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ABSTRACT 

In many processes involving low momentum transfer it is fruitful to regard 
the nucleon as a soliton or “monopole-like” configuration of the pion field. In 
particular, within this framework it is possible to obtain detailed predictions for 
pion-nucleon scattering amplitudes and for properties of baryon resonances. One 
can also derive model-independent linear relations between scattering amplitudes, 
such as TN and EN. A short survey of some recent results is given, including 
comparison with experimental data. 

1. INTRODUCTION 

This talk describes the application of chiral soliton ideas to the meson-baryon 
S-matrix. Most of the original work reported here was done in collaboration with 
Michael Mattis at SLAC.“‘*“’ . 

How can the chiral soliton picture of the nucleon be put to a quantitative 
test? The flow chart in Fig. 1 illustrates two potentially productive approaches 
to the problem. Both will be described in some detail in the course of this talk. 
For now, I will just summarize the two alternatives. 

One possibility is to take the simplest realization of this picture, i.e. the 
simplest mesonic Lagrangian admitting soliton solutions with the right quan- 
tum numbers and then calculate the properties of baryons in that model. The 
simplest model satisfying such criteria is the Skyrme model. In that model the 
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pion-nucleon scattering matrix can be computed explicitly and it is in good agree- 
ment with experiment. The Skyrme Lagrangian is of course only a very crude 
approximation to the true low-energy effective Lagrangian of &CD. In addition, 
the results obtained from the Skyrme model might therefore depend on the details 
of the action. Hence the second approach for testing the chiral soliton picture: 

Fig. 1. Flow chart illustrating two possible ways of putting the chiral soliton 

ideas to a quantitative test: a model-dependent and a model-independent one. 

it turns out that one can derive model independent predictions, valid for &l 
models in which the baryon corresponds to a soliton of a hedgehog form. In 
all such models the static soliton is not an eigenstate of the isospin I, nor of 
the angular momentum L. Instead it is invariant under the action of K = I + L. 
Therefore the meson-baryon S-matrix has well-defined transformation properties 
under K. This property of the S-matrix yields new and somewhat surprising 
relations between the various meson-baryon scattering matrix elements. Some of 
these model-independent relations are satisfied remarkably well in Nature. Let 
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me now describe the two approaches in some detail, addressing first the Skyrme 
model calculation. I will begin with a very brief review of some basic results in 
Ref. 3. The Skyrme Lagrangian with a chiral-symmetry breaking mass-term is 
given by 

L = $Tr (a,U aPUt) + &Tr [(a,U) Ut, (&,U) V12+ F (TrU - 2). (1) 

Here fir is the pion decay constant (186 MeV in the real world), m, is the pion 
mass, and e is a new, dimensionless coupling constant peculiar to the model. The 
%mall parameter” l/N enters the Lagrangian through jr and e, which behave 
like Ni and N-i in the large-N limit, respectively. 

The chirally invariant vacuum is U(z) G 1 and pions are usually thought of 
as small fluctuations around this state, hence the standard notation: 

U=exp [$B(i!,t)-;] 

For small Z/j= we have U B 1 + 2iii(Z, t) .7’/ fir and then the first term in Eq. 
(1) becomes just the kinetic term for free pions, as expected: 

f: IsTr (a,Ui3,Ut) + 

In addition to the vacuum solution, (1) has static soliton solutions which break 
the chiral symmetry and carry one unit of baryon number. They can all be 
obtained by an isospin rotation from the canonical 

UO = exp [F(r)? - f] 

UA=AUOA-’ 

“hedgehog” solution: 

(3) 

where A is a constant SU(2) matrix. When A is treated as a collective coor- 
dinate, one finds that the nucleon corresponds to a superposition of the UA-S. 
Schematically we can write this as 

IN) = / dAX(A) I4 

where X(A) is the wave-function in the space of collective coordinates. While IA) 
corresponds to a state pointing in a well-defined direction in the internal space, it 
has an ill-defined isospin and angular momentum. On the other hand, the state 
(N) has well-defined spin and isospin, but does not point in any specific direction 
in the internal space. The situation here is completely analogous to the problem 
of a particle constrained to move on a circular ring, as shown in Fig. 2. 
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Fig. 2. A one-dimensional analogue of the collective coordinate A: 
particle constrained to move on a circular ring. Classical ground 

state corresponds to a particle at rest at some fixed angle 8. In 

quantum mechanics this is no longer true and we must have an 

eigenstate of the angular momentum operator Lo = -if. 

