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1. Heavy Quark Spectroscopy 

Introduction 

The spectroscopy of heavy quark systems is the showcase of our understand- 

ing of hadron physics. It is sometimes even advertised as the “hydrogen atom of 

strong interactions”. 

We do indeed have a fundamental gauge theory of the strong interactions in 

Quantum Chromodynamics (&CD). This theory in principle explains the vast 

body of data that has been accumulated over the past doken years.’ However, 

as we will soon see, the connection between the fundamental theory and ex- 

perimental observables is not (yet) as it is for the electroweak gauge theory, 

W(2) x U(1). Th e situation we confront is essentially non-perturbative, and the 

underlying gauge theory is one-step-removed from detailed numerical confronta- 

tion with experiment. 

What we have at present to accompany the data is more like a phenomenol- 

ogy, inspired or backed-up by &CD. At times it gives us an asymptotic form. 

At other times it gives an expression for the general structure of some quantity, 

with free parameters or hadronic matrix elements contained within it. While 

these latter are determined by QCD in principle, for the moment they are of- 

ten only approximately calculable (at best). So we take a peek at the data and 

‘adjust’ the parameters, thereby learning something about the nature of the solu- 

tion of &CD. Then we predict additional quantities and iterate the whole process 

again. 

This is then a place where theory and experiment intertwine; basic theory, 

models inspired by theory, and experiment meet and influence one another. It is 
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quite different from the situation in the electroweak theory where there is a well- 

defined and clean set of perturbative predictions to compare with experiment. 

In one sense this is frustrating, as one would like clean and decisive tests of the 

underlying theory. In another sense, this is what makes it exciting and makes 

the subject still worth pursuing: the interplay between theory and experiment 

is interesting in itself, and we often learn things which are applicable either as 

techniques or as results in other areas as well. 

In fact, progress has been made and continues to be made.2 Eventually, one 

has every reason to believe that we will be able to calculate’ the “potential” from 

first principles, presumably using lattice techniques. Everything then will be 

predicted starting from the QCD Lagrangian. We have come a long way in this 

direction already, 3 and perhaps in the Summer Institute of a few(?) years hence 

we may well no longer need a talk on this subject. 

The Spin Independent Potential 

Let’s start with the nonrelativistic, spin independent potential. Even the use 

of the word potential is a bit loose for we are starting with a strong interaction 

bound state problem and extracting from it an effective two-body, non-relativistic 

potential. The problem at hand is intrinsically a relativistic field-theoretic one 

in which the qij sector, for example, is coupled to what happens in the qqgq, qtj 

+ gluon, etc. sectors as well. Some justification for the success of the “naive,” 

non-relativistic approach have recently been given4 but simultaneously questions 

have been raised as to the effect of what is being neglected, and how it changes 

the relationship between parameters in the underlying theory and the effective 

potential.5 There is even a whole, well-developed approach to understanding 
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some of the same body of data through QCD sum rules.” 

With these questions in mind, we shall proceed to think in terms of a two- 

body potential obtained by expanding in powers of v2/c2. Indeed, such an ex- 

pansion does make some sense, for the smallness of v2/c2 in a system composed 

of a heavy quark and heavy antiquark encourages us to think in terms of a non- 

relativistic potential with spin-dependent terms which arise first in order v2/c2 

and give rise to splittings which are smaller than those between levels of the 

spin independent potential. In the cases at hand v2/c2 is - 0.4 for the low-lying 

charmonium states and 2 0.1 for the low-lying bottomonium states. Still, when 

we go to compare with the calculated energy levels with experiment we need to 

bear in mind that predictions from alternate potentials that differ by 10 or 20 

MeV are not necessarily significant in favoring one potential over another. We 

may in any case be making (especially for charmonium) approximations to the 

exact theory in “deriving” a non-relativistic potential which render the resulting 

model incapable of discriminating differences at this level. 

We have good theoretical guidance in two opposite regimes. At short dis- 

tances, or equivalently large momentum scales, there is the property of asymp- 

totic freedom. The running coupling becomes smaller as we decrease the distance 

scale at which we work, and the effective potential approaches the lowest order 

one gluon exchange result, 

(1) 

as r -+ 0. 

Note the additional factor of 4 compared to the usual Coulomb interaction; 

this arises from color. Its derivation was discussed in the Summer Institute of 
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10 years ago.7 It is so pervasive that it is worth a short derivation, so here it is 

again. We want the additional factor due to color. It arises from a normalized 

color singlet quark-antiquark wave function, &j/fi in the initial and final state, 

a color SU(3) matrix X,4,/2 at each quark-gluon vertex, and a color sum over the 

(eight) gluons, 6ab, in the gluon propagator. The sum over indices gives a trace: 

The trace of T$ is just k, as befits the generators of a Lie algebra (or, as may 

be checked for the case of the X matrices of SU(3) directly); thus the ubiquitous 

factor of 413. 

That’s one regime. The second regime where we have very solid theoretical 

input is at the other extreme, as r -+ 00, and we have confinement of the quarks. 

From relatively general theoretical arguments we know that the potential behaves 

as a linear function of the distance: 

V(r) --+ kr. (3) 

There is a corresponding physical picture of a “color-electric flux tube” joining 

the quarks. As you pull the quarks apart, the flux tube is increased in length, at 

the cost of an increase in energy per unit length given by the constant k. The 

value of k is about 0.2 GeV2. 

Given those two regimes. we might hope to construct the full potential. The 

simplest possibility is to simply add together terms with the correct functional de- 

5 



pendence in the two asymptotic regimes. This is basically the Cornell potential,8 

V(r) = F + 
(2.34 GkV-‘j2 ’ (4 

with the two coefficients having been adjusted to fit the charmonium spectrum, 

although the model does a quite adequate job in describing bottomonium as well. 

In the late 70’s Richardson combined the two behaviors in one form.g Here 

is his potential in configuration space, 

V(r) = 87r 
33 - 2np 

*(*r-y), ’ 

with 

f(t) 1 e-G = - 4 J OO& 
7 &&.&2(q2 - 1) + 7$’ 

1 

(5) 

(6) 

where it looks like two terms. What’s going on is more transparent in momentum 

space where it can be written as one term: 

4 127r 1 
v(q2) = - 3 33 - 2nf q2tn(l + q2/A2)’ (7) 

As q2 goes to infinity, this expression becomes precisely $cxs/q2, as required 

from one gluon exchange. In the other limit of q2 + 0, one obtains something 

proportional to l/q 4. This may be an unfamiliar behavior in momentum space, 

but if you Fourier transform back to configuration space, this is just a potential 

which is linear in r. It is by no means guaranteed that you will get the “right” 

coefficient to fit the data. Richardson, along with others lo who proposed modified 

versions of this potential, showed that you do in fact get a very reasonable, even 

excellent, description of the data, especially for bottomonium. 
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Finally, Martin has proposed the potential” 

V(r) = (5.82 GeV) (1 &-l)o*1o4 - (8) 

This potential, with the absurd power of 0.104, lacks fundamental motivation (as 

Martin knew very well). We will use it as a kind of straw man, for it also does 

quite a credible job of fitting the charmonium and bottomonium data. But why? 

