
1‘ 

SLAC - PUB - 4258 
March 1987 

(El 

PROGRAMMING LANGUAGES: TIME FOR A CHANGE?* 

J. J. RUSSELL 

Stanford Linear Accelerator Center, 
Stanford, California 94305 

Must computer programs read like, well, computer programs? An overview 

of the software needs of the high-energy physics community and how modern lan- 

guages can meet these needs is given. Using ADA as an example, the production 

of readable, efficient and maintainable code is shown to be directly supported 

by the language, integrating concepts such as top-down design, object-oriented 

programming and data encapsulation as a natural part of the language rather 

than as foreign ideas imposed on the language. Particular attention is paid to 

nontraditional aspects of a language and how these can help by providing an 

integrated support environment for all phases of the lifetime of the software. 

Published in Computing Physics Communications 45(1987) pg. 269-273; 

also Presented at the Computing in High Energy Physics Conference, 

Asilomar, California, February 2-6, 1987 

* Work supported by the Department of Energy, contracts DE-AC02-76ER02220 (Princeton) 
and DE-AC03-76SF00515 (SLAC). 

t Address after March 1, 1988: Theoretical Physics Group, Tata Institute of Fundamental 
Research, Homi Bhabha Road, Bombay 400005, India. 



1. INTRODUCTION 

For the past twenty years the high-energy physics community has used ba- 

sically the same programming language and software techniques. During that 

time, not only has the size of software projects increased greatly, but so has the 

scope. Many programs now have very little to do with formula translation. They 

are concerned with pattern recognition, synchronous and asychronous control 

functions, database query and management, data acquisition, etc. Those in the 

online world have been struggling for years with requirements the present envi- 

ronment is unable to satisfy. It is interesting to note that with the arrival of 

interactive analysis programs and parallel processing demands, the vocabulary 

(and p bl ) f y h ro ems o as nc ronous control and multitasking familiar to the online 

world is making its way into the batch-oriented language of the offline community. 

To be sure, improvements in software engineering have been made, but these 

have been evolutionary rather than revolutionary-continually erecting new fa- 

cades around a very old building. Contrast this with what has been done in elec- 

tronics. During the same time period, electronics has progressed from discrete 

transistors to integrated circuits to VLSI technology to custom chips designed 

with the aid of silicon compilers. The use of electronics in experimental high- 

energy physics has paralleled the natural development of the field. The software 

effort in high-energy physics has lost contact with the mainstream. 

The next generation of detectors promises to greatly increase the demands 

placed on its software. Will the answer to this increased complexity be to add 

yet another layer to cover up the inadequacies of the current environment? This 

paper suggests that a different tack be taken: examining, not what can be added 

to a programming language ex post facto, but what a programming language 

can contribute directly. To do this, it is desirable to step away from the current 

environment and reexamine the underlying needs and enumerate those features 

and tools which are useful for the production and maintainence of quality soft- 

ware. For definiteness, ADA, the programming language mandated by the United 

2 



States Department of Defense for its software, will be used as the vehicle to illus- 

trate how a modern language can not only fulfill many of the usual requirements 

of a language but also help solve problems which have not traditionally been 

viewed as being within a language’s domain. 

2. DESIRABLE FEATURES OF A LANGUAGE 

The success criteria of software has long been dominated by one measure: 

does it work. The achievement of other desirable features have been either sac- 

rificed or ignored. The resulting situation is much like that of balancing a pencil 

on its point: yes it is functionally operational, but, please, nobody breathe. One 

sees this in many experimental groups where either no one knows how something 

works or the code is so patched with fixes that it is a house of cards waiting to 

fall. 

Five additional and important features of software are: 

1. Readability 

2. Efficiency 

3. Maintainability 

4. Portability 

5. Provision of an Integrated Support Environment. 

Ideally the achievement of any one of these particular features should not 

come at the expense of another one. Unfortunately, reality forces compromises, 

with efficiency generally squaring off against the others. In the current envi- 

ronment, the only tool supplied by the language which speaks to these needs is 

the subroutine/function construct. This is not sufficient. While this construct 

can make the code more readable, maintainable and portable, it generally has a 

negative impact on efficiency and does nothing to help with the problems of pro- 

viding an integrated support environment. Even in its domain, it is not always 

3 



the appropriate construct for achieving a goal. Not all programming problems 

can be solved by inventing a subroutine. The popularity of preprocessors is an 

admission of this fact. 

2.1 READABILITY 

The code must be readable and readable at different levels of detail. Most 

physicists have neither the time, desire nor need to understand each line of code 

in full detail. The language should not only allow one to implement the ideas 

and concepts needed to solve the problem, but also allow the implementation to 

be clean and direct. One need only look as far as attempts to provide linked lists 

and data structures in FORTRAN for a violation of this principle. 