Classically, a particle at rest at any angle 8 is a ground state of the system. In 
quantum mechanics the eigenstates of the hamiltonian no longer are localized at 
a fixed angle 8. Instead, they are eigenstates of the angular momentum operator 
Ld = 4:. Using this analogy, we see that a nucleon with a well-defined spin 
and isospin corresponds to a rotating soliton. 

Static properties of the nucleon in the Skyrme model obtained in Ref. 3 were 
based on treating jr and e as free parameters, to be adjusted for the best fit to 
nucleon and A masses. All other static quantities were obtained as functions of 
e and fir. Some properties of the nucleon turned out very well, but some others 
were in serious disagreement with experiment. Most notably, the values of jr 
and gA had errors of about 30% and 50%, respectively. At this point it is worth 
reminding ourselves that the Skyrme Lagrangian is in principle an equally good 
approximation to an underlying SU(N) gauge theory with N = 3 or N = 5, 
etc. In the real world N = 3 and it is therefore very unlikely that the Skyrme 
Lagrangian can reproduce experimental quantities which explicitly depend on N. 
Typically the most we can hope for is to reproduce experimental quantities which 
do not depend on N in the leading order of the l/N expansion. For example, 
while jr - Nt and gA - N, the ratio ji/gA - No and in contrast to fir and gA 
taken separately, it reproduces experiment to 3%. As shown in Table I, similar 
statements can be made about some other N-independent ratios. 
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TABLE I 
STATIC PROPERTIES OF THE NUCLEON IN THE SKYRME MODEL 

AND THEIR DEPENDENCE ON N. 

Quantity N-dependence Prediction Experiment Error 

(r2):/=“, - No 0.59 fm 0.72 fm 18% 

(r2)$I=o - No 0.92 fm 0.81 fm 14% 

ClP -N 1.87 2.79 33% 

Pn -N -1.31 -1.91 31% 

h/h N No 1.43 1.46 2% 

9-4 -N 0.61 1.23 50% 

f?r N Ni 129 MeV 186 MeV 31% 

W9A - No 27,280 MeV2 28,127 MeV2 3% 

&rNN -NC 8.9 13.5 34% 

&rNA N N: 13.2 20.3 35% 

grNA/&NN - No 1.5 1.5 51% 

The predictions are from Ref. 3. Skyrme model is a priori an equally good 

effective Lagrangian for Nc = 3 and Nc = 5. So it does not reproduce well 

the quantities which depend on N in the leading order of the l/N expansion. 

On the other hand, as demonstrated by the table above, it typically does much 

better for ratios in which the N-dependence cancels out. 

The purpose of this example is not to suggest that all N-independent quan- 
tities should agree well with experiment, for this is hardly the case. The results 
in Table I suggest however that the N-independent quantities stand a better 
chance of reproducing the real world data. If our guiding principle is to look for 
such quantities, it is natural to examine the pion-nucleon S-matrix, since meson- 
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UO = exp [F(r)? . +] 

U = exp 
[ 
F(r):-?+ 

2i?i( i?, t) 
frr I 

Fig. 3. A two-dimensional example showing how fluctuations 
around the classical soliton profile should be identified with the 
physical mesons. Time flows from left to right and the fluctuation 
corresponds to an outgoing spherical wave. 

baryon scattering amplitudes are independent of N in the large-N limit”’ . 

The first step towards the computation of the TN S-matrix is the realization 
that small fluctuations around the soliton can be identified with physical mesons. 
This is schematically illustrated in Fig. 3.* 

Once that identification is made, it is clear that in order to obtain the pion- 
nucleon S-matrix, we should in principle find the eigenmodes of small fluctua- 
tions around a rotating soliton. This is a very difficult problem. Fortunately 
enough, in the large-N limit there is an important simplification: in that limit 
the soliton rotates very slowly, with angular velocity ws - l/N. The reason is 
as follows. The spin of the nucleon is +tL, independent of N. It is the product of 
the Skyrmion angular velocity ws and its moment of inertia Is. The Skyrmion 

* This identification breaks down for fluctuations which do not change the energy of the 
system. Such fluctuations correspond to the translational and rotational zero modes of the 
soliton. In our treatment this subtlety is neglected, spoiling the agreement with experiment 
in the low partial waves. 
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radius R, is independent of N and its mass MS scales like N.“’ Consequently 

Is - MsR; - N while Isws = ;h - No 

therefore 

WS - l/N 

The characteristic time scale t rot associated with the Skyrmion rotation is large, 
trot - l/w, - N. It is much greater than the time t, that a pion moving with 
the speed of light spends in the vicinity of the nucleon: 

Rs - No; Rs fc - No - t, < trot - N 

A pion will therefore not observe the rotation, but rather will take a “snapshot” 
of the soliton in one of its possible orientations. The probability of any given 
orientation is proportional to IX(A)12. This justifies the impulse approximation: 
first obtaining the scattering amplitude for scattering of a pion by a soliton point- 
ing in a fized orientation and then superimposing such amplitudes, according to 
their weight in X(A). 

