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ABSTRACT: The ground state energy, hybridization matrix element, local 

moment and spin density correlations of a one dimensional, finite chain periodic 

symmetric Anderson model are obtained using numerical simulations and compared 

with perturbation theory and strong coupling results. We find that the local f- 

electron spins are compensated by correlation with other f-electrons as well as 

band electrons leading to a non-magnetic ground state. 
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We have studied the ground state properties of a one-dimensional symmetric periodic 

Anderson model using stochastic Monte Carlo techniques. Traditionally, the numerical 

study of the ground state properties of finite quantum spin chains1 have provided physical 

insight into the properties of many-body systems. In addition, such results provided a 

testing ground for approximate techniques such as the Gutzwiller variational approach2-’ 

and large orbital degeneracy N-l expansions.6$7 Usually, these solutions have been ob- 

tained by the exact diagonalization of the Hamiltonian using Lanczos-like procedures. In 

this spirit, Jullian and Martin’ have used a Lanczos diagonalization to study periodic An- 

derson model chains. However, the two-orbital periodic Anderson model has 16 states per 

site so the complexity of the problem restricted their work to the exact diagonalization 

of 2 and 4-site chains. Here, using Monte Carlo techniques,gl10 we present results for the 

ground state properties of chains which are sufficiently large (16 sites) that the bulk limit 

is sensibly approximated. We analyze these results to determine the effects of the Coulomb 

interaction on the ground state energy, hybridization matrix element, f-site local moment 

and the magnetic correlations. We find that the ground state exhibits short range magnetic 

correlations and that the local f-electron spin moments are compensated by correlations 

with other f-electrons as well as band electrons leading to a non-magnetic ground state. 

The Hamiltonian for the one-dimensional periodic Anderson model can be written as 

H = ~[-t(dj,,gd~o + dfod,+l,) - V@,fi, + f,&) + Efnk + ~n~cA-o u f f 1 (1) 
la 

Here di, and f/O create Wannier electrons in d- and f-like orbitals on site 1 with spin o , 1 

and nf, = fz fro. The d- or i a s overlap via the hopping term t to form a band. The local b t 1 

f-orbitals with site energy cf are hybridized through V with the d-orbitals. Two electrons 

in the same f-orbital experience a Coulomb repulsion U. In the following we treat the 

particle-hole symmetric case in which of = -U/2. 

We have used both a modified projector method9 in which the operator e-PH is applied 
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to project out the ground state and a finite temperature Monte Carlo technique with an 

exact updating procedure. lo The projector technique allowed us to achieve large ,0 values 

(P - 102) to check that the ground state properties were being obtained. The finite 

temperature technique allowed us to see the approach to low temperature, and further 

results obtained from it will be reported elsewhere. l&l2 Here we discuss the ground state 

properties. 

In the absence of the Coulomb interaction U, Eq. (1) describes a simple two band 

system with band energies 

Et = 42f 4(~/2)~ +V2 (2) 

Here ck = -cos(k) for t = 0.5. These bands are separated by a gap of 2A with 

2A = (&?i?- 1). In the non-interacting ground state the lower band EL is en- 

tirely filled with spin up and spin down electrons giving a ground state energy per site 

of 

Eo(0) = ; c E; 
k 

and the system is in a singlet state with (i#) = 0 where MZ is the total z-component 

of spin. As the Coulomb interaction U is turned on, we expect the system to remain 

in a singlet state unless a phase transition were to occur at some critical value of U. 

Our numerical results give no evidence 

theory13 to order U2 one finds that the 

for such a transition. Carrying out perturbation 

ground state energy per site is 

u2 \‘ 
2 

v;U~+qv~+quk Eo(u)=; c ‘i-$-s LE+ +E+-EL-E- 
k pkq k+q p k P+Q 

(4 

with 

2 
uP = 2 +1+ g-+-J “p2 = ;P - g---+’ (5) 
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Here the expansion parameter is U/A. In the strong coupling limit where U/A is large, 

one has through O(U-‘), 

Eo(U) ; + ; c Ekf(Ek) - T c ’ - fkk) =-- 
k (u/2 + ck) 

(6) 
k 

with f (ek), the zero temperature Fermi factor equal to 1 for Ek < 0, 0.5 for ck = 0 and 0 

for ck > 0. 

Simulations were carried out for a variety of parameters, with fixed t = 0.5. The 

ground state energy per site is a smooth function of the number of sites N and for N = 16 

the systematic change with size is inside our statistical error. The values of Eo(U)/I Eo(0) I, 

for V = 0.375, corresponding to A = 0.25, are plotted versus U in Figure 1. The dashed 

line is the second order perturbation theory result, Eq. (4), and the solid line is the strong 

coupling expression Eq. (6). The rms errors are of order the size of the points. 

In the presence of U, the effective- hybridization is reduced due to the Coulomb corre- 

lations. A useful measure of this reduction is given by the ratio of (f:dl, + d;‘, fib) in the 

interacting ground state to its value when U = 0. 