The reason can be seen in Figure 1. Here you can see the various potentials for 

comparison purposes. In particular, aside from being displaced vertically from 

one another a little bit (which you are free to remove by adjusting the quark 

mass), they all have about the same behavior between 0.1 and 1 fermi. This can 

be seen even better looking at the inset, where r is given on a logarithmic scale 

and the potentials have been shifted slightly relative to one another vertically, as 

discussed above. Also shown are the mean radii of the psi, upsilon, etc. These 

are all between 0.1 and 1 fermi, and that’s why the different potentials all can 

fit the data; the wave functions for these states mostly (but not entirely) live in 

this region where the potentials coincide. 

Thus, where our theoretical insight is best and tells us something very well- 

defined for the behavior of the spin independent potential, it is mostly irrelevant 

to the present data. Conversely, the experiments up to now mostly tell us about 

a region where theory does not have much to say about the spin independent 

potential. In fact, one can invert the data to obtain a potential12 which describes 

what happens from 0.1 to 1 fermi. Within errors, it coincides with what we have 

just seen in Figure 1. 

Even without a particul.ar potential and detailed calculation, we can get a 

good qualitative idea of what the spectrum of states will look like. In Figure 2a 
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Fig. 2. The spectrum of energy levels in the case of the Coulomb potential (a), 
the three dimensional harmonic oscillator (2b), and a hybrid of the two (c). 
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is the familiar spectrum due to a Coulomb potential, which is what we have at 

short distances. The ground state with e = 0 is labelled 1s; its radial excitation 

(labelled 2s) ’ d g 1s e enerate in the case of a Coulomb potential with the first set 

of ! = 1 states (labelled lP), and so on. As an example of a confining potential 

which we want at large distance, Figure 2b shows the levels of a three dimensional 

harmonic oscillator, which is more familiar than a linear potential and turns out 

also to be a special “boundary” case from the point of view of the ordering of 

levels. What will happen when we combine the two? For the energy levels we will 

naturally get something in between Figures 2a and 2b. This is shown in Figure 

2c. The ordering, starting at the bottom, is IS, 1P (between the 1s and 2s as 

for the harmonic oscillator, but closer to the 2S, as it would be degenerate with 

it for the Coulomb potential), 2S, 1D ( a ove 2s as for Coulomb, but close to it, b 

as it would be degenerate for the harmonic oscillator), etc. You can therefore get 

a qualitative understanding of the spectrum from quite general considerations. 

There is a theorem13 which is quite useful in this regard and puts the qualita- 

tive ordering discussed above on a rigorous footing. It states that if v2V(r) > 0 

for all r, something which is true for all suggested potentials, then Ens > E(,+r)p. 

Related theorems are provable for the ordering of levels with other angular 

momenta. 14 

Each of the potentials discussed above can give a quantitative understanding 

of the levels of charmonium and bottomonium to 30 MeV or better. Even the 

statement that one flavor independent potential can fit both systems is nontriv- 

ial. The agreement between theory and experiment, which is shown in Schindler’s 

lectures,’ I regard as quite.spectacular. It includes not just energy levels, but 

wave functions at the origin for the nS states as well. Where there is a disagree- 
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ment, it is difficult to know whether to blame it on the potential or on corrections 

due to relativistic or other effects which have been left out. 

When and how will we be able to distinguish between potentials? The answer 

appears to be that toponium will provide the crucial system. In Figure 3 is shown 

the spectrum of toponium15 corresponding to mt in the range of 40 to 50 GeV. 

There are 10 or more nS states below open top threshold; near that threshold 

there is one state per 100 MeV. 

More important for the physics at hand, aspects of the spectrum of states 

and of the wave functions at the origin are now sensitive to the behavior of the 

potential at short distances. The values of the wave function at the origin are 

shown in Figure 4, with that for the ground state corresponding to a width into 

electron-positron pairs, which is proportional to the square of the wave function 

at the origin, of about 9 keV (from the one photon intermediate state alone). 

This is larger than one would expect from a naive extrapolation from the psi and 

the upsilon by about a factor of two. We are beginning to see the effect of the 

l/r term in the potential pulling in the wave function. Higher levels are affected 

less, as seen in Figure 4, for on average they live at larger distances. 

The same physical effect is shown in Table I, with the t quark mass assumed to 

be 50 GeV. Notice in particular how much the energy of the IS level is pulled down 

by the Cornell potential (3 GeV below 2 mt). This is to be compared with 1.7 

GeV for the Richardson and 1.4 GeV for the Martin potentials. Correspondingly 

the radius of the 1s state is much smaller for the Cornell potential and the 2s 

to 1s difference much bigger. Even more dramatic is the comparison of the 

wave function at the origin for the 1s state, where the Cornell result is about 3 

times that for Richardson and 9 times that for Martin. Remember, the predicted 
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Fig. 4. The value of the wave function at the origin for toponium nS states 
obtained15 with the Richardson potential and mt in the range of 40 to 50 GeV. 
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electron-positron width goes like these numbers squared! 

Els < rls > E2s - J-&s W)lS 

Potential (GeV) (fermi) (GeV) ( GeV3j2) 

“Cornell” 97.1 0.028 2.2 23.3 

“Richardson” 98.3 0.048 1.0 8.5 

“Martin” 98.6 0.084 0.5 2.7 

Table 1. Characteristics of Toponium States for Various Potentials 

Before leaving this subject, we should note that this same property makes 

toponium a fairly sensitive place to look for extra short range forces. A good 

example is the presence of an extra term in the potential due to neutral Higgs 

exchange with enhanced couplings. l6 This changes both the wave functions and 

the ordering of the energy levels in a characteristic fashion, and allows it to be 

distinguished from a simple change in the strength of the l/r piece of the strong 

interaction potential. 
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The Spin Dependent Potential 

Now we turn to the spin dependent potential. In its full glory it has the form: 

$1 -l? s’, - .i 3 + y--g- dV (4 dV1 (r) 
1 2 rdr+2rdr 

+ (si + $2) - i dVz(r) 
mm2 rdr (9) 

+ 3mym2 si - $2 h(r) 

as given by Eichten and Feinberg 17 and discussed at previous Summer Institutes 

by Eichten18 and by Peskin. lg The term V(r) is the spin independent potential 

we discussed previously. The other terms involving VI, V2, V3, and V4 are not 

necessarily simply related to V(r). As can be seen particularly clearly in Michael 

Peskin’s lectures, lg these extra terms originate in expectation values of color 

electric and magnet fields which are different than those that enter in the spin 

independent potential; they are new objects. 

