higher genus Riemann theta function counterparts. P(z, w) must in 

addition cancel the spurious poles of 7N-k(%)rk(W) and this is explicit in the 

construction (3.10). As before, the identity (3.12), when generalized to higher 

genus, is sufficient to construct the quantum twist correlators. 

The number of linearly independent loops at genus g is L + 2g - 2. (See 
Appendix B.) As we have equal numbers of linearly independent loops and dif- 

ferentials we can again use global monodromy to fix the coefficients Aij and Bij 

occurring in the Green’s functions. We extend the definition of the ‘cut period 
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matrix’ to the arbitrary genus case: 

. 
w; = f d* wi(*), i= l,... ,L-M+g-1, 

7a 

(4.6) 
wi+L-M+g = 

a 
f 

dz ai+L-M+g(f), i = 1,. . . ,M + g - 1. 
7P 

In terms of wi, gs and W, the Green’s functions take exactly the same form as 

at one-loop: 

g(*,w) =ge(w) - L-y-’ wi(z) L’~2(W-1)~ f dy ge(y,W), 
i=l a=1 

h(z, w) = - “gw2 Oi(Z> L+F2(W-1)T f dy gaii, w) n 
i=L-M-i-g a=1 70 

(4.7) 

From these Green’s functions the stress tensor is easily evaluated. A set of 

differential equations can be derived and integrated in exactly the same fashion 

as in the one-loop case. Here we shall suppress the details and quote only the 

result for the quantum correlator: 

zq, =f(n; k~)jWj-‘~(?jg-,)L-M-l $(fN-k)g-l d(?k) M-1 mg-’ 
L-M M 

i.j=1 i.jZl 
i<J i <  J' 

I=1 

z)] -(‘-‘) [G(Ri) * aa(& - 411 -‘} 

(44 
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The power of h2(zai) in ZqU is precisely the conformal dimension of the twist 

field a(zQi); therefore Z,, transforms correctly under changes of coordinates for 

the twist locations zi. Note also that the powers of w'(Ri) cancel, in the sense 

that the correlator transforms with respect to each of the Ri as a form of weight 

zero. Finally, note that (4.8) reduces to (3.29) for g = 1. 

It might appear that (4.8) h as b ranch cuts in Zi terminating at the (g - 1) 

spurious zeroes Rj, due to the fact that S(S - 6) H (21 - Rj) a~ ~1 ---t Rj. We 

now show that ZnU is in fact non-singular as zl -+ Rj, for the case that 2 E {ai}. 

(The analysis for the case I 4 {oi} is similar and leads to the same conclusion.) 

In this case, the determinant IWl N ~-(1-~)(L-M+8-1),(L-~+~-2)+1 , where 

c E zl - Rj. The factor rN-*(z) in the L - M + g - 1 cut differentials for (a,X) 

contributes the fractional powers of c, the extra S(Z- Zl) in all but one of the 

cut differentials contributes an additional L - M + g - 2 powers of c, and the 

degeneration of the basis (w~-~(z) -+ w?*(z)) contributes the final power of c in 

the determinant factor. Also, as zl + Rj the term w’(Ri) . a&(& - Zj) develops 

a single zero for i # j and a double zero when i = j. Combining these factors 

of c with those from h’(z~) and the S(Zi - Zl)‘s in ZpU, one finds that all factors 

cancel, as desired. 

In the analysis that led to the quantum correlator (4.8) we assumed that 

the quantum fluctuations (X,x) were strictly periodic around all closed loops 

7, including the 2g generators of the canonical homology basis for the genus g 

surface. In fact we need to consider also the cases where X and x acquire 2~ 

phases, (1, eZrilN,. . . , e2Ki(N-1)/N}, around the latter cycles. The set of ZN 

phases acquired by X around the 2g cycles is referred to as a twist hxcture, 
by analogy to the more familiar spin structure which specifies the 22 phases 

acquired by a world-sheet fermion around the 2g cycles. As for the spin-structure 

case, modular invariance dictates that we sum up correlation functions calculated 

in different twist structures, with well-defined relative coefficients. To find the 

correlators in other twist structures we could repeat the entire procedure leading 

to (4.8), starting with Green’s functions g(z, w) and h(~, w) which are not periodic 
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in t and to but acquire instead the appropriate ZN phases. 

