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ABSTRACT 

Using a framework of Dirac algebra, the Clifford algebra appropriate for 

Minkowski space-time, the formulation of classical electromagnetism including 

both electric and magnetic charge is explored. Employing the two-potential ap- 

proach of Cabibbo and Ferrari, a Lagrangian is obtained that is dyality invariant 

and from which it is possible to derive by Hamilton’s principle both the sym- 

metrized Maxwell’s equations and the equations of motion for both electrically 

and magnetically charged particles. This latter result is achieved by defining 

the variation of the action associated with the cross terms of the interaction La- 

grangian in terms of a surface integral. The surface integral has an equivalent 

path integral form, showing that the contribution of the cross terms is local in 

nature. The form of these cross terms derives in a natural way from a Dirac 

algebraic formulation, and, in fact, the use of the geometric product of Dirac 

algebra is an essential aspect of this derivation. No kinematic restrictions are 

associated with the derivation, and no relationship between magnetic and elec- 

tric charge evolves from the (classical) formulation. However, it is indicated 

that in bound states quantum mechanical considerations will lead to a version 

of Dirac’s quantization condition. A discussion of parity violation of the gener- 

alized electromagnetic theory is given, and a new approach to the incorporation 

of this violation into the formalism is suggested. Possibilities for extensions are 

mentioned. 
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1. Introduction 

Diraclll was the first to suggest the possibility of a particle that carries mag- 

netic charge. In developing a theory of electrodynamics that included magnetic 

monopoles, Dirac introduced the notion of a singular vector potential. As a 

consequence, he found that magnetic monopoles would have (singularity) strings 

attached to them. In addition, his analysis required that electrically charged 

particles could not contact these strings; this constraint is known as the “Dirac 

veto.” While considerable effort has been expended in trying to solve these dif- 

ficulties and considerable progress has been made, no fully satisfactory solution 

has yet been found.@ 

In a paper that employs the use of two vector potentials, Cabibbo and 

Ferrari131 eliminate the need for strings but were unable to establish a Lagrangian 

formulation. It has been shown141 that, given certain assumptions, rather se- 

vere restrictions apply to a Lagrangian formulation of electromagnetism when 

both electric and magnetic charges are present. In a different approach, with a 

technique using ideas borrowed from the mathematics of fiber bundles, Wu and 

YangI have defined a Lagrangian using the singular vector potential of Dirac 

that circumvents the problem of the Dirac veto. Nevertheless, the use of the 

singular vector potential remains questionable.#2 Also, this result loses some 

generality because the action must be defined modulo eg. While for the classical 

theory the significance of this restriction is not clear, in quantum theory it leads 

to Dirac’s quantization conditionl’l z = t, where n is an integer. 

Recently, an analysis using Clifford algebras as a framework in which to incor- 

porate magnetic monopoles into a generalized electromagnetic theory has been 

#l Extensive reviews of these efforts and their various difficulties have been published.[2] 
#2 Even setting aside an intuitive distrust of singular functions in physics, there still appear 

to be problems. For example, it has been pointed out[6] that even though one can move 
the (singular) strings about by suitable gauge transformations, in many body situations (a 
charge-monopole plasma, say) the strings may become tangled, leading to a confusing and 
obscure topological situation for which the standard dynamical equations might no longer 
apply. 
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published.[‘l This analysis#3 follows that of Cabibbo and Ferrari, using two vec- 

tor potentials. A new idea in Ref. [7], which is facilitated by the use of Dirac 

algebra-the Clifford algebra of Minkowski space-time[*]-is that the interaction 

term of the Lagrangian should be written as the product of a generalized electro- 

magnetic current times a generalized vector potential. As a result, one obtains 

not only the “standard” interactions of the electric and magnetic current densities 

jp and kp with their respective vector potentials Ap and Mp (in tensor language, 

the j,Ap and k&P terms) but also the “cross” interactions j&P and k,Ap. 