Although the situation is more complicated than one might have hoped, at 

least initially it was possible to entertain the idea that all the new spin dependent 

terms are of short range. This hope was dashed when it was shown that2’ 

V(r) + Vl(?-) = E?(r). (10) 

Since V has a long range confining part, so must either VI or V2. 
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Let us use Eq. (10) t o eliminate VI from t,he spin dependent potential. It 

now reads: 

+ $1 + z-2) * i dV2(r) 

mm2 rdr (11) 

+ 3m;m2 $1 * $2 v4(+ 

Could it now be that the remaining new potentials V2, V3, and V4 are short range? 

Not only is there no information to contradict this possibility, but it is sup- 

ported by the results of recent lattice gauge theory calculations,21’22 the results 

of some of which22 are shown in Figures 5, 6, 7, and 8. We see that VI (which 

we have eliminated from Eq. (11)) is not short range, but V2 looks completely 

different; it is very short range, and similarly for V3 and Vi. All of this is done on 

a 163 x 32 lattice. It should be regarded as a qualitative result, but an important 

step toward the more quantitative results we can expect in the future. 

Let us now go back to the spin dependent potential in the equal mass case 

relevant to quarkonium. We rewrite it a little bit, combining the first two terms: 

+ &--$ (6iwr'-2a9 V3(r) 

+ & (2 St.6 3) V4(r). 

(12) 

Now, to get a simple physical picture of what is happening, let us forget for a 
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moment the previous discussion about the spin dependent and spin independent 

potentials being independent entities. Let us consider what we would obtain from 

a (relativistic) four-fermion interaction arising from the exchange of a vector and 

a scalar between a quark and the antiquark of equal mass. In momentum space 

this is represented by an interaction: 

Lint = Z(q2) iiuiw + ir(q2) u7,uv7%. (13) 

2 If we do an expansion in powers of v /c 2, the static limit is the spin independent 

potential v + s, and the spin dependent terms give the Breit-Fermi potential, 

which in configuration space is: 

h(r) + ds(r) - + pm 
rdr rdr 

1 
+- &.&f-‘&~ --~ 

)( 
dv (4 d2v(r) 

12m2 
(14 

rdr d2r 

+ & (2 s’s,!?--3) v2v(r). 

The term -(dv(r) + ds(r))/ d r r in the first line is due to the familiar Thomas 

precession, and it is followed by usual spin-orbit, tensor (on the second line), and 

spin-spin (on the third line) interactions, each with a coefficient related to v(r) 

or s(r). 

Now we are in a position to compare what is in Eq. (14) to the generic 

decomposition in Eq. (12) involving VI, V2, and V3. First, the spin independent 

potential V is here given by the sum of the vector and scalar potentials, v + s. 

Second, the spin dependent potentials V2. V3, and V’ are all expressible in terms 

of derivatives of only the vector part of the potential, v. Hence, if v is related to 
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gluon exchange and its associated l/r behavior, then the potentials V2, VI, and 

Vi are all short range in character. 

This encourages us to make the following division: the scalar term is long 

range and associated with quark confinement, while the vector term is short range 

(we include l/r behavior as short range) and associated with gluon exchange. 

From the short range Coulomb-like piece one obtains the spin dependent terms 

we are long accustomed to in atomic physics: a spin-orbit interaction (minus the 

piece due to Thomas precession), a tensor interaction, and a spin-spin interaction. 

As you go to long range, the confining interaction, which is Lorentz scalar in 

character, becomes dominant. The associated physical picture 23 has a color flux 

tube that connects the quark and antiquark, and as they rotate around each 

other the flux tube rotates along with them. Consequently there are no spin 

dependent forces generated from this part of the potential, aside from the Thomas 

term which comes in with a minus sign and is generated from the spin rotation 

associated with Lorentz transforming from the center-of-mass to the quark or 

antiquark rest frame. So we get a simple way of understanding all the terms 

in Eq. (14). F rom now on we will take this identification of v and s seriously. 

Occasionally we will slip over to the stronger assumption that s(r) oc r and 

v(r) oc l/r, even to the point of thinking that we know the respective constants 

of proportionality. 

l The Spin - Spin Interaction 

The spin-spin interaction, which in the equal mass case takes the form 

vss = & (2 s’*,!f--3) v2 v(r), (15) 

is the analogue for the color forces of QCD of the interaction which gives rise to 
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the hyperfine splittings between atomic levels. If we are brave enough to follow 

this analogy further and insert a l/r behavior for v(r), then since o”(l/r) = 

-47rh3(r3, the spin-spin interaction is of very short range! 

This delta function at the origin can be tested by noting that for quarkonium 

p-wave states, whose wave function at the origin vanishes, the expectation value 

of the spin-spin interaction should be zero. Therefore the center-of-gravity of the 

three states with total quark spin one and J = 0, 1, and 2 should be the same as 

the mass of the J = 1 state with quark spin zero: 

5M2+3Ml+Mo =M 

9 spin singlet - (16) 

(The p-wave states with total quark spin one are split in mass by the spin-orbit 

and tensor interactions, and the weighted average is just such as to cancel out 

these contributions). 

For charmonium, the left-hand side of Eq. (16) is 3525.38 MeV, and an exper- 

iment in the last days of the ISR found a few candidate events with an average 

mass of 3525.4 f 0.8 MeV.24 For the bottomonium system, the corresponding 

values for the center-of-gravity are 9900.2 MeV for the 1P states and 10,261.6 

MeV for the 2P states.’ It would be very interesting to measure the mass of 

the corresponding singlet p wave states for bottomonium. There is a little bit of 

evidence from the CLEO experiment, studying zr transitions from the 3s reso- 

nance, for a state a little below the 1P center-of-gravity. 25 As the Eb system is 

more non-relativistic than EC, the agreement with Eq. (16) should be excellent. 

Otherwise, the agreement in the charm case was an accident, and we had better 

take a close look at our assumptions on the short range nature of the spin-spin 

interaction. 
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Let us specialize to a system that consists of one heavy and one light quark. 

The assumption that v(r) behaves as l/r still gives a delta function at the origin 

in the part of the potential that gives the spin-spin interaction. Furthermore, the 

physical origin of this term in a quark color magnetic moment interacting with an 

antiquark color magnetic moment is still correct, and so it still depends inversely 

on the product of the quark mass and the antiquark mass (see the coefficient of 

Vi in Eq. (9)). F or example, the mass difference of the ground state vector and 

pseudoscalar states should behave as 

M(3S1) - M(lSo) a: lw912 
?72$7lj * (17) 

If we use the fact that the spin-spin splitting is small and that in terms of con- 

stituent masses, 

M(3S1) - M(lSo) - rni + mj, 

then we can rewrite Eq. (17) in terms of mass squared, 

M2(3Sl) - M2(lSO) cc mk:my le(o)12 CkZ lq(0)12/Pij 

(18) 

(1% 

and get a result that depends on the reduced mass of the quark-antiquark system. 