In addition to neglecting the rotation, as described above, we can neglect the 
nucleon recoil, since in the large-N limit the pion kinetic energy in the domain of 
interest is independent on N, while MS - N. In order to obtain the Lagrangian 
describing scattering of mesons by a static soliton, we write the chiral field U in 
the form: 

F(r)?.++? 1 . (4 ?r 
This form of U is then plugged back into the original Lagrangian (1) and the 
action is expanded in powers of ?/fir: 

where c1, is a second-order linear differential operator depending on Uo. For 
r --) 00, UO --) 1 and then n becomes just the free four-Laplacian, as in (2). 
The term linear in ii vanishes, since Uo is an extremum of the classical action. In 
addition, in the N + oo limit we can formally neglect the 0 (i;“/ jt) terms, since 

fir - Ng, and such terms are suppressed relative to the quadratic one. We are 
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left with a quadratic Lagrangian and therefore with linear equations of motion, 
which can be schematically written as: 

t&i;=0 . 

These equations describe the motion of a meson in a potential provided by the 
soliton background. t Since the potential is invariant under K, K plays the 
role of the angular momentum in the usual partial wave decomposition. The 
equations can be explicitly solved for each value of K, yielding the eigenmodes 
of ii as functions of energy. For IZl > R,, F(r) + 0 (c j. Eq. (3)), the potential 
vanishes, and up to a phase, the ii wave function is that of a free particle. This 
phase is just the scattering phase-shift defining the S-matrix element in a given 
pion-Skyrmion channel. We shall refer to the latter as reduced matrix elements. 
The reason for this name will become clear in a moment. 

In order to obtain the pion-nucleon S-matrix from the pion-Skyrmion one, 
we need to project the Skyrmion onto states with well-defined isospin and spin. 
This projection is carried out as follows. First, given the T-matrix* T,, for 
scattering off UO, the corresponding T-matrix for scattering off VA (c j. Eq. (3)) 
is given by: 

T,, = B(A) T,, 6(A)t (6) 
where fi is the adjoint representation of A. Next we superimpose the TU,-s 
according to their weight in the nucleon wave function X(A). The complete 
expression for the physical T-matrix is then: 

T PHYS = 
I 

dA X;(A) B(A) T,, B(#x+~) (7) 
SW’f) 

where SU(Nf) is the flavor group and Xi(f) is the wave function of the baryon 
in the initial (final) state. Integration over the flavor group can be carried out in 
closed form (see Appendix B of Ref. 9 for details.) The final result has a very 
simple structure: 

T PHYS = c 
CiTqED 

i 

where rRED are the T-matrix elements in the pion-Skyrmion system and the 
Ci-s are group-theoretical factors. The structure of Eq. (8) explicitly demon- 

t The explicit expression for n is rather complicated and will not be given here. Interested 
reader is referred to the original literature Refs. 4, 6, 8 and 9. 

* We interchange freely between the S-matrix and T-matrix, using the one which is the most 
convenient. The two are related by T = (S - 1)/2i. 
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. 
strates two ingredients on which the physical answer depends: symmetry and 
dynamics. Ci-s reflect only the symmetry and are independent of the details of 
the Lagrangian. They are determined by the flavor group and by the fact that 
the soliton is invariant under K; all dynamics is contained in the reduced ma- 
trix elements. We are all familiar with this type of division into group theory 
and dynamics. For example, isospin conservation dictates that the T-matrix for 
TN --+ rrrN is given by 

where C’;(g, are SU(2) Clebsch-Gordan coefficients and T;(G) are the 1 = f(i) 
reduced matrix elements. 

In the foregoing discussion we have focused on the 2-flavor Skyrme model. 
Extension to 3-flavors is in principle straightforward. The embedding of the 
SU(2) hedgehog inside SU(3) is done by setting 

uo + 
UO (4 1 

(10) 

Technical details for SU(3) are however much more complicated. The interested 
reader is again referred to the original literature, especially Ref. 9. 