However, the Lagrangian in Ref. [7] specifically includes (Dirac) pseudoscalar 

pieces, which are unsuitable for a derivation of the Lorentz equations of motion 

for electrically and magnetically charged particles; the corresponding free parti- 

cle contribution to the Lagrangian does not have any appropriate pseudoscalar 

pieces. Furthermore, the Lagrangian of Ref. [7] is not dyality invariant.#4 

The purpose of this paper is to explore more fully the applicability of Dirac 

algebra to the formulation of a generalized electromagnetism in an effort to over- 

come some of the difficulties mentioned above. Some well-known results in the 

tensor formulation are included for the sake of completeness and to set the anal- 

ysis using Dirac algebra in context. While the analysis here is classical, some 

possible implications for theories of elementary particles are given. 

#3 Unfortunately, Ref. [7] is rather difficult to follow because it contains some typographical 
errors and the authors use conventional notation and analytical techniques in novel ways 
without the benefit of any clarifying definitions or discussion. Hence, the correctness of 
their analysis is not obvious. 

#4 This is not uncommon. For example, the Lagrangian used in a rather general mathemati- 
cally oriented study of electromagnetism including electric and magnetic charge using the 
calculus of exterior forms is not dyality invariant.[g] 
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2. Tensor Formulation 

a. Electric Charges 

To proceed, it is useful first to write down the Lagrangian in the more familiar 

covariant tensor form. The metric is gPV = diag [ 1, - 1, - 1, - 11. The summation 

rule for repeated indices is used; Greek indices range from 0 to 3. 

The Lagrangian density (in Gaussian units) from which one can derive the 

standard set of Maxwell’s equations is given byl”l 

(1) 

where F,p is the usual electromagnetic field tensor, Aa = ($,A) is the usual 

electromagnetic vector potential, and the electric current density jp = (PC, j). 

Boldface letters are used here to denote vectors in three-dimensional Euclidean- 

space. 

The subscript e on C, signifies “electromagnetic,” which denotes the standard 

electricity and magnetism associated with electric sources jp. In this paper a dis- 

tinction is made between the standard electromagnetism and “magnetoelectric- 

ity,” which denotes the magnetism and electricity associated with the magnetic 

sources kp. This notation furnishes a framework in which a physical (as well 

as mathematical) distinction can be made between electrically and magnetically 

generated quantities. As long as the source currents are taken together with their 

associated fields, there is no ambiguity in partitioning the fields into their elec- 

tromagnetic and magnetoelectric parts, even in source-free regions. Free fields, 

not associated with a source, cannot be treated rigorously #5 in this framework 

in its present state of development. Hence, their discussion will be deferred to 

the final section. 

#5 In a classical electromagnetic theory that includes magnetic monopoles, the partitioning 
of the free field into electromagnetic and magnetoelectric quantities is ambiguous. This 
problem is related to the two-photon question in the quantum theory of free electromagnetic 
fields using an analysis having two potentials. 
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The action associated with fZc, is given by 

(2) 

where the contribution of each term in the Lagrangian is explicitly denoted: SE 

associated with the electromagnetic field, and 5’1 associated with the interaction 

between field and source. The $ factor is included in Eq. (2) to render the action 

in units of energy x time. 

The field tensor and vector potential are related by 

Fp,, = tIpA, - &A,, r (3) 

which is the tensor equivalent of the vector #f5 equations 

E=-Vq5-%, andH=VxA. 

Equations (3) and (4) dictate that F,i = Ei and FQ = -Hk, where i j k are 

cyclic and range from 1 to 3. 

Substituting Eq. (3) into (1) and using Hamilton’s principle to obtain the 

Euler-Lagrange equations associated with the variations SAa yields the inhomo- 

geneous Maxwell’s equations[“l 

Since FpV is antisymmetric, it follows that current is conserved; i.e., &,jY = 0. 

Defining the dual of the field tensor 

where cp”pa is the totally antisymmetric tensor, one can use Eq. (3) to derive 

#6 E and If are used here as the fundamental (microscopic) fields (e.g., see Katsil’l); the 
quantities D = EE and B = PH are redundant, for in Gaussian units E = p = 1. 
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the homogeneous equation 

d,W = 0, (7) 

where choosing ~0123 = 1 = --E 0123 dictates that @ i = Hi and iij = -Ek, i j Ic 

cyclic. 