One the other hand, in a system composed of a heavy and a light quark 

we have a atomic hydrogen-like situation with the heavy quark playing the role 

of the nucleus and the light quark primarily living at “large” distances. The 

corresponding wave function is determined by the long distance part of the po- 

tential which behaves as kr. However, for a potential which behaves as rp, the 
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Schrodinger equation yields a scaling law that makes26 

p!(o)I” cc /L$. 

Therefore, corresponding to the case at hand with /3 = 1, 

lQCo)12 Oc Pij, 

and substituting this into Eq. (19), one finds27’28 

M2(3S1) - M2(1S~) - const. (20) 

This relation is compared to experiment in Table 2. The input masses come 

from the Particle Data Tables2’ except for the F - F* mass splitting where the 

new result from the Mark III experiment reported to this meeting is used.30 

I Mass2 Difference Experimental value27’28 in GeV2 I 

I M;-M; 1 0.57 I 

I M&-M& 1 0.56 I 
I M&.-M; 1 0.55 I 
I M;. - MS I 0.55 I 
I M;, - M; 0.55 I 

Table 2. Ground State Vector - Pseudoscalar Mass2 Differences 

The p - x difference is thrown in for good measure, even though it involves 

-only light quarks. Even the K’ - K case should not be in Table 2, for the strange 

quark is not all that heavy. Of course, they are in Table 2 because they all agree 
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magnificently with each other, so much the more so now that we have the new 

data on the F* - F mass difference. Equation (20) works far better than it 

should, as not only are the “heavy” quarks involved not all that heavy, but even 

the statement that the wave function at the origin squared is proportional to the 

reduced mass is only approximate. Such superb agreement must be an accident. 

Now let us return to systems with two heavy quarks. There the wave functions 

are not determined by the linear part of the potential and Eq. (20) should not 

hold. (It doesn’t!) But here we can be braver yet and insert v(r) = -4rrcr,/r into 

Eq. (15) and sandwich it between ground state vector and pseudoscalar meson 

wave functions to obtain 31 

M(3Sl) - M(‘So) = T ‘*$I2 (I + O(:)) , (21) 

where even the next order QCD corrections have been calculated. If we take the 

measured splitting between the $J and rlc and invert Eq. (21) to find 08, the 

result 31 is 0.3 to 0.4. This is perhaps a little bit too big, not to be regarded as 

very significant at this time. 

l The Spin-Orbit and Tensor Interactions 

Spin-orbit terms give rise to the fine structure in the old atomic physics 

terminology. In the case of equal constituent masses they take the form 

s-i vs.0. = - ( 
ds(r) dv (4 

2m2 -rdr+3TdT ’ ) 
(224 

and 

1 
VTensor = 12m2 fj$.j$.jk2,$~ dW d2v(r) 

---&L- rdr Pb) 

If we take the spin-orbit and tensor interactions and calculate their contri- 
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butions to the 3P~ state masses, we get32 

M(3P2) = n? + a - 2b/5 

M(3P~) = &? - a + 2b 

M(3Po) = ii? - 2a - 4b, 

where the matrix elements a and b are defined as 

1 a= - 
2m2 ( 

-$+3$ ) 
> 

b= &,--&-$). 

W-4 

(2W 

WC) 

(244 

W) 

We can summarize the relative values of the matrix elements in terms of one 

number by forming the ratio 

r = M(3P2) - M(3P)1 = 2~ - yb 

M(3Pl) - M(3Po) a+6b. (25) 

If only the spin-orbit term contributes, r = 2, while if the Coulomb-like vector 

part of the potential v(r) is present, r = 0.8. As one turns on the scalar term, 

s(r), the matrix element a decreases, as does r. 

If you look at the experimental numbers,’ updated with recent data, par- 

ticularly from CUSB,33 one finds’ for charmonium rXc = 0.50 f 0.02, and for 

bottomonium rX6 = 0.67f0.05 and rXe I = 0.703~0.20, for the 1P and 2P states, re- 

spectively. All these values are smaller than would result from solely a Coulomb- 

like vector term, and point toward a non-negligible scalar term. Moreover, the 
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detailed predictions from taking the vector term as -$cr,/r and the scalar term 

as kr give quite good agreement 34 with the data, particularly for bottomonium 

(recall that one expects some corrections, particularly for charmonium). The 

case is getting fairly good for a substantial part of the long range, confining part 

of the potential being scalar rather than vector. 

For mesons composed of a heavy quark and a light antiquark or vice versa the 

physical situation is different, as we discussed previously in considering the spin- 

spin interaction. The light quark lives at larger distances, so that the Thomas 

term, -ds(r)/ d r r, can “beat” the net vector term, Sdv(r)/i-dr, and the effect of 

the spin orbit interaction, (VS.~.), can be reversed in sign. This would result in 

an inversion of spin multiplets35 compared to atomic physics, charmonium, and 

bottomonium where the higher spin state lies higher: the ordering would now 

be M(3Po) > M(3Pl) > M(3P2). Th’ 1s 1 ‘d ea might be testable in the 3P charm 

meson states, labelled here D**‘s. A candidate state, the D**(2420), already has 

been found and must be J = 1 or 2, as it decays to D*T. If this multiplet is 

inverted, the J = 0 state, which decays to DT, will lie at a higher mass than the 

D** (2420). 
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Conclusion 

In this brief and incomplete review of the spectroscopy of heavy quark sys- 

tems, we have seen that we have a good qualitative picture of the nature of the 

spin-independent forces. That, plus some phenomenological potentials inspired 

by fundamental theory, carry us a long way. For the spin-dependent effects we 

even have a semi-quantitative understanding, as they are more sensitive to the 

short distance part of the potential and we have more insight and more tools to 

help us sort things out. 

Eventually, we want a quantitative calculation of both the spin-independent 

potential V(r) and the-spin-dependent potentials Vz(r), Vs(r), and Vi(r), from 

&CD. This will likely come in due time from improvements in computer power 

and in technique over the present lattice calculations. 

In the meantime, to clarify the emerging picture, we need more data. We 

need to find or confirm the lP1 states of charmonium and bottomonium. We 

need to find the r)b. We need to find the other D**‘s. And maybe best of all, we 

need to see the spectrum of toponium. 
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2. Heavy Quark Decays 

Introduction 

In this second lecture we turn from the spectroscopy of hadrons involving 

heavy quarks to their decays. This is a comparatively new subject, but one 

which is already in a fairly mature state experimentally:’ we have measurements 

of many D meson branching ratios, including Cabibbo suppressed nonleptonic 

modes and the decomposition of the semileptonic decays into exclusive channels; 

excellent lifetime measurements exist for both charm and bottom hadrons; a good 

beginning has been made on the study of exclusive decays of the F, A, and go,+. 

