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ABSTRACT 

Under certain circumstances the excitations of a superconductor will not be 

those predicted by BCS theory, but rather electron bag states. A variational 

calculation is used to establish this regime in which such collective states form. 

The fact that such bags may bind more than one electron implies the existence of 

more than one peak in the plots of dl/dV versus Vp obtained in Giaver tunneling 

experiments. The estimate of the number and ratios of voltages associated with 

such peaks is in qualitative agreement with recent experimental results? 
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Speculation that the new high temperature superconductors’ are strongly 

coupled systems has been widespread. The strong coupling behavior of BCS- 

like systems is not commonly discussed in solid state physics, but it has been 

looked at extensively in particle physics.’ The purpose of this letter is to present 

some simple results which follow from applying such ideas to the new class of 

superconductors. This analysis implies striking differences between the behavior 

of these superconductors and the more familiar weak coupling superconductors 

studied in BCS theory; this behavior appears to have been seen in the Giaever 
n 

tunneling experiments carried out at Stanford by Smith et.aZf 

In superconducting systems, due to their interaction with the condensate, 

fermions above the fermi surface behave as massive particles. Under certain 

circumstances an extra fermion injected into the system can lower its mass by 

expelling condensate from its immediate neighborhood. It will then produce a 

region, or bag, of radius R, filled with normal material and trap itself in this 

region. Such objects have been discussed for the case of quantum field theory in 

the context of the SLAC bag model of hadrons.2 

To decide whether such an excitation has a lower energy than the energy 

of a single electron as computed in BCS theory, it is necessary to obtain an 

upper bound on the energy of a one-electron bag. This bound depends upon the 

condensation energy, which determines the energy required to drive a spherical 

region normal, and the energy which required to localize the extra electron inside 

the normal region. The question is for what range of parameters will the energy 

of the one-electron bag state be smaller than the gap ho. When this happens, 

the BCS description of the lowest lying excitations must break down. 
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The starting point of the argument is the familiar BCS Hamiltonian 

where the usual simplification is to assume that V~,J~~J, = -V&z, -i26-,- , i 
3, 4 

for lcz,l < !iWD, and zero otherwise. The usual BCS calculation is equivalent I 

to a variational calculation wherein we choose as a trial state the ground state 

of a quadratic Hamiltonian with a constant mass M. The minimization of the 

expectation value of the BCS Hamiltonian as a function of the mass parameter, 

M, yields the BCS gap M = A,. The condensation energy, A& M n(O)Ai/4, is 

the difference between the expectation value of the BCS Hamiltonian in the state 

corresponding to M = 0 and that for M = A 0. Here, n(O) is the density of states 

near the Fermi surface. To obtain an effective quadratic Hamiltonian for the 

t t electrons we replace the operators c, c, or ci3ci 
kl kz 

4 by their constant expectation 

values in the trial state. This yields a Hamiltonian for a fermionic excitation of 

mass Ae. 

To calculate the energy of a baglike excitation we follow the same reasoning, 

but do not assume that the expectation value is translationally invariant. Rather, 

we assume that it has the form shown in Fig 1. In that case the electron’s 

contribution to the bag energy is obtained by solving for the lowest eigenstates 

of a quadratic fermionic Hamiltonian with a position dependent mass term. A 

complete analysis of this problem for the analogous field theory problem is given 

in Ref. 2. 

For the s-wave states it costs an energy of order l/R to put an electron into 

the lowest eigenstate of the bag (for the moment we ignore Coulomb effects); the 

3 



cost of putting an electron into the first state with one node is approximately 

2/R. Making these approximations, we see that for a single electron in a bag, 

the quantity 

El(R) = (47r/3)[n(0)A;R3/4] + (l/R) (1) 

provides an upper bound on the energy of the lowest-lying baglike state. We 

should, in reality, include a term of the form dR2 to represent the energy due to 

the transition region in which the groundstate expectation value of the condensate 

changes from zero to its bulk value (d stands for the width of the transition region 

as shown in Fig.1). While this term is easy to obtain for the field theory case it 

is more difficult to obtain from the BCS approximation. In order to present the 

argument in simplest terms we will initially ignore the presence of such a surface 

term. Minimizing Eq( 1) with respect to R yields 

R--l = (~vL(O)A;/~)~/~ ; El = (4/3)(7~~(O)A;/3)~/~. (2) 

The condition that the one electron bag lie lower in energy than Au is 

(4/3) [7r72(0)/3]‘/” < A;‘“. (3) 

This suggests that if we use Eq. (3) as a definition of strong coupling, then such 

a system should be characterized by a small density of electrons available for 

pairing. 