In order to obtain the equations of motion for electrically charged particles, 

one adds Sp, the contribution of a free particle, #7 to the action and rewrites 

the current #8 in terms of the coordinates xp = z p (7) that specify the particle’s 

equilibrium path, yielding[131 

Sp + SI = 
/ 

b (-mc ds - zA,dx’), 

a 
(8) 

where V- is the proper time and ds is the increment of invariant distance along 

the particle path. The integral, then, is taken along the particle’s equilibrium 

path from point a to point b; the FQpPP term has been omitted here since it is 

not functionally dependent upon the particle trajectory. 

The principle of least action states[14] that 

b 

6,s = 6, 
/ 

(-mc ds - ;Apdx’) = ] [ - mc 6,ds - E&(A,dx”)] = 0, (9) 

a a 

where 6, means that the path of integration from a to b is displaced from equi- 

librium by the arbitrary (infinitesimal) function 6xp; 6xp = 0 at a and at b. The 

geometry associated with these action integrals is depicted in Fig. 1. 

#7 When one adds the Sp term to the action, one can assume that it can take into account the 
divergent self-energy terms in Lagrangian. This is not clone explicitly here, but a technique 
for doing so has been demonstrated by Rohrlich.l121 

#8 The current term in Eq. (8) 
where zp = d‘(X) 

can also be written[12] as -5 s s AP(z)b4(z - z(X)) $$dXd4z, 
is the particle trajectory as a function of the parameter A. This form is 

useful because the Lagrangian density is explicitly manifest. (The expressions transcribed 
here are adjusted to be consistent with the notation and metric of this paper.) 
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&Sp, after integration by parts, leads[15] to the term j m &J~~zP, where TJ~ 
b 

is the four-velocity of the (electrically charged) particle. S,Sl, after integration 

by parts, leads to the expression[13] 

b b 

SzSI = y 
J 

(~,A,dxVGxp - d,ApGx’dxV) = 3 
J 

FpydxuGxY (10) 
a a 

Combining the contributions from Sp and Sl and converting both to an 

integral over proper time yields 

b 

/ 
(ml - zF,,vY)Gz’dT = 0. 

a 

Since the 6xp is arbitrary, it follows that 

dvp 
md7=C 

~F’?I~. 

Equation (12) is the covariant form of the Lorentz force law 

dp -=c(E+$I), 
dt (13) 

(11) 

(12) 

where p is the particle momentum. When the source is described by the current 

density j,, then one can define a Lorentz force density[le] 

the relationship of Eq. (14) to Eq. (12) is obvious. 

Now, S,SI can, by the relativistic generalization of Stokes’ theorem, be de- 

veloped as an integral over a surface spanning the closed loop formed by the 
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displaced path and the equilibrium path (See Fig. l.), rather than as a path 

integral from a to b [Eq. (lo)]. I n t ermediate steps in the derivation of Eq. (10) 

were included above to facilitate the comparison of S,Sl written as a path inte- 

gral with S,SI written as a surface integral. In Sec. 3d, we shall see that the 

use of the surface integral form for the contribution of the cross terms to &SI 

enables the formulation of the requisite (Dirac) scalar action integral from which 

the equations of motion of electrically and magnetically charged particles can be 

derived. 

To develop S,Sl as a surface integral, we first observe that 

&sI= (s+&s)I-sI, L 05) 

where (S + &S) 1 is the integral from a to b along a path that is displaced from 

the equilibrium path by Gx? 

(s + 6,~)~ = -e 
C J 

b Av(x + Gx)d(x + 6x)“. P-9 
a 

Since in Eq. (15) th e q uantity SI, which is associated with the line integral from 

a to b along the equilibrium path, enters with a minus sign, it can be considered 

as the integral from b to a and entered with a plus sign. Thus, 

&SI = -e AVdxV, 
c f (17) 

where the integration path is shown in Fig. 1. 