On the theoretical side, we have a solid general framework within which to cal- 

culate these weak decays. In particular, this means starting with the electroweak 

interactions and their gauge group, SU(2) x U(l), and adding the corrections due 

to the strong interactions through the use of the renormalization group equation 

(or an equivalent formulation of the same physics), with anomalous dimensions 

computed from &CD. 

These calculations are carried out at the quark level. A first stage in their 

application to actual hadrons is simply to neglect any other constituent of the 

decaying hadron aside from the heavy quark. In such a spectator model, as it is 

called, one directly carries over the quark level calculation to be the hadron level 

result, with the spectator quarks and gluons assumed to arrange themselves into 

the final state particles together with the quarks (or leptons) coming from the 

heavy quark at no cost or benefit to the overall rate. 

From the present data on charmed particle lifetimes, it is clear that there 

are differences of a factor of two or so between different species.’ To do better 
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than that, it is necessary to go beyond the spectator model and to consider not 

just what happens at the quark level but at the hadron level. In so doing, ideas 

such as annihilation diagrams, interference, color (mis)matching, and final state 

interactions have entered the discussion. 36 

This lecture will be a brief review of the subject of the decays of hadrons 

containing heavy quarks. We will start at the quark level where we will spend 

a large proportion of the review, since we know quite precisely how to proceed 

theoretically and the results give a semi-quantitative description of the experi- 

mental situation as we know it today. Then we will describe the various ideas 

enumerated above as corrections to the spectator model, leaving a more detailed 

analysis of the merits of these approaches in light of the present experimental 

situation to others. 37 

Weak Decays at the Quark Level 

l Semileptonic Decays 

It is theoretically simplest to start with semileptonic decays of the form 

(such as b + ceDi,) or 

Q --) q + EU, 

(such as c --) s~v,) which correspond to a Hamiltonian density of the form 

In Eq. (26) we have used particle names in place of the corresponding spinor 
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operators and introduced the one factor that does not enter into the analogous 

expression for muon decay, the Kobayashi - Maskawa factor VQ,. 

The corresponding decay rate can then be easily related to that for muon 

decay, G$mt/192r3: 

Gpkf; 
r(Q -+ q@ee> = IVQ~I~ 1g2x3 F (27) 

where 

F(A) = 1- 8A2 + A6 - A’ - 24A4&zA. (28) 

Note again the extra Kobayashi - Maskawa factor in front and the phase space 

factor, F, which is unity for a massless final quark. This factor drops off rather 

quickly, so that F(0.3) = 0.52, a value relevant approximately for the c + s and 

the b + c transitions. 

The electron (positron) energy spectrum is different in the two cases. For 

b --+ ceDe it is like that in muon decay and gives rise to a “hard” spectrum that 

does not vanish at the high energy end: 

ldr 12 --=- 
rdx 5 

x2(2 - x), 

while for c + SEVe (and for t -+ bi?v,) it vanishes at the two ends 

1 dI’ -- r dx 
= 12x2(1 - z) 

and where the scaled energy variable is 

2Ee x= mi -<l--. 
MQ M6 

(29) 

(30) 

(31) 

Similar results of course hold for decays involving muons or taus. 
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l Nonleptonic Decays 

The Hamiltonian density for nonleptonic decays such as Q  -+ q  + ud has the 

same basic form, 

31 = -vQ, z &?I& - 75)Qa “p?(l - rs)+ (32) 

as for semileptonic decays, aside from the addition of the color indices cx and ,L? 

which are summed over the three colors to form color singlet currents. The decay 

rate 

G$M,$ 
r(Q -+ Qua = 3 iVQq12 1g2r3 F  (33) 

is also identical to the semileptonic case except for the factor of three on the right 

hand side due to color (we are neglecting the masses of the u  and d  quarks, just 

as we neglected those of the e  and ve previously). 

Now let us rewrite the Hamiltonian in a  slightly different form: 

GF 
31 = -vQq -* 

24 

[ 
c+ [t7cx7r(l - 75)Qaq7p(1 - 75)dp + WY& - ~s)daq~p(l - 75)Qp] 

+ c- [4a^lr(l - 75)Q~aip7~(1- 7s)dp - &r/4(1 - 7&Q-q#(l- 75)Qp] 
1  

(34 
with c+ = c- = 1 initially. All we have done is to add and subtract a  term 

which is nothing but the original expression with Q  +-+ q. Moreover, this term 

would be identical to the original one if it were not for the presence of the color 

indices; without them the interchange Q  f-) q  is a  F ierz transformation under 

which V - A interactions go into themselves. In the decay rate, the three on the 
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right-hand side of Eq. (33) is replaced by 2~: + cc, which again is no change at 

all when c + = c- = 1. 

So why make a more complicated expression out of something simple? The 

answer lies in what happens when we turn on the strong interactions and add the 

effects of QCD to the purely weak interactions that we have considered up to this 

point. The weak interaction will be modified by the presence of strong interaction 

effects and c+ and c- will be renormalized. But they have been carefully chosen in 

this regard, for they only go into themselves under this renormalization, i. e. the 

corresponding operators, which are even or odd under interchange of color indices, 

do not mix through QCD corrections. Not only do the strong interactions modify 

c+ and c- from their initial value of unity, but they introduce new operators into 

the effective Hamiltonian. These so-called “penguin” operators, which come in 

beginning at the one loop level, have a different space-time structure than the 

V - A x V - A structure we have had up to now. We proceed to consider each 

of these effects and their magnitude in turn. 

l The Calculation of c+ and c- 

To calculate what happens to c+ and c- under renormalization due to QCD is 

equivalent to being able to study their behavior as one moves from one momentum 

scale to another. More specifically, at the momentum scale corresponding to Mw 

the weak interactions are characterized by the “bare” Hamiltonian density of Eq. 

(31) and c+ = c- = 1. We are interested in what happens when we move down 

to a momentum scale characteristic of hadrons, i.e. roughly the mass of the 

decaying heavy quark. 

The study of what happens when one moves from one momentum scale to 

another is directly formulated through a renormalization group equation. In the 

34 



case of c+ and c-, they satisfy such an equation of the form: 

(35) 

where /..L is some reference scale of momentum (the renormalization point) and q 

is a second scale at which we wish to calculate the effective weak Hamiltonian. 