Alternatively, a more efficient way of calculating a twist correlator in any 

nontrivial twist structure is to notice that translating the argument of a twist 

field along a nontrivial homology cycle leaves a branch cut running around that 

cycle, and hence changes the twist structure (see figure 2). It is easy to check 

that translation of the twist location zi around a cycle - i.e. z’i + Zi + fIrsi + n’ 

on the Jacobian Jac(R), for some integer vectors tJr,n’ - does not in general 

leave the correlator (4.8) invariant. Instead it transforms into the same corre- 

lator evaluated in a different twist structure. So to calculate correlators of any 

collection of twist fields { 3} we can add to the set a twist-antitwist pair $, - &, 

calculate the correlator of the new collection in the trivial twist structure using 

(4.8), and then generate all other twist structures by translating the location of 

the & twist along the 2g canonical cycles an appropriate number of times. To 

recover the original correlator for the different twist structures we then factor the 
1 - -- 

N’ i pair of twists onto the identity. The relative phases of contributions from 

different twist structures can be determined by demanding that the full sum is 

periodic in all twist locations. This construction has been carried out explicitly 

for the analogous case of spin fields in ref. [4]. 

5. Classical Contribution to Twist Correlators 

In order to evaluate the full twist correlator (2.5) one also needs to calculate 

the action S,l (eq. (2.6)) f or all classical solutions X,1 (z, z), z,l (z, E) which obey 

the proper global monodromy conditions. The classical action is a sum of con- 

tributions from each complex pair of coordinates (X,x), so we can focus on the 

contribution from one pair: 

Now we construct the classical solutions which have the correct local and 

27 



global monodromy. Each classical solution XCl(z, Z; u, 0) satisfies 

AvaXcl = va, tZ= 1,*-a ,L+2g-2, (5.2) 

where A+,X is given by (2.3) and tla is a particular element of the appropriate 

coset of the lattice A for each of the L + 2g - 2 independent closed loop 7a. 

Note that v denotes the collection of coset elements for a given classical solution, 

t Ul,---, UL+Q-~) (see section 2). There is a similar equation for x,r and we de- 

note its shift by ea. The derivatives of the classical solutions azXCl,. . . are linear 

combinations of the cut differentials (4.4) which satisfy these global monodromy 

constaints. Solving (5.2) is an exercise in linear algebra and we find: 

where a contraction of i’ denotes a sum over the first L - M + g - 1 indices of 

Wi(Z) , a contraction of i” denotes a sum over the remaining M + g - 1 indices, 

and a contraction over the loop parameter a is over all L + 2g - 2 basis loops. 

Expressions for t3sx,l and azxCl are obtained by complex conjugation of (5.3). 

The classical action for each pair of coordinates (X,x) is given by 

&l(V) = ~““s((w-‘)~(~-‘)p,,(Wi,,Wj’) 

+ (Wml)z## (W-‘)it, (Wjtl,Wi”)} 

(5.4 

3 

where (wi,Uj) = i JR wi A Zsj is the hermitian inner product on the differential 

forms wi, which are given in local analytic coordinates as wi = wi(z)dz. 

The next step is to evaluate (wi,wj) in terms of matrix elements of W and 

w. One technique is to follow the proof of the Riemann bilinear relations which 

allow one to evaluate the same inner product between uncut meromorphic abelian 

differentials. First we perform a canonical dissection (see e.g. [31]) of the surface 

R along a set of 2g disjoint cycles meeting at a point, in order to form a simply 
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connected region II. Next we urrnge the branch cuts DO that they connect 

the points {z,,...,z~-r} to ZL, cut out the points {G} urd the branch cuts 
* which connect them, and finally cut out a thin neck to join this boundv with 

. the boundw of II. This procedure generates mother rimply connected region, 

denoted as II’ and depicted in figure 3 for a four twist ionfiguration. On II’, wi 

is holomorphic and there exists a holomorphic function Ii(z) ruch that wi = dfi. 

Hence we can apply Green’s Theorem to the inner product of differentials on II’ : 

(Wi,Wj) = i 
/ 

fi CJ. 

en’ 

ITe label by Ch the part of the boundary XI’ which starts close to ZL, winds 

clockwise around tk, and returns to ZL. Note that my two cut differentials 

appearing together in an inner product in (5.4) have the same local monodromy. 