At this point we can summarize the prescription for computing the meson-baryon 
S-matrix in the Skyrme model: 

l identify small fluctuations around the soliton with mesons 

l meson wave function _ phase shifts, ryD 

l K symmetry + TpHys = c; C;7yD 

l Approximations: 

D m,=md=m,= 0 ==+ massless pseudoscalar mesons, exact SU(3)f 

D Large-N + no recoil, linear eq’s of motions 

D Zero modes for L = 0, 1,2; neglected 

We are ready to compare the Skyrme model T-matrix with the experiment. 
It is customary to decompose the experimental data into channels with well- 
defined isospin I, angular momentum J and orbital angular momentum L. Such 
channels are denoted by L,l,,J where L is denoted by an appropriate letter: 
S, P, D, F, G, H, I, K for L = 0, 1,2,3,4,5,6,7, respectively. The T-matrix for 
each L2I,2J channel is plotted as a function of the energy, on the so-called Argand 
plots (cf. Fig. 4). 
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Fig. 4. Sample Argand diagram. A resonance corresponds to the 
maximum velocity of d(Tl/dE ( here denoted by an arrow ). In 
the Skyrme model the plot in the unitarity circle, ImT VS. ReT, 
is independent of e and fir. 

The part of the diagram bounded by the unitarity circle, ImT vs. ReT is inde- 
pendent of e and fir and therefore provides the most stringent test of the model. 
Fig. 5 compares the experimental results for rrrN t zN S-matrix with those of 
the 3-flavor Skyrme model. 

I’d like to stress again that the Skyrme model calculation as shown in Fig. 5 
contains no aa!!ustable parameters. The parameters of the model determine the 
energy scale, but not the shape of the Argand plots. Apart from the S, P and 
D partial waves, containing the spurious zero modes, overall agreement with 
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Fig. 5. TN + TN : comparison between the S-flavor Skyrme model and 
experiment (from Ref. 9). The plots show Im(?‘) VS. Re(?‘) for each channel. 
Channels are labeled by L 21 lJ, where L is the pion orbital angular momentum, 
I is the total isospin and J the total angular momentum. 

experiment is quite good. 

The most conspicuous feature of Fig. 5 is the fact that the LI=1/2,~=~--1/2 
channel is much larger than L~=1/2,J=L+1/2 for all 15’s. This is true for both ex- 
periment and the Skyrme model. A similar, albeit less pronounced pattern holds 
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id 
E 

1.0 
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for LI=3/2,J=L+1/2 and LI=3/2,J=L-,/2 channels. In the chiral soliton framework 
this phenomenon has a very simple explanation: there are eight reduced ampli- 
tudes entering Eq. (8) for SU(3)f. Out of these, five turn out to be very small 
and only three are significant, with roughly the same magnitude. The magni- 
tude of the physical amplitudes is therefore determined by group theory, i.e. the 
relative strength of the Ci-s multiplying the three principal reduced amplitudes. 

Fig. 6. Spectrum of N and A resonances: S-flavor Skyrme model (crosses) vs. experiment 
(points with error bars) (f rom Ref. 9). Resonances are assigned stars according to the 
Particle Data Book. The Skyrme-model values for WIN and WZA are obtained from EJq. (9) 
of Ref. 3, using the “best fit” parameters of Ref. 9(e =4.79, fir =150 MeV.) 
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Fig. 7. Speed diagrams for the four F-wave amplitudes in the 2. 
and S-flavor Skyrtie models (dotted and solid lines, respectively). 

Having obtained the complete set of partial-wave channels, we can compute 
the resonance masses from the maxima of dlTl/dE. The resultmg spectrum 
of N and A resonances is displayed in Fig. 6. With over 30 resonances and 
two adjustable parameters, masses are predicted with an average of about 7%. 
While all of the 4-star resonances appear in the same place in 2- and 3-flavor 
calculation, the l- and 2-star resonances in the Fl5 and F37 channels supply a 
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surprise: as demonstrated by Fig. 7, these weak resonances appear only when 

the third flavor is introduced. It is somewhat puzzling that the appearance of 

non-strange resonances should be sensitive to the existence of the strange quark. 
A possible explanation is that they couple to the strange quark sea in the proton. 