In this equation, p(g) is the standard beta function of the theory, 

which characterizes how the coupling changes with a change of scale. For &CD, 

it has the perturbation theory expansion, 

P(s) = ,;; F(2nf - 33) + . . . (36) 

where nf is the number of quark flavors. Notice that the coefficient of g3 is 

negative as long as 33 > 2nf. In other words, the coupling decreases as we 

increase the scale of momentum at which we are looking. This is just the property 

of asymptotic freedom; the theory of QCD becomes more and more like a free 

field theory as we increase the momentum scale. The quantities 7* are the 

anomalous dimensions associated with the operators c&, respectively. They also 

can be calculated in a perturbative expansion, starting in order g2, where they 

originate in graphs where a single gluon is exchanged between fermion lines in 

the basic four-fermion weak interaction:38 

7+ = +g + . . . 

Note that if 7h = 0, then the combination of derivatives on the left-hand side of 
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the renormalization group equation can be rewritten as a total derivative: 

simply expressing the fact that C* does not change under a change of momentum 

scale if the anomalous dimensions are zero. In the case at hand, as we have just 

seen, the anomalous dimensions are non-zero and the operator coefficients cf 

change with scale. 

We now proceed to solve this renormalization group equation.3Q The method 

of solution that follows at first looks like it is pulled out of the hat, but we will 

see the rationale for it,so bear with me for a moment. 

We begin by defining the quantity in through an integral: 

(39) 

with g(l,g). The quantity g, which is dimensionless, can only be a function of 

the ratio of the momentum scales q and ,u and the coupling g at the reference 

scale /.L; it is just the “running coupling” that is familiar to all of us. To see this, 

let us put it in a more familiar form by looking at the situation when B is small, 

so that we can use the perturbative result for p(x) = &(2nf - 33) + . . . under 

the integral in Eq. (39). If we take the first term in this expansion we obtain on 

performing the integral, 

or 

%(P2) 
1-t ~4~~) ln q2/cL2 ’ 

33-2nf 

36 

(40) 
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This is the standard expression for the running of oS when it is small. 

The definition of ij in Eq. (39) is perfectly general though; it simply re- 

duces to the standard form in the small coupling region upon using lowest order 

perturbation theory for ,6(x). Moreover, it is relevant to solving our equation 

since it exactly satisfies the renormalization group equation with zero anomalous 

dimensions: 

(42) 

as may be seen by applying the differential operator on the’left-hand side of this 

equation to both sides of Eq. (39). 

Now we are ready to solve the full equations for c+. The solution of Eq. (35) 

is: 

&/P,!J) = cf(Li+xP (/-7~~p"), 

9 

as can be seen directly by substitution and employing Eq. (42) together with the 

fact that the derivative of an integral with respect to its upper limit of integration 

is just the integrand evaluated at that point. 

We go again to perturbation theory to evaluate the integral in the exponent 

of Eq. (43): 

Therefore, 

ii 
J -7+Mdx 

P(x) 
= 33 62,, In $. 

9 

c+(q/t%!J) = c+PJ) 5 
0 

33 -!2nf 
, 
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and similarly, 

-12 
-2 33 - 2nf 

4/Pdl) = c-(1,@ > 
0 

. (46) 

We are interested in what happens between a momentum scale which is char- 

acteristic of the decaying hadron (which we take to be CL) and the weak scale, Mw 

(which we take to be q). Moreover, if we had also taken our reference momentum 

scale p to be the weak scale, our coefficients should make the Hamiltonian density 

correspond to the “bare” density in Eq. (34), i. e., c*(l,g) = 1. Therefore, 

6 

c&w /pFL, s> = 

and 
-12 

c-(Mw/w) = 

(47) 

(48) 

This is our sought after result for the QCD renormalization of the coefficients 

CIC. 

When we recall that as(q2) runs down as the momentum scale goes up, we 

see that c+(Mw/p,g) < 1 and c-(Mw/p,g) > 1. In fact, there is the simple 

relation 

c2,c-= 1 (49) 

(which is traceable to the factor of -2 between the anomalous dimensions of the 

corresponding operators), so that one of the corresponding terms in the weak 

Hamiltonian is necessarily suppressed if the other is enhanced by the effects of 

&CD. 
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0 Penguins 

Before using these results to look at the overall picture of decays in the 

spectator model, let us take a brief look at the additional operators introduced 

by &CD, the “penguins”. A set of lowest order graphs which contribute to the 

existence of “penguin” operators relevant to various quark decays is shown in 

Figure 9. 

On the upper left is a one loop, “penguin” graph relevant to strange quark 

decay (and in particular, to neutral K decay). Once the loop integral is performed 

this diagram contributes to an effective operator whose space-time structure is 

(V-A)xV,orequivalentlyamixtureof (V-A)x(V-A) and(V-A)x(V+A). 

The latter operator has a structure that is not in the original weak Hamiltonian 

density. Arguments have been made that although its relative coefficient is small, 

the corresponding operator has a big matrix element in K decays and that it 

contributes a large part of the experimentally observed amplitude. 4o This is a 

subject still very much under debate. 41 

The diagram on the upper right shows a potential “penguin” in Cabibbo 

suppressed charm decays. Estimates generally put its strength well below that 

from ordinary graphs which contribute to the same process. 

In bottom decay, however, it may be possible to have processes (Cabibbo 

suppressed to be sure) where “penguin” diagrams give rise to contributions com- 

parable to, or maybe even larger than, those of ordinary tree level graphs.42 The 

bottom portion of Figure 9 shows a possible example. The “penguin” diagram 

on the lower left contributes an effective Hamiltonian density: 

(50) 
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Fig. 9. Set of lowest order “penguin” graphs contributing to strange quark 
decay (upper left), Cabibbo suppressed charm quark decay (upper right), and 
Cabibbo suppressed bottom quark decay (lower left). Also shown is a spectator 
graph which also contributes to Cabibbo suppressed bottom quark decays (lower 
right). 
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whereas the usual spectator diagram corresponds to 

GF x = JZ V& vu, a7,(1- 75)b S7p(1- 75)~. (51) 

The “penguin” loses to the spectator graph because of the 2 ln(mi/m:) that 

arises from having one loop and the presence of the gluon, but it wins because of 

the Cabibbo (or more exactly, Kobayashi-Maskawa) factor &bV&, which involves 

zero and one generation jumps, as compared to vUbvUs, which involves two and 

one generation jumps, respectively. Depending in part on how small VUb is (some- 

thing still not known), it could well be that the spectator is the lesser of the two 

contributions. Then, for example, in the decays Bd -+ K+rr- or B, -+ g5I-C’ the 

“penguin” contribution may be dominant. 43 

l Decays in the Spectator Model 

What does all this mean numerically for the decay of the various quark fla- 

vors? First consider the strange quark. The statement that c- > 1 corresponds 

to the enhancement of the AI = l/2 amplitude in strange particle decay, which 

is what one desires in order to be in accord with experiment. However, it al- 

ready requires some stretching to get a factor of 3 or 4 in the amplitude, while 

what is needed is something like a factor of 20. Another piece of physics, per- 

haps “penguins” (see the discussion above), is required in addition to the QCD 

enhancement of c-. 