2.2 MAINTAINABILITY 

Given that the code is initially functional and readable, maintainability is 

what keeps it in that state. The maintainence of a particular package is rela- 

tively easy if its sphere of influence is well-defined. A primary contributor to 

maintainence problems is the failure to cleanly define the interface. This usually 

happens by exposing the user of a package to unnecessary implementation de- 

tails. This exposure is likely justified by the increased efficiency it affords. Again, 

the example of linked lists illustrates the point nicely. The operation of moving 

to the next list member may be implemented as a function call, but efficiency 

dictates otherwise. This ensures that detailed knowledge of moving from element 

to element is buried within user code, eventually becoming scattered beyond the 

control of anyone to change it. 

An often overlooked area is the need to plan for a package’s demise. This may 

seem like a strange requirement, but the maintainence of software packages long 

past their prime is a very real problem. Consider the future of current packages 

which implement pseudo-data structure capabilities within FORTRAN. What is 

to be their role when data structures are directly supported within the language? 

4 



Their growing irreversible entanglement with many other packages would seem 

to ensure their continued and otherwise unnecessary survival. 

2.3 EFFICIENCY 

There is no escaping the fact that code must be efficient. Inefficient code 

costs time and money. Many alternate languages have been dismissed because 

of their failure to achieve reasonable efficiency. One must ask if a language 

is intrinsically efficient, or if it includes features which are not only in and of 

themselves inefficient, but which affect the efficiency of code even when they are 

not used. For example, early specifications of PL/I suffered somewhat in this 

area. Care must be taken to separate the intrinsic efficiency of a language from a 

particular implementation’s efficiency. While one can make a bad implementation 

of anything, the question is whether one can make a good implementation. 

One must also beware of false efficiency. Gains achieved by efficiently gener- 

ating code for routines needed only because of language restrictions are not real. 

The greatest gains in efficiency come, not from great optimization, but rather 

from great algorithms. The difference between unoptimized code and highly 

optimized code may be a factor of two. The gains realized by the choice and im- 

plementation of the correct algorithm are usually much higher. However, these 

algorithms generally demand thinking in more abstract terms and the implemen- 

tation of more complex code, neither of which may be obvious or practical in a 

primitive language. The increased understanding of optimization techniques in 

recent years will also minimize potential losses. 

The cost of efficiency must also be accessed. Does the quest for efficiency make 

the code unreadable and unmaintainable by exposing the user to implementation 

details? Does this exposure to the inner workings preclude switching to some 

even better algorithm in the future? 

5 



2.4 PORTABILITY 

While it is certainly desirable that code work on more than one machine, 

the question is the price to achieve portability. Portability is not guaranteed 

merely by writing in a high level language. The cost comes either in terms of 

efficiency, when one carefully layers out all machine dependencies to a collection 

of subroutines and functions, or in readability and maintainability, when one uses 

a preprocessor to implement conditional compilation. A good language should 

minimize the number of machine dependencies and, when they inevitably arise, 

it should provide a mechanism which preserves the semantics of the subroutine 

style without the efficiency penalty. 

2.5 INTEGRATED SUPPORT ENVIRONMENT 

A programming language is not an isolated object. In large projects it must 

be surrounded with various support tools. The language should provide enough 

information so that all the following tools work smoothly. 

1. Syntax Oriented/Directed Editors 

2. Compiler 

3. Linker 

4. Symbolic Debugger 

5. Document Generator 

6. Code Maintainence Utility. 

The advent of editors which understand the syntax of a language removes the 

sometimes tacit design goal of keeping a language terse. Since the programmer 

need no longer remember language constructs in full detail, they can be made 

verbose enough such that their meaning is clear and unambigious to both human 

-readers and other computer programs. This latter catagory includes not only 

the compiler, which will benefit by being able to generate more informative and 

6 



accurate error messages, but also document generators and code maintainence 

utilities. 

The more directly a language supports abstract concepts, the more directly 

the debugger can provide information about them. A user-implemented data 

structure facility is an excellent example of functionality being achieved so far 

outside the general context of the language that the debugger cannot supply a 

fraction of the power it should. 

3. LANGUAGE FEATURES 

A language consists of two parts, small- and large-scale features. Small-scale 

features have to do with the syntax and control and data structures the everyday 

programmer has at his disposal. Large-scale features are those which help provide 

solutions to the problems inherent in large-scale software projects. The reality of 

large projects has forced more and more time to be spent on the organization and 

maintainence of code. Beyond the ability to do separate compilations, large-scale 

features have not, until this time, been considered as part of a language. 

ADA has been chosen as a representative modern language to illustrate what 

can be achieved entirely within a language. Since a complete discussion of ADA 

is outside the scope of this paper, the reader is encouraged to consult an intro- 

ductory book on ADA [1,2]. 

3.1 SMALL-SCALE FEATURES 

The small-scale features which ADA supports and are useful in high-energy 

experimental physics’ code are: 

1. Complete and Rich Set of Control Structures 

2. Data Structures 

3. Strong Typing 



4. Support for Low Level Coding 

5. Block Structuring 

6. Dynamic Memory Allocation 

7. Overloading 

8. Pragmas 

9. Exception Handling 

10. Tasking Support 

11. Generic Facility 

12. Default Arguments and Passing by Name. 

This list is only meant to enumerate and not explain. Only the issue of data 

structures is expanded on below because it so important and ADA’s facilities 

are so complete. The true power of these features comes when used together. 