Using this fact, and writing f,(z) = fi(tk) + JS: wi on Ck, it is straightforward 

to derive the following bilinear relation: 

f(u*l,w~l 1 = 

+ 
(5.5) 

where Q E elrijN. Conjugation of Q yields the bilinear relation for (wi~~,wj~~). 

Finally, we wish to relate the line integrals over the paths Ck to a basis of 

linearly independent ‘closed loops’ 70. (The canonical A and B cycles can always 

be made elements of a basis.) When k~ is relatively prime with respect to PC’, 

this relationship is very simple. As discussed in Appendix B, we CM in this 

cue combine the L - 2 loops of Bershadskii and Radul’“” with the 2g canonical 
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homology cycles for genus g in order to form a basis. Then 

/wi = -fdz wi(z), U= l,.**,L- 1. 

ca la 

The first L - 2 of the contour integrals over 74 are elements of the cut period 

matrix (4.6). The last one is a linear combination of the other L - 1 cut period 

matrix elements. For simple twist configurations which are not of the Bershadskii- 

Radul type, one can rearrange the boundary of II’ so that it is closely related to 

a simple basis of closed loops, yet still surrounds all the branch points and cuts. 

This procedure may be more economical than deriving a general relationship 

between the paths Ck and the basis of loops 7a found in Appendix B. For the most 

general configuration, one can always follow the strategy described in Appendix 

B of replacing a single twist kr/N with two twists l/N and (kr - 1)/N, solving 

the problem for that set of L + 1 twists, and then taking the limit as the two 

twists coalesce. The final answer always takes the form 

where the matrix elements are simple rational expressions in cy and a.. Note that 

because the inner product is hermitian, aab = -Mb”. 

It is important to verify that the full twist correlator (2.5) has the correct 

local behavior as two points 2; and zj coalesce. We shall consider here the holo- 

morphic behavior of Z,,; the antiholomorphic behavior is similar. The conformal 

dimension of a twist field oi is iqi(l- vi), where ni I 1 - $. AS two twist fields 

come together, they should factor onto another twist field: 

Oi(Zi,Zi)C7j(Zj, Zj) - (%i - Zj)Kij (% - Zj)nijOi+j(Zj,5j) + *** aS Zi + Zj. (5.7) 

The twist oi+j rotates X by e2si(ki+kj)lN; th ere f ore the conformal dimension of 

Oi+j is i(Qi + qj)(l - Vi - nj) if ni + qj < 1 and $(qi + qj - I)(2 - vi - Vj) 
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if ni + nj 1 1. If vi + qj = 1, the ‘twist field’ oi+j is actually the identity 

operator I of the untwisted sector. By equating the conformal dimensions of 

both sides of the OPE (5.7), we see that /cij = -qiqj when vi + qj 5 1 and 

Kij = -(l - vi) (1 - qj) when vi + nj > 1. We want to verify that the asymptotic - 
behavior of (3.29) is consistent with these values of “ii. 

The subtler factors come from the cut period matrix W. Certain matrix 

elements diverge as si + zj because closed loops 7 become ‘pinched’ between 

Zi and zj, where the cut abelian differentials are singular. To be more concrete, 

choose local world-sheet coordinates so that zi = 0 and define 6 G sj. Then the 

local behavior of the cut differentials is wfst(z) - (z)-qi(z - 6)-%. (Some of 

the cut differentials may be less singular than this.) For this analysis we choose 

a basis for the closed loops where precisely one of the loops rp passes between 

the two coinciding points. Such a basis must exist, simply because the basis of 

L + 2g - 2 loops for the L twist configuration at genus g must evolve into a basis 

of (L - 1) + 2g - 2 loops for the L - 1 twist configuration, losing exactly one loop 

in the process. The contour integral of the most singular abelian differentials 

around rr, diverges as 6--(qi+Q--l) as6+Oforthecasethat~i+qj>l,and 

is convergent for ni + qj < 1. If zi and sj both belong to the set {tai}, then 

there is an additional asymptotic factor of 6 in the determinant IWl, coming 

from degeneration of the basis of cut differentials: w:‘_,(z) + wzL(z). However, 

this factor is cancelled by a 6 from the ‘extra’ tf)(Zi - Zj) in (4.8). Adding these 

contributions to Kij to the -vinj coming from S(Zi - Zj)-q)“lj in (4.8), we obtain 

the correct tcij for both TV; + qj < 1 and vi + nj > 1. 