For the charm quark, if we set ,U = m,, we find c- - 2 and c+ - l/fi. At 

the quark level the Cabibbo allowed decay channels are c -+ SEW,, c + spuP, 

-and c -+ S&L. In the spectator model, all charmed hadrons would have the same 

lifetime and the same semileptonic branching fraction, which would be identified 
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with that for the charm quark as if it decayed in isolation from other hadronic 

constituents: 

B&emileptonic - 
1 

2+2c2+ +c2_ 
-14%. 

For the bottom quark, with p = mb, the QCD enhancement (suppression) 

of c- (c+) is less than that for charm: c- - 1.5 and c+ - 0.8. In this case we 

have an expanded list of decay channels at the quark level: b + ceDe, b --+ cpfip, 

b -+ IX&, b + cd& and b t CSE. We have neglected decays where the final c 

quark is replaced by a u quark (using the experimental result’ that b --+ u/b + c 

is small). The corresponding semileptonic branching ratio is 

BRsemileptonic - 
1 

2.2 + 1.2(2c? + 3) 
-15010, 

where the semileptonic decays involving CSV, and CES have been given an approx- 

imate phase space weight which is 0.2 times that for cEYe. 

These days, everyone is quick to point out that these results do not agree 

with experiment, e.g., the Do and the D+ lifetimes differ by a factor of two or so, 

the average B semileptonic branching ratio is about 12%, etc.’ Before we go on 

to investigating the shortcomings of the spectator model, let me emphasize that 

this is not so bad - I only wish that I was able to calculate so simply everything 

else involving strong interactions to a factor of two or better in the rate! The 

spectator model does provide a very useful qualitative and even semi-quantitative 

basis for calculating the weak decays of heavy quarks. 

With that stressed, let it also be said that we should and can do better 

-theoretically. We shall then look beyond the spectator model at what are the 

effects of the other quarks and gluons present in the initial or final state. 
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Beyond the Spectator Model 

l Leptonic Decays 

The simplest decay processes that involve the erstwhile spectator quarks are 

those where the initial quark and antiquark in a meson annihilate to yield a 

purely leptonic final state; this must be a non-spectator process. The prototype 

for all such decays is 7r- -- -+ p vcl, and as for the pion, the decay rate for any 

pseudoscalar meson P has the form: 

where fp is the pseudo&alar decay constant, the analogue of fr. 

For D+ t pup, this yields a branching ratio 

2 

BR(D+ -+ pup) = 4.3 x 10e3 sin2 8, rD+ 
lo-l2 set’ (55) 

As we expect44 

fD - fF - fB - fK, 

the branching ratio for this mode is to be found down at the level of 2 x 10e4. 

The one case of a heavy meson with an appreciable leptonic branching ratio 

is the F (now renamed the D,, but we retain the old name here). The particular 

decay of relevance is F+ -+ ?u7, where a calculation as above gives: 

2 
rF+ 

lo-l2 sec. 

Here we have neither a Cabibbo nor a helicity suppression (because of the high 

tau mass), and given the present F lifetime1 we can expect a branching ratio of 

nearly 2%. 
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In the case of a vector meson decaying weakly to leptons, we no longer have 

the helicity suppression and the rate does not involve a factor of rn;: 

(57) 

However, for all the known vector mesons, such a mode is swamped by strong 

or electromagnetic decays; even for the vector meson containing a t quark it is 

overwhelmed by other weak decays. 

l Semileptonic Decays 

We have considered these decays at the quark level previously, which presum- 

ably provides an approximate, smoothed inclusive sum of the actual exclusive 

modes such as D + KeDe, D --+ K*epe,, etc. If the number of available exclu- 

sive channels is small, as in D semileptonic decay, then they can be untangled 

experimentally’ and calculated individually theoretically. 

Consider, for example, D + KE~e. This decay has a standard matrix element 

Jd = - V,S gf+(q’) (PG +I$) @e7p(l - 751”v3 

where q = pD - PK is the four-momentum carried by the lepton pair. The 

corresponding rate is 

(fh-~K)2 

s 
dq2 If+t!?2N2 b713, (59) 

0 

where 14 is taken in the D rest frame. If the form factor f+ had no q2 dependence, 
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then the last integral can be done explicitly, 

8 
s 

dq2 lf+(q2)12 14" = if+(0)12 - (60) 
0 

The function F(A = rn~/iM~) in Eq. (60) is just that introduced in Eq. (28) 

from the decay rate calculation at the quark level. In fact, the whole expression 

for the decay rate for the exclusive mode D + J&V, is just f/f’(O) I2 times that 

for the inclusive rate at the quark level if we replace MD and ?nK by the corre- 

sponding masses of the“heavy” quarks they contain, m, and m,. Numerically, 

F(mK/MD) = 0.60, and inserting the measured behavior’ of the form factor f+ 

increases the integral by a factor of 1.3. The measured rate for this decay can 

be used to obtain an expression for IV,,l in terms of If+(O) I, since all the other 

quantities in Eq. (59) are known. 

This calculation of exclusive channels one by one can be carried a step fur- 

ther by using a model of the possible final states and their matrix elements to 

systematically calculate semileptonic decays as a sum of exclusive channels. Such 

a calculation has recently been carried out using the quark model for the final 

state resonances and their matrix elements, 45 with results for the electron energy 

spectrum in D meson decay as shown in Figure 10. A comparison is also made 

there of the sum of the exclusive channels and the inclusive decay calculated at 

the quark level. The overall rates (integrated area under the curves) in the two 

cases are quite close in value, while the exclusive calculation gives a somewhat 

softer electron spectrum. A similar comment holds for B decay into charm, as 

shown in Figure 11. When it comes to B decay into non-charmed final states 

however, the sum of the exclusive channels involving comparatively low-lying fi- 

nal states which is shown in Figure 12 falls well short of giving the same rate as 
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Fig. 10. The components of the electron spectrum from different hadronic chan- 
nels in semileptonic D decays involving strange meson final states according to 
Ref. 45. 
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Fig. 11. The components of the electron spectrum from different hadronic chan- 
nels in semileptonic B decays involving charmed meson final states according to 
Ref. 45. 
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Fig. 12. The components of the electron spectrum from different hadronic chan- 
nels in semileptonic B decays involving non-charmed meson final states according 
to Ref. 45. 
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the inclusive decay calculated at the quark level. It yields a much softer elec- 

tron energy spectrum as well. Usually, it is precisely near the endpoint of the 

spectrum where one would tend to trust the calculation involving a discrete sum 

of exclusive states, as opposed to the quark level calculation, which at best can 

be a smooth averaging of the discrete sum. It is also the shape of the spectrum 

near the endpoint which is critical in sorting out b --) u from b --+ c. The decid- 

edly softer spectrum in Figure 12 for the former process makes experiment less 

sensitive to b -+ u; there are less restrictive limits on b + u when the data are 

analyzed in terms of it. 