TN-‘TA 

EXPERIMENT SKYRME MODEL 
0.5 0 0.5 0 0.5 0 0.5 

-0.5 0 0.5 0 0.5 0 0.5 0 0.5 -0.2 0 0.2 0 0.2 0 0.2 0 0.2 
0.5 

0 -0.5 OtqT-fFyq 

-0.5 0 0.5 0 0.5 0 0.5 0 0.5 

-1J2JqzJJ 

-0.1 0 0.1-0.1 0 0.1-0.1 0 0.1-0.1 0 0.1 

0.1 ’ ’ ’ ’ ’ ’ ’ ’ ’ 
I , I 

PF33 Fhs 

Fig. 8. TN + TA : comparison between the 3-flavor Skyrme model and the 
experimental solution of Ref. 13 (from Ref. 9). Channels are labeled by LL:I,lJ, 
with L and L' the incoming and outgoing pion angular momenta, respectively. An 
asterisk denotes amplitudes which were found to be small and/or poorly deter- 
mined by the available data, and were therefore not included in the experimental 
solution. The partial-wave analysis of the experimental data is not as unambigu- 
ous as in TN -+ TN , but in all cases the Skyrme model correctly reproduces 
the sign of Im(T), which is a crucial test for theory. 
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In addition to the elastic TN + TN processes, we can also consider inelastic 
processes, such as TN ---) IDA . The only change with respect to TN + ?rN is 
that Xf stands now for the A, instead of the nucleon wavefunction. The results 
are shown in Fig. 8. The experimental partial-wave analysis of TN + ?rA is 
somewhat less clear-cut than TN -+ ?rN , since a N?rr final state may represent 
Np, as well as AK. The sign of b-n(T) ’ h 1s owever unambiguous in most cases and 
wherever it is known experimentally, the Skyrme model yields the correct answer. 
This is highly non-trivial: the only other theoretical scheme which passes this 
test is the quark model. 

KN-KN 
Experiment I Experiment II 

-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5 1.0 I- 7 //’ So,‘\\ 
,- , 

0.5 - 
1/’ s,, ‘\\ \ 

i 

1.0.,- 1 .\ ,-,:l’,, 
( PO, ‘\ /’ PO3 ‘\/ /’ 

0.5 - J- 
\ \ \ I\ / 

n ‘- ‘\ ,/ ’ ‘\ ,’ ‘\ ’ 

1.0 

0.5 

n 

1.0 ,I' '\ 
%I ' 

0.5 
/ 

/’ d /“PI, 
-\ ’ -\ 

‘\ I’ P,3 ‘\ 

\ \ \ /‘\ ’ 
,’ \ J’ 

-73.5 0 0.5 -0.5 0 0.5 
-0.25 0 0.25 

I .o 

0.5 

0 

Skyrme Model 

Fig. 9. KN + KN : comparison between the Skyrme model and two experi- 
mental solutions (from Ref. 9): “Experiment I” from Ref. 14 and UExperiment 
II” from Ref. 15. Channels are labeled by LI,,J. Note that experimental and 
Skyrme-model plots for L 2 2 are shown on different scales. The resonance- 
like behavior in some of the experimental channels is evident. 

The results discussed so far were obtained in the S-flavor model, but did 
not involve strange particles. We will now review two processes with open 
strangeness, beginning with KN ---) KN . That reaction is rather different from 
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zN --+ zN , because any resonances in the KN channels must be exotics, in- 
volving more than three quarks. The question whether such resonances exist 
experimentally has long been a controversial subject.* The Skyrme model has 
no built-in bias of this kind and therefore it is interesting to compare its predic- 
tions with experiment, as shown in Fig. 9. In general, the predictions contain too 
many resonances, compared to the data. Of particular interest are the F-waves, 
where the model typically works best. The theory predicts a clean resonance in 
the Fc5 channel, similar to the one observed in 003. This channel has not yet 
been analyzed experimentally and thus provides an interesting prediction. 

RN - i?N 
Experiment Skyrme Model 

-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5 

a/ \.I/ 
D13 D15 015 

Fig. 10. KN -+ KN : comparison between the Skyrme model 
and the experimental solution of Ref. 16 (from Ref. 9). Channels 
are labeled by LI,pJ. 

* Some of our colleagues even refuse to be confused by data, as is perhaps best illustrated 
by the 1984 Particle Data Book: “. . . The general feeling, supported by prejudice against 
baryons not made up of three quarks, is that the suggestive counterclockwise movement in 
the Argand diagram of some of the partial waves is not real evidence for true Breit- Wigner 
resonances. . . n (p. S243) 
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Contrary to the KN channel, there is nothing exotic about EN --) KN . The 
partial-wave analysis of experimental data is of good quality, although not as 
precise as TN + TN , especially in the higher partial waves. The theory repro- 
duces most of the essential features of the experiment, as shown in Fig. 10. Since 
we work in the chiral limit, mK = 0, there is no point in attempting to extract 
the spectrum of the strange resonances. 