As an example, consider the combination of the generic facility, overloading and 

compiler pragmas. A compiler pragma is an instruction to the compiler which 

is embedded in the code. Simple pragmas may control the listing, while more 

complicated pragmas may define the interface to a routine written in a language 

other than ADA (see below). Overloading refers to the ability of an operator or 

the name of a procedure or function to be context sensitive. Overloading is not 

something completely new, e.g., the arthimetic operators in most programming 

languages are overloaded to allow the exact function to change depending on 

whether the operation is between two real numbers, or two integer numbers, or a 

real number and an integer. ADA merely makes this feature available to the user. 

The ability to write object-oriented code depends on overloading. The generic 

facility provides what amounts to a civilized macro facility. While generics may 

not do everything that a traditional macro processor may do, they do allow 

the construction of generic packages. Since the semantics of generics are very 

-similar to that of an ordinary procedure, the programmer is not unduly burden 

by a completely different set of rules to implement and use a generic package. 

8 



Using these three features together, the ADA programmer could create a suite 

of generic sort routines. The ‘variables’ to such a generic sort package would 

be the method of sorting, the data type to be sorted and the procedures to 

compare and swap data elements. The use of the inline pragma would guarantee 

efficient comparison and swapping of the data elements, while the overloading 

feature would place the burden on the compiler, rather than the user, to select 

the proper sort for a given data type. The combination is powerful, producing 

efficient and maintainable code. 

3.1.1 Data Structures 

Data structures are one of the most important considerations in any software 

project. The need for flexible and efficiently implemented data structures is 

currently the largest single deficiency in FORTRAN. The already alluded to 

attempts to provide such a facility for use in a FORTRAN environment only 

serves to illustrate their importance by the lengths one is willing to go to provide 

them. ADA provides all the traditional support one would expect. 

1. Ability to mix inhomogenous data types. 

2. Ability to separate the definition of the data from the instantiation of the 

data, i.e., COMMONS do not satisfy this criteria. 

3. Ability to define new data types. 

4. Ability to define recursive data structures, i.e., be able to point to another 

instance of a data structure of the same or different type. 

5. Ability to define enumerated types. 

In addition, ADA goes beyond these to provide extra capability which is 

particularly useful in high-energy experimental physics’ code: 

1. Ability to have runtime defined lengths and structure through the use of 

discriminated records and variant records. 

9 



2. Construction of data types that can be mapped directly onto a preexisting 

structure, e.g., hardware device control block. 

3. Construction of private data types, allowing the hiding implementation 

details. 

3.2 LARGE-SCALE FEATURES 

The most useful concept ADA brings to this area is that of packages. This 

is the single biggest difference between ADA and older languages. A package 

allows one to cleanly isolate the specification of a software component from the 

implementation of that component. This separation is usually physical, the two 

pieces going into two distinct files. Because it may be impractical to contain the 

entire implementation piece in one file, ADA has the concept of a subunit which 

allows the placement of a segment of the package in another file. The ability to 

define a private piece allows the implementer to hide details and expose only what 

is necessary. These concepts accomodate and support both top-down design, used 

for construction of large projects, and bottom-up design, used in the construction 

of library utility packages. 

Because the user of a package must explicitly declare within the code his 

intention of using the package, a number of hidden beneficial side effects are 

realized: 

1. The entire dependency tree is carried with the code allowing other utilities 

to make use of it. 

2. The writer of a package, at the time of writing, defines exactly what it is he 

wishes to use, i.e., the correct use of the code is not left to the mercy of a 

magical link command to pick up the components the package may depend 

on. 

3. Name conflicts are drastically reduced to just ensuring unique package 

names. A package member, whether it is a data structure, function or 

10 



procedure, can always be qualified with the package name to ensure unique- 

ness. 

4. Strong type checking and currency can be implemented by the compiler 

since all the necessary information is present at compilation time. 

Another very useful construct ADA brings is a formal prescription used to 

interface a routine written in another language to ADA. Certainly this is very 

important and useful when initially migrating to ADA from another language. 

Through the use of a pragma one can specify the language the routine is written 

and the exact method by which the arguments are passed. This can then be 

bundled in a package in such a way that the use of the routine is transparent, 

i.e., the user cannot tell whether the routine is written in ADA or some other 

language. This feature helps preserve the investment made in the existing large 

base of software. 

4. SUMMARY 

The changing requirements of software in high-energy physics justifies care- 

fully examining alternate languages. In addition to supplying all of the existing 

functionality of FORTRAN, ADA can help solve problems inherent in large-scale 

software projects. This, together with its increased functionality and ability to 

interface with existing software, makes it a much better base on which to build 

new code while at the same time preserving the investment in existing code. 

Even though the language may not be a perfect match to the software needs of 

experimental high-energy physics computing, it appears sufficiently flexible and 

general that a careful working study of its use is merited. 

11 



5. REFERENCES 

1. S. J. Young, An Introduction to ADA, Second Revised Edition, 

Ellis Norwood, 1984. 

2. J. G. P. Barnes, Programming in ADA, Addison-Wesley, 1982. 

12 