By the relativistic generalization of Stokes’ theorem,l171 Eq. (17) becomes 

&SI = -e 
c J 

da’l”dpA, = 2 
s 

dapv(+A, - &,A,) = 2 
/ 

d#‘Fp,,, (18) 

where dopLV is the incremental area of a surface spanning in Minkowski space-time 

the closed path of Eq. (17). Comparison of Eq. (18) with Eq. (10) indicates 
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that one can make the identification: 

/ 
dc?’ e 2 

/ 
dx”6xp. (19) 

surface path 

Equation (19) mathematically describes the geometry of the situation; the surface 

spanning the loop formed by the displaced path and the equilibrium path is 

“linear” in the function 6x/L and hence is of infinitesimal width. (The length is 

macroscopic, going from a to b.) 

b. Magnetic Charges 

In analogy to the above analysis, one can for a “magnetic world” employ a 

second (or “magnetoelectric”) vector #’ potential Mp = ($,M) and an associ- 

ated field tensor G,, such that 

G,, = a,M, - i&M,. (20) 

If we assert that to satisfy dyality (or duality)#l’ exchange, E -+ H’, H + 

-E’, A -+ M, etc. (see Sec. 4b), then from Eq. (4) we obtain 

H’=-V$- f$ and E’ = -V x M, (21) 

where H’ and E’ are the magnetic and electric fields associated with the mag- 

netic current density k p = (ac,k) as a source. The primes on the electric 

and magnetic field vectors associated with kp are consistent with the partition- 

ing of the generalized electromagnetic fields into electrically and magnetically 

generated quantities. The tensor GPv, then, is strictly magnetoelectric, with 

G,i = Hi and Gij = EL, i j k cyclic. 

#9 The vector versus pseudovector nature of Mp and other magnetic quantities will be dis- 
cussed in Section 4c. 

#10 The word “duality” derives from the fact that when one takes the dual Ppy of the tensor 
FpV, the role of E and H are interchanged. Han and Biedenharn13] introduced the term 
“dyality” to avoid confusion with hadronic duality. We continue to use it here for that 
reason and because in our formulation, as is seen in Sec. 4b, the dyality exchange relations, 
though related to, are not identical to the use of the tensor dual. 
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Of course, one can form the (magnetoelectric) Lagrangian density 

(22) 

and use the Euler-Lagrange equations associated with the variations SMa to 

obtain 

+Gp” = 4”k”, 
C (23) 

and 

q@ = 0. (24 

As with FpV, the antisymmetry of G pv leads to (magnetic) current conservation; 

i.e., 3,kv = 0. Equations (22), (23), and (24) can also be obtained directly from 

Ew (I), (5), and (7), respectively, by the dyality exchange relations. 

In analogy to Eq. (9), one can, for the magnetic world, write down a least 

action principle for magnetic charges, 

b 

6,s = 6, 
J 

(-mc ds - Sn/i,dxp) = 0, 
C 

a 

where g is the monopole charge, and obtain 

dvp 
md7=C 

~GC”V~v, 

which, as expected, is equivalent to the Lorentz force law 

dp - = g(H’ - ; x E’). 
dt 

(25) 

(26) 

(27) 

Here again, we see that Eq. (27) can also be obtained directly from Eq. (13) by 

using dyality exchange. 
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c. The Symmetrized Maxwell’s Equations 

Using the formalism presented above, electromagnetism and magnetoelectric- 

ity can be adjoined by adding Eq. (24) to Eq. (5) and subtracting Eq. (23) from 

Eq. (7). This step yields the symmetrized set of Maxwell’s equations: #ll 

a,3pV = Fjv, 

-47r qj~” = -kv, 
C 

where the total electromagnetic tensor 

3/lv z F’L” + @’ 

and its dual 

(28) 

(29) 

(30) 

(Recall that Epv = -Gpv.) E quation (30) is equivalent to 

3’.“’ = WAV - 8’ Ap + c~“~=~~M~, (32) 

the Cabibbo-Ferrari-Shanmugadhasan#12 relation. In terms of the electric and 

magnetic field vectors, we see that 

3” = -(E + E’)i and Fii = -(H + a’),, (33) 

i j k cyclic.#13 

#ll Symmetrized Maxwell’s equations were publishedlml as long ago as 1893. The magnetic 
source terms included by Heaviside were not included for the purpose of describing magnetic 
charge, however, but rather as a convenient way to describe the “magnetification” of matter. 

#12 Shanmugadhasan,l 191 who introduced a second vector potential in a study of the dynamics 
of electric and magnetic charges, also obtained Eq. (32). 

#13 In the approach taken in this paper, it is an arbitrary matter of definition whether one adds 
Eqs. (24) and (5) and subtracts Eqs. (23) and (7) or vice versa. The option that yields 
Eq. (33) was chosen; that is, the fields due to electric sources and those due to magnetic 
sources add. 
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The above analysis indicates that by using Hamilton’s principle one can derive 

the symmetrized set of Maxwell’s equations from the Lagrangian density lc, + 

L: #14 t?l- It is easily verified that lJc, + fZc, is invariant under dyality exchange. 

