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ABSTRACT 

We develop and illustrate a very simple eikonal technique in the framework of 

one-particle quantum mechanics for calculating radiation during scattering and 

apply it to derive the celebrated result of Bethe and Maximon for bremsstrahlung 

from a point coulomb target with a large charge Ze . This approach is a modifi- 

cation of that developed in a previous paper for calculating radiation during the 

collision of electron-positron beam pulses (beamstrahlung ). The differences in 

the physics of scattering from a localized target and from an extended target are 

clarified. A second reason for the present note is the simplicity of our method 

and its possible extension to other processes. 
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- - I-. Introduction and Motivation 

In 1954, Bethe and Maximon’ calculated the differential cross sections for 

bremsstrahlung by high energy electrons and for electromagnetic lepton pair pro- 

duction in a coulomb field of arbitrary charge Ze without the use of the Born 

approximation. Their paper was a major tour de force of analysis utilizing appro- 

priate approximations to exact continuum relativistic coulomb wave functions. 

The first treatment to lowest order in Zcu was of course given by Bethe and 

Heitler.2 

Since this pioneering work, several useful approximations for treating high 

energy scattering processes have been developed. These lead to considerable 

simplification in the treatment of radiation during the scattering of electrically 

charged high energy particles. These include in particular the eikonal method 
3-6 in potential scattering, operator methods for calculating radiation from an 

electron orbiting in a homogeneous purely magnetic field: and light-cone quan- 

tization techniques applied to QED in the infinite momentum limit.* 

In this paper we develop and illustrate a very simple eikonal technique in the 

framework of one particle quantum mechanics for calculating radiation during 

scattering. This method was developed in connection with a recent study9 of 

radiation during the collision of two beam pulses (‘beamstrahlung ‘), but it was 

found to be inappropriate (i.e., wrong) for that problem because of the extended 

nature of the target pulses- in the rest frame of one of the pulses, its length grows 

as E/m = 7. However for finite potential sources, this method leads directly 

and simply to the same expression for the amplitude as found by Bjorken, Kogut, 

and Soper, and confirms the results of Bethe and Maximon for bremsstrahlung 

during scattering in a pure coulomb field of arbitrary charge Ze . 
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- . . - .- -- 2.-T-Matrix 

Consider the T-Matrix for the scattering of a particle with free Green’s func- 

tion G in an external vector potential wV , where w is a scale parameter that 

will eventually be set equal to one, 

T = WV (1- GwV)-’ . (2-l) 

Introducing the electromagnetic potential A for the radiation field in the stan- 

dard gauge invariant manner leads to the substitution 

WV + WV-A-j 

and the T-matrix becomes 

T[A] = (WV-A.j)(l-G(wV-A-j))-‘. 

The matrix elements relevant for elastic scattering 

T[o,wV] = RT WV = wVR , 

P-2) 

(2.3) 

(2.4 

and for the emission of one photon 

T[l,wV] = -RTA.jR , (2.5) 

take a simple form. The resolvents for the coulomb problem have been introduced 
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iLs - . . - ._ 

R = (1- GwV)-1 and RT = (1- wVG)-1 . (2.6) 

The obvious generalization of (2.5) t o d escribe the emission of n photons is 

T[n, WV] = (-l)n RT (A. j g)“-’ A. j R , P-7) 

where the Green’s function g in the external field WV is 

g = GR T=RG. 

Note for later use the relations 

z = RGVR 
dRT 

dw 
and -= 

dw 
RTVGRT. 

P-8) 

(2.9) 

Now the derivative of T[l, WV] with respect to the scale of the potential w 

is easily expressed as 

dT[l, wv] 
dw = -RT[VgA.j+A.jgV]R, (2.10) 

The matrix element of (2.10) between appropriate initial and final (electron) 

states has the graphical interpretation illustrated in Fig. 1: (a) the exact wave 

function for the incident electron in the field WV radiates a quantum (A . j ), 

propagates again in the external field WV and is scattered by the potential V 

into its final state (again an exact scattering state in the field WV ); (b) the second 

term of (2.6) reverses the order of scattering and radiation in the usual way as 
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de’nanded by gauge invariznce, Ofice we develop a suitable approximation for 

(2.10) , the radiation matrix element of interest is given by the integral 

1 

Z[LV] = 
J 

dwdT[l, wv] 

dw ’ 
0 

(2.11) 
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-. . 3:Eikontil Approximation 