In spite of these factors of 6, we will now show that the classical action (5.4) 

remains finite as si + zj. There are two potential sources of divergences. The 

first is when the basis of cut differentials degenerates. Consider the (W-‘)i”,Wj 

term in (5.4). When vi + qj < 1, the only way that this term can diverge is if 

both zi and zj belong to {zai}, in which case the matrix elements (W-l); and 

(W-r);, diverge like 6 -l. To see this, write (W-l);: = (-l)k+a~Wj~/IWl, where 

IVVlf is the determinant of the cofactor matrix obtained from W by deleting the 
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ath row and the kth column. The determinant of W  vanishes like 6, as does the 

determinant IW 1 t when k does not equal i or j. But when k is either i or j ,IWlt 

does not vanish because the sub basis does not degenerate. To see that they are 

absent from the classical action, one can use the the identity 

(w-‘):wl’ = s; - (w-‘);,w;“. (5.8) 

Then the holomorphic vanishing of the determinants due to degeneration of the 
-- 

basis always cancels in the ratio for (W-l);,. Similarly, consider the (W ‘)jb,,w$’ 
-- 

term. When .zi and zj both belong to {zpi} and vi + qj > 1, two of the (W ‘):,, 

terms diverge like 6- l. These divergences are again removed by using the com- 

plex conjugate of (5.8). For convience, let S ,“I” be the Uo@b component of the full 

classical action. After applying (5.8)) and using the definitions (5.6), Szb can be 

written as 

S,qb = & [ (W-1);,&+..yd + (w-I);,,~;“$‘cI VW 

The second potential source of divergences is from the matrix elements IV;’ and 
-j" 
W r , when n; + qj > 1, where p denotes the pinched loop. However the offending 

terms are not present in (5.9). (The matrix elements Wf’ and wc are integrals 

over antiholomorphic cut differentials.) 

In the above factorization onto twist fields oi+j, with qi+qj # 1, the quantum 

contribution to to the correlation function gave the correct leading behavior - 

the value of “ii. But this is no longer true for factorization onto untwisted 

fields, i.e. vi + nj = 1. In this case the quantum correlator develops an additional 

logarithmic singularity as si -+ sj, due to the In 6 behavior of the integral over the 

pinched loop rp entering into W. This logarithmic singularity is cancelled by the 

classical contribution to the correlator after performing a Poisson resummation on 

the lattice cosets for up and c+,. This converts the sum over windings around the 

pinched loop into sums over the momenta of states in the untwisted intermediate 

channel (See figure 4). 
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The classical contribution to the correlator will cancel the logarithmic diver- 

gence in the quantum part when resummed if the S:/ term vanishes like l/In 6. 

Consider the case where the basis of cut differentials is non-singular as Zi and sj 

coalesce, i.e. neither {zcri} or {zpi) contain both zi and sj. Then the there are 

divergent matrix elements of W are Wi’ and WC’ which diverge as ln6. Both 
-- 

(W-‘): and (W ‘)i vanish as l/In6 for all k = 1,...,&+2g-2, so the leading 

order terms in Sr/’ vanish as desired. Finally, if the basis of cut differentials 

diverges a~ zi + zj, the same result is easily obtained. 

The function f(n; k ) 1 is determined on a case by case basis by factorization. 

Consider for instance a twist/antitwist configuration. As the two points coalesce, 

the full correlator - a product of the partition function and both the quantum 

and classical parts of the correlator, should factor onto the identity. More compli- 

cated twist configurations can be subsequently normalized with respect to lower 

point functions by this method. 

6; Conclusion 

In this paper we have concentrated on the most non-trivial aspect of string 

perturbation theory for 2~ orbifold vacua, namely the calculation of correla- 

tors of bosonic twist fields on Riemann surfaces of arbitrary genus. Using the 

stress tensor method, as well as some results from complex function theory on 

Riemann surfaces, we have given expressions for these correlators in terms of 

Riemann theta functions. These expressions, together with the expressions for 

the Green’s functions in the presence of twists, can be used to calculate any cor- 

relation function in the bosonic 2~ orbifold conformal field theory, at any order 

in the loop expansion. Scattering amplitudes are obtained by integrating corre- 

lation functions with respect to the locations of vertex operators on the Riemann 

surface and with respect to the moduli of the surface. The measure for the for- 

mer integration is simply JR ni d ‘zi. Determining the latter measure explicitly 
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requires knowing the Beltrami differentials, but is no more difficult than for the 

case of the flat space-time background. 