However, it is obvious that electromagnetism and magnetoelectricity have not 

yet been unified;f2’l the Lagrangian interaction terms jaAa and k,Ma cannot 

lead to the “correct” #15 equations of motion in which the fields associated with 

electrically charged particles will exert forces on magnetically charged particles, 

and vice versa; terms describing the cross interactions are required. These cross 

interaction terms appear in a natural way when generalized electromagnetism is 

formulated using Dirac algebra. 

3. Formulation using Dirac Algebra 

a. Preliminaries 

Dirac algebra is regardedi*] as the natural algebra to use for the description 

of events in four-dimensional Minkowski space-time. Only elements of Dirac 

algebra essential to this paper will be introduced here; readers interested in a 

more comprehensive discourse should consult the literature, for example, Ref. [8] 

or [21]. 

Four linearly independent vectors rfi are used as a basis set for Dirac alge- 

bra. These vectors satisfy the same multiplication rules as the familiar Dirac 

matrices122l : 

7P7V + 7v7p = 2gpv. (34 

A Clifford or geometric product of two vectors has a symmetric part (or dot 

#14 That one can write down a Lagrangian density from which one can derive the symmetrized 
set of Maxwell’s equations was pointed out by Rohrlich.[41 In fact, Le + J& is in essence 
equivalent to the example cited by Rohrlich. 

#IS ‘Correct” means having Lorentz forces of the form e[(E + E’) + F x (H + H’)] and g[(H + 
ET’) - ; x (Et- E’)]. 
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product) and an antisymmetric part (or wedge product). That is, 

rrrv =7p’7v+7pA7v, 

where 

(35) 

and 

7P - 7v = ;crrrv + 7v7J = spv, (36) 

7P A 7v = $rrr. - 7v7J - 7/.&v. , (37) 

rCLV is called a bivector. Similarly a trivector 

7P A 7v A 7p = r/up (38) 

and a quadrivector 

7~ A 7v A 7p A 70 f 7/.wpa (39) 

can be defined. (Clifford multiplication is associative.) These products yield 16 

linearly independent quantities, which exhaust the possibilities.[23] 

Any number D in Dirac algebra can be expanded as a sum of homogeneous 

multivectors D, as follows:[24] 

4 

D=xD,=d+d’-y,+ 2r 
cP’ypv + d~vP7,.wp + dpvpa7pvpa 

3! 4! ’ r=O . (40) 

where the d, dp,dpV, etc. are the (Dirac) scalar coefficients of their associated 

homogeneous multivector. The number of indices r indicates the grade of the 

(homogeneous) multivector. The metric g,, can be used in the usual way to 
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raise and lower indices in these expansions.[25] Using the relationships(*l rPvp,, = 

75cPvpu, 7Pvp = 7Pvpo7a, and 

75 = 70123 = 70A71A72 A 73 = 70717273, (41) 

where 75 is the unit pseudoscalar #16 for the Dirac algebra, Eq. (40) can be put 

into the form 

D = S + VP7P + @7,, + c,757a + pr5, (42) 

where S,Vp, and TpV have been written for d, dp, and dpv, respectively, and 
C, E dCu~~v~e, and p s dPup~~v~~. 

The coefficients S, VP, Z’pv, etc. can be viewed as the components of the 

associated tensor description of D. Thus, Eq. (42) shows that the 16 linearly 

independent product forms in Dirac algebra partition into scalar, vector, ten- 

sor, axial vector (or pseudovector), and pseudoscalar objects in complete analogy 

to the bilinear forms constructed using solutions to the Dirac equation.[26] We 

note here that the words “scalar,” “vector,” etc. are used in their (Dirac) al- 

gebraic or geometric sense, without reference to any electromagnetic properties. 

Consideration of the parity of electromagnetic charges will by deferred to Sec. 

4c. 