In this section we use the physical picture and approximations of eikonal 

propagation to derive a tractable expression for the scattering amplitude valid in 

the high energy regime. An eikonal-type approximation for the spatial part of the 

wave function including the higher order corrections was discussed in reference 

9 . In this approach, the resolvent R acting to the right on the incident plane 

wave produces a wave with outgoing boundary conditions. For a such a wave 

with momentum Ti along the z-axis, the result is 

R exp(iTi - 7) u(pi) = exp(i@i(z)) u(pi) , (3.1) 

where 

ai = piz -X0(d) - ; [Xl(d) + ;x2(44] - O(l/P2) , (3.2) 

with the eikonal phase given by 

2 

X0(d) = w 
/ 

dz’ V(z’, b) . P-3) 
-00 

The leading (l/p) corrections are given in ref 9 but will not be needed here as 

we shall demonstrate. 

Similarly, the resolvent kernel acting to the left on the final state plane wave 

produces 

u t (pf) exdG+f - 7) RT = ut(Pf) “XP(i@f(“)) (34 

where 

. 
@f = $f - -7 +7&b) + ;[Tl(z,b) +;T2(z,q] - O(llP2) , (3.5) 
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00 

T&b) = w 
J 

dz’V(z’, b) . (3.6) 
z 

The line integrals in these phases are along the incident z-direction for the small 

scattering angles relevant to our problem. 

The higher order terms, x1 and 71, that it proved necessary to retain in the 

bremsstrahlung analysis for extended targets can be dropped here as negligible, 

and truly of order (l/p) . The same is true for x2 and 72 , and they are also 

negligible. In ref 9 the beam pulse was Lorentz ezpanded in its rest frame by a 

factor 7. In this situation, the seemingly small higher order term in (l/p) was in 

fact promoted to leading order by the effects of the target length. Here, we are 

concerned with localized scattering potentials and it is easy to see that the higher 

terms are indeed small and vanish for sufficiently high energies. In particular, 

for a coulomb potential, straightforward calculation shows that 

X1,-25+0 
PXO In7 P-7) 

and can be neglected for the situation of interest where Zcr 5 1. In contrast, for 

finite range potentials the ratio is even smaller, e - 5 --+ 0. 

The eikonal Green’s function in the external field WV can be directly com- 

puted in a simple form. From (3.1) and (3.2) we see that the effect of the 

interaction is summarized in an eikonal phase so that all we need compute is the 

free Green’s function for straight line propagation along the direction of the very 

large momentum j?’ where p’2 - m2 . Approximating 

(p’ + 1)2 - m2 = 2~’ - 1 + l2 + p12 - m2 - 2~’ - 1 
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G the propagation from ?i = (g, zr) to r2 = (& 22) , we obtain 

g(p2d-12’) = g0(r2,wpf) (b’ + m) , 

where 

go(r2,rl;p’) = -iexp[-iwx21] J d4Z exp[--i(p’ + Z) . (r2 - rr)] 
- 
cw4 +2p’ - 1 

00 

= -f exp[-ZWX~~] 
/ 

dt exp(--itm2)64(z - y - p't) , 

0 

(3.8) 

(3-g) 

with the shorthand notation 

22 

x21 = 
s 

dz’V (z’, b) . 

Zl 

The optimal choice for the parameter p' depends on details of the process and 

kinematics. For calculating the matrix element (2.10) for an electron with pi to 

radiate a photon k and scatter to a final electron with pf , the natural choice is 

p' - pi - k for the amplitude corresponding to Fig la. In this case g describes 

the eikonal correction to free propagation after the incident electron emits the 

photon. Correspondingly for Fig lb, p' = pf + k . 

Inserting (3.1) , (3.2) , and (3.3) into (2.10) we obtain the eikonal approxi- 

mation to the matrix element: 

exp[ipf . r2 - ire(z2)] U exp[-ipi . rl - ixo(zl)] , 
(3.10) 
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Gliere 

u - u+(Pf) V(r2)!.7( t-2, rl; pi - k)c . j(rl) exp(ik s rr) 

(3.11) 

+ c - j(r2) exp(ik . n) g(rz, rl; pf + k)V(rl) u(~i) . 