It is possible to study many more inelastic, strange and non-strange processes. 
Details may be found in Ref. 9. At this point I would however like to move on 
to the model-independent tests of the chiral soliton picture, as outlined at the 
beginning of this talk. Let me invoke the isospin analogue once more. If we 
consider elastic scattering of charged pions on nucleon, a priori there are four 
different amplitudes to consider: T(r+p), T(n-p), T(r+n) and T(x-n). From 
Eq. (9) we learn that they can all be obtained from two reduced amplitudes: 

Only two out of the four can be independent, and so there is a linear relation 
between any three of the four. This is a rather generic phenomenon, with an 
interesting counterpart in the chiral soliton framework, valid for all models in 
which the nucleon corresponds to a soliton invariant under the K symmetry: 
with three flavors any elastic meson-baryon T-matrix element is given by a linear 
superposition of the eight reduced amplitudes. In the Skyrme model five reduced 
amplitudes are negligible and the other three make the dominant and roughly 
equal contributions to the physical amplitudes. Even though we cannot compute 
the reduced amplitudes in Nature, it is natural to make the dynamical assumption 
that this hierarchy exists in the real world as well: 

3 

T PXYS = c CgqED (11) 
i=l 

Such an assumption not only explains why for TN + TN LI=1/2,J=L-1/2 2 
LI=1/2,J=L-1/27 etc., but also yields some quite new and interesting predictions. 
For a given value of L there are many experimental amplitudes, all determined 
in terms of the three unknown reduced amplitudes. Consequently, there are 
linear relations among the experimental amplitudes. Such relations are almost 
model independent, relying only on the K-symmetry group theory and on the 
assumption that scattering is dominated by the three reduced amplitudes. 

First, there are rather accurate linear relations between TN + TN and 
rN+rA. Very similar relations can be derived in the ‘L-flavor case, as was 
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Fig. 11. Test of the prediction for a linear relation between K~V + TN and 

KN + KN , EIq. 12. The scattering matrix T is plotted both as function of 
energy and in Im(T) VS. Re(T) re p resentation. Continuous lines: linear combi- 
nation of the experimental Fl5 and F37 TN + TN amplitudes. Dotted lines: 

linear combination of the experimental Fo5 and Fl7 KN + KN amplitudes. 

KN amplitudes are shifted by the strange quark mass w 150 MeV. 

originally done in Ref. 5. In that case there are only 3 reduced amplitudes and 
no dynamical assumptions are necessary. In order to test the predictions inherent - 
to 3-flavors, it is however necessary to consider relations between strange and 
non-strange amplitudes.“71 One such relation reads 

~IJ’~;~ + a& aN = bl FoFN + b2FoTN . (14 
where u-s and !PS are purely group-theoretical coefficients obtained from Ci-s 
in Eq. (11)) and FFsN, Fc7N, Fo$N and FoTN are the experimental partial-wave 
amplitudes. 

As shown by Fig. 11, the prediction contained in Eq. (12) is satisfied with 
remarkable accuracy. It is also possible to derive similar predictions for G-waves. 
At present the partial wave analysis for the G-wavexN is not yet reliable enough. 
The G-wave linear relation is therefore a real prediction for what the EN G- 
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waves should look like. I very much hope that this prediction will be put to a 
test sometime in the near future, perhaps with the advent of the K-factories. 
It is important to note that Eq.(12) cannot be obtained from SU(3)f by itself. 
While SU(3)f is part of the symmetry used to derive Eq. (12), it is clear that 
SU(3)f alone cannot produce such a relation, since it mixes amplitudes with 
different total angular momenta. A more detailed argument shows that even the 
more elaborate ‘conventional” symmetries, such as SU(6) are also incapable of 
reproducing Eq. (12).‘“’ . That being the case, the very precise experimental 
confirmation of the F-wave linear relations should be regarded as another strong 
testimony in favor of the view that the nucleon indeed can be regarded as a 
soliton of the meson field. 

I hope that this brief review has convinced you that the chiral soliton picture 
of the nucleon is not only valid on a qualitative basis, but also can be used to 
study details of low energy hadronic phenomena in a way complementary to and 
on a par with the quark picture. 
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