l Nonleptonic Decays 

There are a number of ways that have been proposed to account for the 

deviations from the spectator model in nonleptonic decays. We examine them 

briefly in this section.36’37 

Final State Interactions 

Once created by the weak interaction, the final hadrons undergo strong in- 

teraction scattering effects. If the pair of hadrons has an energy which is below 

inelastic threshold for that channel, it can be proven rigorously that the am- 

plitude must have the phase of the elastic scattering process characterized by 

the appropriate quantum numbers at that energy.46 For a process in which the 

final state is composed, for example, of two possible isospins, the corresponding 

portions of the weak amplitude each pick up a final state interaction factor with 

a phase that is appropriate to scattering in that particular isospin state. Such 

phases can completely change predictions made for the weak amplitudes alone 

by destroying the phase relationship between different amplitudes. For example, 

consider the decay Do --+ K”7ro in which the final Kr system has isospin l/2 or 
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312: 

A(D” + Ron’) = GA,,2 + gA3,2- (61) 

As we will see shortly, this amplitude is predicted to be very small due to color 

mismatches in one picture of such decays. If this is recast in terms of the isospin 

decomposition of Eq. (61), the small net amplitude must come about when 

Al/2 - -fi &/2. 

Once we add final state interactions, the same decay amplitude becomes 

A(D” -+ fi”?ro) = (63) 

where we have used a simple phase factor to represent the final state interac- 

tions, even though one is well above the inelastic threshold for KT scattering 

at the energy of the D. Even with this somewhat symbolic notation, the point 

is well made 47 that with sizable strong interaction phases of opposite sign, the 

cancellation between the two terms on the right-hand side of Eq. (61) can be 

turned around into a positive enhancement, totally obscuring the underlying re- 

lation obtained from the weak interactions alone. Even more, strong interaction 

rescattering can produce a final state that is not allowed in a particular model 

from weak processes alone. Such is the case for the process Do -+ ii-O4, which 

is not permitted to occur through the weak interactions without the presence of 

annihilation graphs (see below), but could occur through the chain 48 

where the first step is already allowed in the spectator model and the second step 

is a purely strong interaction rescattering process. 

50 



Color Factors and (mis)Matching 

Consider a quark level process like ca + s, + dpup, where color indices have 

been reinstated (and where repeated, they are summed over the three colors), 

that takes place inside a Do meson with quark content c,tiizcr. If we proceed naively 

to form final hadrons out of the resultant quarks and antiquarks, then the color 

indices for the combination (ua (sG), e.g., rrr+K-, automatically “match” to form 

color singlet hadrons. The color indices for (uii)(sd], e.g., 7roiTr”, are mismatched: 

Only one time in three are the indices appropriate for forming a color singlet. 

Thus we expect that the second process will be down a factor of 9 from the first. 

Actually the prediction is4’ 

I’(D” --+ K”ro) 1 =- 
I’(D0 + K-T+ ) 18’ (65) 

because there is an additional factor of one-half coming from the square of the 

7r” wave function, t/z +u - Zd). Wh en the usual QCD corrections are put in, 

the prediction is reduced further to - l/40. This (and other cases of such color 

suppression) is in gross disagreement with experiment,’ where these two widths 

are within a factor of two of each other. The color matching or mismatching 

can be destroyed if we allow soft gluons to transfer color from one final quark 

to another at no cost in rate. However, there may be a modified version of such 

color factors that is of relevance, and indeed they play a role in some of the recent 

attempts to understand D decays systematically. 50’51 

Interference 

Unlike the example above where the two different ways of combining final 

quarks and antiquarks led to two distinct hadronic final states, there are cases 
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where the final state hadrons are the same. An example of this is given in Figure 

13, where the two ways of combining the final quarks in D+ decay, say into two 

pseudoscalar mesons, leads to the same final state, i. e., K”7rr+. By the laws of 

quantum mechanics the amplitudes are coherent, and in this particular case are 

found to interfere destructively. This reduces (at least this) particular partial 

width and it can be argued that this is a mechanism for reducing the total width 

of the D+ and hence increasing its lifetime and semileptonic branching fraction 

as compared to the Do and F +, for which this interference does not occur (in 

the Cabibbo allowed decays). 52’53 This mechanism seems to be present at some 

level, although it has been argued that it is probably not enough of an effect by 

itself to give a factor of two difference in the D+ and Do lifetimes. 54 

Annihilation 

Graphs like those in Figure 14 are suppressed for the decays of a pseudoscalar 

meson into light final fermions because of the V - A character of the weak inter- 

action. This is precisely the same physics that gives the factor of rn; in Eq. (54) 

and causes the amplitudes for 7rr- + eDe and K- --+ eDe to be suppressed by a 

factor of m,/mP compared to X- --+ pfiP and K- --) /JD~; we sometimes say the 

former processes are “helicity suppressed” compared to the latter. 

In the case of hadronic decays as in Figure 14, this suppression may be 

removed by emitting gluons. Consider, for example, the annihilation diagram for 

F decay in Figure 14, where a gluon is radiated by the c or s quark in the initial 

state, or where the gluon is present as a constituent to from the beginning. 55-57 

At the vertex where the cs pair annihilate into a W they are no longer in a spin 

zero state (in fact, they are necessarily have spin one); the helicity suppression 

is gone. The width of hadrons for which such a process can contribute to the 
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Fig. 13. Diagrams contributing to D+ + ROT+ decay, illustrating potential 
interference between amplitudes arising from two different ways of combining 
final quarks into the same final state hadrons. 
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Fig. 14. Annihilation graphs contributing to Do and F+ decay. 
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weak decays will increase; the only question is the magnitude of the effect. In 

particular, the width of the Do and F+ should increase, while that for the D+ 

should not in the dominant Cabibbo-allowed modes (but the annihilation graph 

does contribute to Cabibbo-suppressed modes of the D+). In addition, specific 

exclusive hadronic modes, like Do --+ K”$ and F decay to hadrons not containing 

strange quarks, are permitted through the annihilation graph and not through 

the spectator graph by itself (without final state interactions, see above). 

There is increasing evidence that annihilation graphs do contribute to a mea- 

surable fraction of D decays. We very much need further quantitative calculations 

and experimental measurements of D and F decay with which to compare them. 

Even if such effects are important in D and F decay, they should be much less so 

in B decay, and this needs experimental checking as well. So while the situation 

with weak decays of hadrons containing heavy quarks is getting clearer, and we 

do have a semi-quantitative theory/model of these processes, much remains to 

be done both theoretically and experimentally. 
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