Since the first electron has already paid the price for creating a bag, what 

happens if we place another electron in the same region? Since the second electron 

can fall into the same spatial wavefunction, because the spins can anti-align, for 
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such a two-electron bag, we have 

l&(R) = 7rn(0)AiR3/3 + 2/R 

which, at the minimum, is 

(4 

E2 = 23f4El (5) 

Since the energy of two separate one-electron bags is 2E1, we see that the physics 

of a strong coupling condensate causes a localized, doubly charged, spin zero 

bound state to form. In other words, the interaction between two localized one- 

electron bags will be attractive. 

If we now attempt to add a third electron to the bag we can no longer put it 

into the s-wave bound state. We can, however, put it into a state with a single 

node, increasing the localization energy by an additional term of 2/R. Thus the 

energy of the localized three-electron bag is given by 

E3(R) = [7m(0)A;R3/3] + [(l + 1+ 2)/R] 

and so at the minimum we have 

E3 = 43/4E1 

(6) 

(7) 

Since 43/4 > 1 + 23/4, we see that for a bag energy which doesn’t include a surface 

term the interaction between localized two and one-electron bags is repulsive. 

Thus, in the strongly coupled system, unlike the ordinary weak-coupling BCS 

approximation, there are two distinct sets of levels available for the tunneling of 

electrons into the superconductor. Hence, in Giaever tunneling into a sample of 
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this kind of superconductor, one would expect the plot of dl/dV to show two 

peaks at distinct values of Vp. This result is the most important qualitative fea- 

ture which distinguishes the strong coupling superconductor, as we have defined 

it, from ordinary weak coupling superconductors which are well described by the 

usual BCS analysis. Note, such distinct states may not be readily available as 

sources for taking electrons out of the superconductor, which would imply asym- 

metrical behavior in Giaever tunneling experiments. Whether or not this has 

anything to do with the asymmetry seen in the Stanford tunneling experiments 

awaits to be seen. To calculate the location of these peaks one has to refine this 

calculation; however, before doing this we should first return to the question of 

the surface energy term in E(R) and the question of including the Coulomb force. 

In general the cost of creating a localized normal region will be described by 

both a volume and surface term. Thus, we expect the energy of a one-electron 

bag to have the form 

AR3 + BR2 + l/R (8) 

There are two extreme cases; A = 0 and B = 0. We have already discussed is the 

B = 0 case. Also, since the electrons are charged, localizing them inside the bag 

will cost Coulomb energy. Since these particles are in quantum states which are 

more or less uniformly spread out over the radius of the bag, gives a contibution 

to E(R) of the form xn2/R; where n stands for the number of electrons in the 

bag and the parameter x is a factor introduced in order to absorb shape and 

wavefunction factors that do not calculated in this approximation. The general 

expression for the energy of such a one-electron bag state is therefore: 

E(R) = AR3 + BR2 + (1 + x)/R (9) 
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If B = 0, the one-electron energy will be proportional to A1i4( 1 + x)3/4. If 

on the other hand A = 0, the one-electron bag energy is B1j3(1 + x)213. If this 

energy is less than the A0 obtained from the BCS calculation, then we have prima 

facie evidence for the fact that the BCS description of the excited states of the 

superconductor has broken down. 

We can carry out the calculations for multi-electron bags for both limits. The 

results for B = 0 are 

El = A1j4(1 + x)314 ; E2 = [(2 + 4x)/(1 + “)]%1 

ES = [(4 +9x)/(1 + x)]3’4E1 ; E4 = [(6 + 16x)/(1 + x)13i4E1 
(10) 

The results for A = 0 are 

El = B1j3 (1 + x)2/3 ; E2 = [(2 + 4x)/(1 + x)12i3E1 

E3 = [(4 +9x)/(1 + x)12i3E1 
(11) 

; E4 = [(6 + 16x)/(1 + x)12i3E1 

We see that there is a crucial difference between these two cases, since in the case 

A = 0 there exists an additional three-electron bound state. All bags containing 

more than three electrons are unbound in both cases. 

These results imply that Giaver tunneling experiments will show either two 

or three peaks, depending upon the specific properties of the superconducting 

sample. Since the present perovskite superconductors are multi-phasic materials 

it is entirely possible that both kinds of behavior will be seen. It is not clear 

whether or not such a difference has in fact been observed? 