Of course one is more interested in scattering amplitudes for orbifold back- 

grounds of the heterotic string. In this case one also needs to calculate correlators 

of the fields which twist the world-sheet fermions $I’, etc. As remarked above, 

these correlators are simple generalizations of the spin field correlators calcu- 

lated in refs. [4,11]. One must sum over spin structures as well as twist struc- 

tures; the former sum is the crucial one for showing that explicit orbifold results 

(non-renormalization of terms in the superpotentiali2” D-terms!13’141 etc.) are 

consistent with expectations from a low-energy supersymmetric four-dimensional 

effective field theory. 

. 
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APPENDIX A 

Basic Properties of Theta Functions on Compact Riemann Surfaces 

A Riemann surface R of genus g has a Bg-dimensional canonical homology 
basis consisting of g cycles (loops) ai and g cycles bi with intersection numbers 

I(ai,aj) = I(bi, bj) = 0, I(ai, bj) = 6ij ( see figure 5). The components wi of the 

g-dimensional vector w’ are the canonical holomorphic differentials of R, which 

are normalized by the relations Jai dz wj = ,, 6... The holomorphic period matrix 

R is defined by flij = Jbi ds wj. Given a base point PO, each point z on R is 
associated with a unique point 

z 

z= dz w’(z) 
/ 
PO 

(A4 

on the Jacobian variety Jac (R) , which is the g-complex-dimensional torus defined 
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by the lattice Ln = {i;c + nii 1 rYi,n’ E Zg}. 

The Riemann theta functions with characteristic [a are defined on Jac(R) 
by the series 

9 ; (Z,fz) = c [I exp [ai(A + Z) . CI. (6 + Z) + 2zi(n’+ Z) . (Z+ g)] , 
FiEZQ 

and are defined as quasi-periodic functions on R using the map (A.l). Their 

transformation properties around the cycles ai and bi on R follow from 

9 ; (Z+Tq [I = exp(27riZ. rZ)I9 z (Z), i-1 
?9 ; (z+n?q Cl = exp(-2aiZ. 6) exp(--Xi??2 * II * ti - 2lrirFi * z”)9 

[I 
; (q, 

where the period matrix iz is now implicit in 9 [a (Z). If the characteristic [a 

is odd - meaning that Z, $ E (iZ/Z)g with 4;. 2 odd - then 9 [a (0 = 0, and 

t9[~(Z-zz) -z- w as z 3 w on the Riemann surface. 

Theta functions for g > 1 have a peculiar property which makes the con- 

struction of cut abelian differentials tricky: In addition to the zero at d = d, 

(9 [$I (is- w’) has additional ‘spurious’ zeroes at g - 1 points RI,. . . , R,-1. This is 

a consequence of the Riemann Vanishing Theorem 1311: Depending on the char- 

acteristic [a and on the vector ? E Jac(R), the function f(z) s 9 [a (Z- ?) 

either vanishes identically for all z E R or else f(z) has g zeroes Qr,. . . , Qg on 

R. In addition, there exists a vector s(Z, 6) on Jac(R) such that the points {Qi} 

satisfy 
I 

c ai=Li(Z,i)+P (mod Ln). (A4 
i=l 

Suppose now that [a is an odd characteristic and ? is the image of a point on the 

Riemann surface, say f = w’ = JFo dz w’(z) for some w E R. Since t9 [a (0) = 0, we 

can let Qg = w and denote the remaining, spurious zeroes by I&, i = 1,. . . , g - 1. 
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The Ri are independent of w and satisfy ‘& l& = A(&&) (mod Ln). On the 

other hand, if ? is an arbitrary vector in Jac(R), all the zeroes Qi depend on ? 

and are in general disjoint from the set {Ri} of zeroes of 9 [a (Z- 6). 