(f;dlo + d;t,fr,) 
cf&o + d;t,fb>O (7) 

This matrix element can be directly obtained from Eo using the Feynman-Hellman relation 

(f;4, + d;e,fr,) = f -& Eo (8) 

The dashed line in Figure 2 was obtained by differentiating the perturbation theory ex- 

pression for Eo, Eq. (4), with respect to V, while the solid line corresponds to the strong 

coupling result 

<f&4, + d$fi,) = -g c 1 - f @k) 
k (u/2+ Ek) 

6-J) 

obtained-from Eq. (6). The points were calculated from the simulation. One clearly sees 

the decrease in the effective hybridization as U increases. Since the gap varies as the square 

4 



of the hybridization matrix element, it has decreased by a factor of 10 for U of order 3. 

For the symmetric Anderson model (nz) remains fixed at 0.5, and thus in the particle-hole 

symmetric case the renormalization of the hybridization does not arise2t3 from a change 

in (72:). 

In addition to altering the hybridization, the suppression of charge fluctuations by 

the Coulomb interaction leads to the formation of local moments on the f-orbitals. A 

measure of this is the average of the square of the f-orbital single site magnetization 

m{(Z) = nft - nfi. 
(m;(z)2) = 1 - 2(7+$) (10) 

For U = 0, (nftnfi) = t and (m;(Z)2) is equal to 0.5. For large U, double occupancy 

is reduced by the Coulomb repulsion and (mzf(Z)2) approaches 1. Again the derivative of 

the ground state with respect to U provides a convenient way of evaluating this. With 

Ef = 472, 

(mzf(z)2) = -2 3 
au (11) 

For weak coupling, Eq. (4) gives 

(Ynzf(z)2) = 0.5 + $ c 
v8”;+qv~+qui 

pkq 
E;+q + Ep+ - EL - E;+q 

and for strong coupling we have from Eq. (6), 

(J(p) = 1 - 2v2 c l- f(Q) 
N k (u/2 + Ek)2 

(12) 

(13) 

These are plotted as the dashed and solid curves, respectively, in Figure 3, which shows 

f 2 (m,(Z) ) versus U. The points were obtained from the simulation. 

These results clearly show that U reduces the hybridization and produces local mo- 

ments on the f-orbitals. In addition, it leads to interactions between these moments and 

the d-electrons. In order to explore this feature we have calculated various magnetic and 
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charge density correlation functions. The charge density correlations show the suppression 

produced by U. The magnetic correlation functions (n~(Z)mf(O)) and (m,d(Z)m,f(O)) with 

m:(Z) = n;‘r - nfL and &(I) = nfT - nf,, respectively, were found to exhibit short range 

correlations which act to screen the f-orbital moment. This is clearly seen in Figure 4, 

where they are plotted for the first few spacings for U/A = 2.0. 

To see how the magnetic correlations act to screen the f-site moments leading to a 

singlet ground state, we consider the total z-component of magnetization. 
N-l N-l A& = 7&O) + c &(I) + c “f(Z) 
I=1 1=0 

If the ground state expectation value of Mz vanishes, then squaring Eq. (14) and taking 

its ground state expectation value leads to a compensation sum rule 

(7nzf(o)2) = --N~1(Yn!(z)7n~(o)) - Ny (?n,d(z)n2zf(o)) (15) 
kl l=O 

Using the correlation functions shoyn in Figure 4 to evaluate the left-hand side of 

Eq. (15) gives 0.65 f 0.02, while ((mL(0))2) = 0.64 f 0.02. Thus, just as in the single 

magnetic impurity case, the f-moment is compensated by correlations in the surrounding 

medium.‘l However, as discussed by Nozieres,15 in the periodic Anderson model this com- 

pensation does not arise from just the d-band electrons. Rather, as one sees in Figure 4, 

an important part arises from the f - f magnetic correlations. 

Conclusion: Simulations of the symmetric 1-D periodic Anderson model show that 

the Coulomb interaction leads to a reduction in the f-d hybridization, local moment for- 

mation on the f-orbitals and short-range magnetic moment correlations resulting in a 

singlet ground state. The ground state energy as well as the hybridization matrix element 

cr,l;4a + Qi,) and the mean square local f-moment (mf (Z)2) smoothly cross over from 

the weak coupling to the strong coupling limit. Similar results were found for a variety 

of parameter values leading us to the conclusion that this type of behavior is a general 

property of the 1-D symmetric periodic Anderson model. 
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FIGURE CAPTIONS 

Fig. 1. The ground state energy Eo(U)/jEo(O)I versus U. Here t = 0.5, V. = 0.375 and 

A = 0.25. The dashed curve corresponds to the second order perturbation theory 

result Eq. (4), and the solid line is the strong-coupling approximation Eq. (6). 

Fig. 2. The hybridization matrix element (fi+adlo + h.c.) normalized to its U = 0 value versus 

U for the same parameters as in Figure 1. The dashed curve is the second order 

perturbation theory result, and the solid line is the strong-coupling limit. 

Fig. 3. The square of the f-orbital single site magnetization ((vL{)~) versus U for the same 

parameters as in Figure 1. 

Fig. 4. The (mzf(Z)mf(O)) and (mf(Z)mi(O)) ma ne ic correlation functions versus site sepa- g t’ 

ration Z for U/A = 2.0. 
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