While this result is suggestive, one has to be careful to observe that to this 

point the calculations are for localized bag states. If a localized state exists, then 

translating the center of the bag by an arbitrary amount yields a configuration 
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having exactly the same energy. To calculate the lowest energy bag state one 

must calculate the expectation value of the Hamiltonian in such a plane wave 

state; such a calculation of this type is difficult, and lies outside the scope of this 

paper. We can estimate the effect if we consider the kinetic terms (which allow 

for the mixing of shifted bag states) as perturbations of the energy. Since the 

kinetic terms are bilinears in the fermion operators they can move a one-electron 

bag in first order, a two-electron bag in second order, etc. If the typical strength 

of such a hopping term is represented by a parameter A1j4g or B1j3g, then we 

might expect ratios of multi-electron bag states to the one-electron bag state to 

be 

E2/1 = [(2 + 4 - g2]/[(1 +x)i - g]; E3/1 = [(4 +9x): - g3]/[(1 + x): -g] 

E4/1 = [(6 + 16x9 - g4]/[(1 +x): - g] 

(12) 

for the case B = 0, and 

E2/1 = [(2 +4x)$ - g2]/[(1 +x): - g]; E3/1 = [(4 +9x): - g3]/[(1 + x)g - g] 

E4/1 = [(6 + 16x); - g4]/[(1 + x): - g] 

(13) 

for the case A = 0. Ratios, rather than absolute energies are calculated in order 

that unknown factors cancel out. Tables I and II present the results of computing 

these ratios for various values of g and x. Since the factors of l/R, 2/R, etc, are 

obtained by assuming that the wavefunction of the electron vanishes at the walls 

of the bag, it is possible that a more careful analysis taking the finiteness of A0 

into account could lead to a third bound state for the three-electron bag. For this 

reason the ratio to the three-electron case is included in the case B = 0 because it 

is only marginally unbound. While the present calculation does not support this 
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possibility display the prediction for the three-electron bag as if it was bound in 

order to exhibit the sensitivity of the ratios to the various assumptions. Tables 

I and II show that the ratios do not change all that much between the extremes 

A = 0 and B = 0; the results for intermediate cases lie in between. Note, the 

higher states, once the kinetic terms are taken into account presumably represent 

resonances and not true eigenstates of the full Hamiltonian. 

The dI/dV curves of Smith et.al. for both the LaSrCuO and YBaCuO type 

superconductors, clearly exhibit more than a single peak. Data at different points 

on the sample exhibit slightly different ratios for the locations of the peaks and 

not all the points exhibit three peaks. This could imply that the different regions 

correspond to phases with different values of the parameters A, B and g. Were 

all samples to exhibit three peaks with ratios of 1:3:5, this would favor a surface 

dominated bag with g M .53 . 

To conclude, staying within the context of a BCS theory, it has been argued 

that the charged excitations of the strong coupling theory will not be the fermions 

of the BCS solution, but will instead be collective excitations. The number 

of excitations of this type will be finite, most likely two or three in number 

and should show up as peaks in the dI/dV plots obtained in Giaever tunneling 

experiments. Furthermore, it is entirely possible that the structure seen when 

one tunnels electrons into the superconductor can be different from what is seen 

going the other direction. It is much more difficult to compute the relation of 

the critical temperature to the gap, since in order to do the calculation correctly 

the effect of these extra states must be taken into account. Most likely it will 

be necessary to redo the BCS calculation in order to obtain a correct prediction. 

Techniques which have been applied to analogous problems in particle physics 
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may be useful for this calculation. 

From an experimental point of view, there is one interesting feature of this 

class of excitations that might be tested; namely, that the states of the bag which 

correspond to radial excitations of non-zero angular momentum can be split in 

a magnetic field. Since these materials are type II superconductors, at high field 

there are many flux tubes penetrating the material. Hence, if a sample is placed 

in a strong magnetic field, and if the penetration depth of the field into the 

superconducting volume is large enough, then the number of bound states which 

can exist in a bag may change because states which are degenerate at zero field 

now split. It would be interesting to measure dI/dV for these materials as a 

function of applied magnetic field. 
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IT 0. able I a .volume dominated x = 0 I TableI( x = .03 

I g 1 EdE1 1 EdEl 1 -%/El 1 Es/El 

.4 2.54 4.61 2.57 4.67 

.42 2.60 4.75 2.62 4.80 

I .44 1 2.66 1 4.90 1 2.68 1 4.95 

Table II(a): surface dominated x = 0 Table II(b): x = .03 
I I I 

!I &/El &@I &t/El E3/El 
.47 2.58 4.56 2.60 4.60 

I .49 2.64 4.71 I 2.66 14.74 

.51 

t-i 

2.71 1 4 

.53 

I 2.73 I 4.90 I 

1 2.80 1 5.07 1 
I .55 1 2.86 1 5.23 1 2.87 1 5.25 1 
I .57 1 2.94 1 1 2.95 1 5.44 1 
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Fig. 1 
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