A useful abelian differential to define is 

h2(z) z w’(z) - &9(o), 

where 9(Z) is a theta function of odd characteristic. Differentiating the relation 

t9(Z-&) E 0 once or twice with respect to z and setting z = Ri, one learns that 

h2 (z) has double zeroes at each of the g - 1 points Ri. Because these are all of the 

zeroes of h2(z), the ‘square root’ h(z) is a well-defined half-order differential!32’ 

The Riemann-Roth theorem can be stated as follows. Given points Pi on 

a compact Riemann surface R of genus g, one formally defines a divisor N = 
Pi1 . . . P$, with degree d/N] = Ci Zi. (S ee refs. [34,33,35].) The dimension of 

the vector space of meromorphic functions which are multiples of N-r, i.e. which 

have poles of order at most Zi at the points Pi, is denoted by r[N-‘1. Similarly, 

i[N] denotes the dimension of the vector space of abelian differentials which are 

multiples of N, i.e. have zeroes of order at least Zi at Pi. Then 

r[N-‘1 = d[N] + i[N] - g + 1. (A-3) 

Finally we mention the simplifications which occur for the case of the torus 

(g = 1): The th t f e a unctions have no spurious zeroes, and the vector indices on 

Z’, 5, z’i can be dropped, as R is now isomorphic to Jac(R). The period matrix 

n is replaced by the single modulus 7. Also, there is only one theta function of 

odd characteristic, conventionally denoted as 91(z) E 9[:$] (2). 
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APPENDIX B 

Homology Basis for Closed Loops 

In this appendix, we will discuss how to find a basis of linearly independent 

‘closed loops’ on a Riemann Surface R of genus g with L twist field insertions. 

The main result, that the number of independent loops is L + 2g - 2, holds for 

any configuration of L twists having net twist zero. This number matches the 

total number of linearly independent cut differentials at genus g, a result which 

is needed in order to be able to determine the coefficients Aij and Bij appearing 

in the Green’s functions (3.9) and to normalize the classical solutions via eq. 

(5.2). Of the L + 2g - 2 independent loops for genus g, 2g can be taken to be 

the canonical homology basis for the surface without branch cuts. By adding 

multiples of these 2g loops, any closed loop can be made into a homologically 

trivial loop (on the uncut surface). Thus the problem is reduced to finding L - 2 
linearly independent loops for the L twist configuration on the sphere (See figure 

5). Recall that loops which are related by a shift of sheets are not considered 

independent because they lead to the same monodromy constraints. 

Bershadskii and Raduli2” found a basis for the case in which one of the twist 

fields, say UL (ZL, ZL), has an integer $$ which is relatively prime with respect to 

N. Their construction is described in this paragraph and illustrated in figure 6. 

One runs a branch cut from the ‘base point’ ZL to each of the other twist locations 

21 ,..., ZL-1. To generate a loop qi, start at some point PO on the complex plane 

near the cut from ZL to zi and rotate clockwise about ZL a number of times until 

the point returns to PO on a sheet which differs from the original sheet by ki (mod 

N). This can always be done because kL is relatively prime to N. Now rotate 

counterclockwise once around si to complete the loop qi. Only L - 2 of the L - 1 

loops so constructed are linearly independent, because the sum of all of them can 

be pulled off to infinity. On the other hand, the independent loops do provide a 

basis because we can sequentially subtract these loops from an arbitrary closed 

loop, until the remaining loop winds only about ZL some multiple of N times, 
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which means that it is trivial. 

. 
Now consider the example of a 2s orbifold with two l/2 twists and three l/3 

twists inserted onto the sphere. No twists are relatively prime with respect to 

N, so we cannot build up the kind of basis described above. We would like to 

explicitly construct 5 - 2 = 3 linearly independent closed loops, in a way that 

will generalize to arbitrary collections of twists. Our approach is to start with a 

six twist configuration, replacing one of the l/3 twists by two l/6 twists in close 

proximity. Since 1 is trivially relatively prime to N = 6, we can use one of the 

l/6 twists as the base point in a Bershadskii-Radul basis of loops for the new 

configuration. This basis is described by the following table: 

Table 1. 

The values in the table denote the number of clockwise encirclements of each 

point and all of the branch cuts originate at the first l/6 twist. 