Defining q = Pf + k - P;, and x(b) = 70(a) + x(z2,zr) + xe(zr) , the matrix 

element becomes 

(pf;ki dT’irvl lp;) cc /d4rexp[iq.r-iwx(b)]V(r)-&Uo, (3.12) 

where 
00 

uo = 
/ dt exp(-itm2) ut(pf)Mo u(pi) , 

0 

(3.13) 

with 

MO = exp[---i(k - pi) . (pi - k)t](fii - $ + rn)E. j(r - (pi - k)t)+ 
(3.14) 

exP]+i(k + Pp) . (k + Pf)t]c * j(r + (pp + k)t)(fif + fi + m) . 

We also find explicitly the standard eikonal phase, 

00 
x(b) = J 

dz’V (z’, 6) . 

-CO 

(3.15) 

The key to further simplifications is to realize that the arguments in the 

current operators tend to asymptotically free regions outside the range of the 

potential. For example, (pi - k)t - ymt along the z-axis, and since the range 

9 



inhe matrix element is 0 -< t L- &, we have 

(3.16) .i(r - (pi - k)t) + j(2 + -00) = &&i&l G G 

where Z is the Dirac free current operator. Similarly 

j(r + (pf + k)t) + j(2 -+ +oo) E jfinal = ii! . (3.17) 

This reduction of the current j to asymptotic free currents was not applicable in 

our beamstrahlung study that involved Lorentz extended pulses. Here however, 

it permits (3.12) to be simplified by directly performing the t integral: 

(pf;kI dT’irvl Ipi) CC /d4r exp[iq.r-iwx(b)]V(r)-&Ul , 

where 

Ul = u+(Pf) @i - F + m) 
2pi * k 

E*G- tz*ii! (fif + 6 + m) u(p.) 
2pf - k 1 E - 

This can be written as 

d3r V(r)t. . Jf,,, exp[iq’. r’- iwx(b)] . (3.20) 

(3.18) 

(3.19) 

Integrating with respect to w and setting w = 1 we finally obtain 

T(Pf, k; pi) = ie G(energy) c . Jf,,, 
J 

d3r V(r) exp[iq’. fl 
1 - exp[-ix(b)] 

6 x(b) - 
(3.21) 

In the high energy limit the longitudinal momentum transfer vanishes as 

l/7 . For a localized potential V(r) we can replace <+ @+L and further reduce 
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t& above to - - - - -- - 

T(pf, k; pi) = i-f-- G(energy) E - Jf,,, 
6 / 

d2b exp(iqi . &) (1 - exp[--ix(b)]) , 

(3.22) 

a result derived earlier by Bjorken, Kogut, and Soper’ . 

It is now trivial to display the result of Bethe and Maximon: 

For a coulomb potential, 

the necessary integrals are 

(3.23) 

-L (3.24) 

and 

J 

iZa 

d2b exp(iqi . g) 
1 I?(1 - izo) 

= q2(1-iZa) 22iZar(iZa) ’ 
(3.25) 

The rapidly oscillating phase factors disappear when we take the modulus of 

the matrix element; viz 

iZa 2 

d2b exp(iqi . @  0 I $ 
z2cr2 

=IQI- 
(3.26) 

Thus bremsstrahlung cross-section approaches the Born approximation result at 

very high energies. From the above our main result evidently follows, da = 

doBethe-Mazimon . 
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- This same limit does- not apply- for pair-production for which corrections in 

(Z~Y.)~ remain finite in the high energy limit. 

For pair production it is necessary to include the difference in paths between 

the electron and positron; otherwise their charges cancel (- locally) and there is 

no scattering in the coulomb field. Thus a simple one-particle eikonal treatment 

is inadequate and one has to reproduce, in some form or other, the result in 

ref. 8 for the internal wave function of the photon. Not surprisingly one finds 

corrections’ to the Born approximation in this case. 

4. Summary 

We have studied the problem of bremsstrahlung from a localized target in 

a form that allows a direct comparision with our treatment of scattering from 

an extended target. Conditions for the validity of the eikonal approximation in 

these cases and the physical differences in the two processes are discussed. 
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- - - - - -- FIGURE CAPTIONS 

Figure la. A graphical interpretation of the formula for the derivative of the T-matrix 

with respect to the potential strength is given. The incident electron prop- 

agates in the field WV radiates a quantum (A. j), propagates again in the 

external field WV and is scattered by the potential V into its final state 

(again an exact scattering state in the field WV). 

Figure lb. The same as above except that the electron scatters from the potential V 

before it radiates the photon. 
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