Only four of the five loops are linearly independent; we can generate 75 by 

subtracting the first four from the trivial loop (-1, -1, -1,-l, -1, -1). (Of 

course for non-zero genus this loop may not be homotopically trivial, but it 

will be homologically trivial.) We would like to form from the four independent 

loops three independent linear combinations which circle both l/6 twists an equal 

number of times (mod 6) on each sheet, so that they are not ‘pinched’ when the 
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two l/6 twists coalesce. Then these unpinched loops can be used as a basis for 

i the original five-point configuration. 

. First let us change the basis of loops {71,72,73,74) for the six twist config- 

uration so that it includes the loop 70 = 74 - 72 = (l,O, l,O, -l,O). This can be 

done for example by replacing 72 and 74 by 70 and 7:, where 

(:;) = (1: :) (::)- (B-1) 

Equation (B. 1) is a legitimate change of basis because the 2 x 2 integer matrix has 

determinant one and hence is invertible over the integers, so that the original basis 

vectors can be recovered from the new basis. (A general change of n-dimensional 

basis is a SL(n, Z) transformation.) Next we subtract multiples of 70 from 

71,73 and 7: to get three loops winding equal times about the two l/6 twists 

on each sheet. These three loops together with 70 also form a basis for the six 

twist configuration, because the transformation matrix is in SL(4, Z). And the 

three loops by themselves give the desired basis for the five twist configuration. 

By further manipulations, this basis can be simplified into the basis displayed 

in figures 7 (a)-(c). Note that we may need to use ‘sheet-shifted copies’ of the 

loops in the above transformations in order that the final three loops do not pass 

between the two l/6 twists - otherwise a loop may wind around one of the twists 

clockwise on one sheet but counterclockwise on another sheet (for example) so 

as to remain pinched between the two twists. 

Now we turn to the most general L twist configuration. If all the twist 

integers ki contain a common factor n,, then the problem of constructing the 

independent loops is equivalent to the problem for the integers kiln,. (Adjacent 

sheets can be taken to correspond to a phase difference of eZrincjN rather than 

e2”‘lN.) So we can assume that the ki have no common factor. The general 

strategy is the same as in the previous example. We consider first a L + 1 twist 

configuration where the kl/N twist is replaced by a l/N twist and a (kl - 1)/N 

twist. For this configuration, we use the Bershadskii and Radul basis of L loops 
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7i (of which L - 1 are linearly independent), taking the l/N twist as base point. 

Table 2 lists how many times each loop encircles each of the L + 1 twists. 

Table 2. 

Define the ‘pinch number’ for a loop to be the number of times it encircles 

the l/N twist minus the number of times it encircles the (kl- 1)/N twist, i.e. the 

difference between the entries in columns 1 and 2 in table 2. We now change the 

basis (71,. . . , 7~-1} to one in which L - 2 of the basis loops have pinch number 

zero; these loops serve as the desired basis for the original L twist configuration. 

The change of basis proceeds in two steps. The first step is to construct a (L- l)- 

dimensional basis including a loop 70 with a pinch number m which is relatively 

prime to N. The second (easier) step is to add multiples of 70 to the remaining 

L - 2 basis loops, so as to convert them to the desired L - 2 independent loops 

with pinch number zero (mod N). This can be done because m and N have no 

common factor, and the replacement of the L - 2 loops is a legitimate change of 

basis. 

All that remains is to construct a basis containing 70, which we will do 

iteratively. Denote the greatest common divisor of a set of n integers {k;) by 

d= (kl,..., kn). If d = (ICI, k2), th en one can always find two integers pr and pz 
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such that p1 kl + pzk2 = d. Therefore the transformation 

is a change of basis - the matrix has determinant one. The new basis includes 

a loop 7: with pinch number d = (kl, kz). Similarly we can construct a linear 

combination of the loops 7: and 73 with pinch number (d, k3) = (kl, kz, k3) and 

incorporate this loop into the basis. By iteration we find a basis including a loop 

70 which has pinch number m = (ICI,. . . , kL-I). Now recall that xi”=, ki = MN 
with M E Z. Suppose that m and N have a common factor. Then kL = 
MN - Cf’r’ ki and m would have a common factor, so all L of the ki would 

have a common factor n, = (m, kL) > 1, and we described above how to treat 

this case. Therefore we can take m and N to be relatively prime, and we are 

done. Hence every L twist configuration on a genus g surface has a homology 

basis for the cut abelian differentials of rank L + 2g - 2. 
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