The dual fi of D can be defined by 

(43) 

Since (75)2 = -1, one has at once that 

E = 75(E) = 75(75D) = (75)2D = -D. (44 

Of course, Eqs. (43) and (44) hold for the h omogeneous multivector D, and 

are fully consistent with the usual tensor definitions of duals. For example, 

#16 Note that to be consistent with the geometric purpose of employing the rP, we use Hestenes’ 
definitionls] of 7s (which differs from that of Bjorken and Dre11[221 by a factor i = m. 
Thus, 757’ = 1 and (75)2 = (7s)2 = -1. 
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the identity#l’ 7s7P" = 1. Pfl/-JV 
gE rpa enables one to show for the expansion 

F = pv7pv that ‘fP = I,+‘PflT 
2 Pa, in accordance with Eq. (6). Similarly, 

the identities 757p = ---$~~p’~7~p6 and 757@ = Pp67P yield for the ex- 

pansions P = iP@a7ap6 and I? = kp7p the familiar tensor relationships[27] 
pds = +WPV P and I?p = &@(*p’K,p~ for the duals of vectors and trivectors, 

respectively. Thus, we see that the dual of a vector is a trivector and vice versa. 

b. Maxwell’s Equations#‘* 

We are now in a position to recapitulate, using Dirac algebra, the results of 

Sec. 2. The standard set of Maxwell’s equations are written 

aF = 4”j, 
C 

(45) 

where d E 7pcYp, F = ~F~v7pv, and j = jprp are the expansions of a, F, and j 

in the Dirac basis. Equation (45) partitions into a vector part, 

and a trivector or pseudovector part, 

ar\F=O, (47) 

which are recognized as re-statements of Eqs. (5) and (7), respectively. Equation 

(45) demonstrates the economy of expression afforded by Dirac algebra-even 

better than differential geometry, which takes two equations [i.e., the equivalent 

of Eqs. (46) and (47)] t o say the same thing.i2*] 

#17 These identities are easy to derive from the formulae given in Appendix A of Ref. [g]. Some 
caution is advised, however, since some minus signs are missing. 

#18 For the standard (electromagnetic) Maxwell’s equations, this section follows Hestenes[‘] ; our 
treatment of the magnetoelectric Maxwell’s equations, which was not covered by Hestenes, 
differs in some important respects from that of Ref. [7]. 
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The relationship between the field tensor and vector potential are written as 

F=i3A, (48) 

where A - Ap7p. Equation (48) partitions into a bivector part, 

F=~AA, (49) 

and a scalar part, 

O=d-A. (50) 

Equation (49) is a re-statement of Eq. (3), and Eq. (50) is recognized as the 

Lorentz condition. It is also evident that 

a2A = $ j, 

where d2 = a . d is a scalar operator. 

Similarly, for the magnetoelectric Maxwell’s equations one writes 

(51) 

G=i3M, (53) 

and 

By using 75 as a bookkeeping device, Eqs. (45) and (52) can be combined 

into a single equation. First, multiply Eq. (52) on the left by 75 to obtain 

475G = Fy5k. 
(Note that 7sr3 = -a7s.) Setting G = 7sG and i = 75k, Eq. (55) becomes 

-a& = 4”i. 
C 

(55) 

(56) 

Then, subtracting Eq. (56) from Eq. (45) yields 
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where 

and 

33 = %J, (57) 

3-F+y5G=F+& (58) 

J = j - 75k = j - i. (59) 

Equation (57) includes both Eq. (28) as the vector part and Eq. (29) as the 

trivector part. The homogeneous equations, Eqs. (7) and (24), are also implied. 

Equation (57)) representing the symmetrized set of Maxwell’s equations, is the 

epitome of economy afforded by Dirac algebra. 

The potential 

which satisfies 

3=&l, (61) 

may be formed. The relationship 

(62) 

also obtains. 

c. Equations of Motion 

It is easy to see that using Dirac algebra, Eqs. (12) and (26) are written as 

ma= EF-v, 
C (63) 

and 

mu= ZG-v, 
C (64) 

respectively, where a = s7P. 
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The desired generalizations of Eqs. (63) and (64) that include the cross 

interaction terms are 

ma = -f(F + G) . v = z3. v 

and 

ma= t(G-F) .V = -!!T.v; 
c (66) 

charged particles feel a force proportional to the total electromagnetic field as 

defined by Eq. (58) or, equivalently, by Eqs. (30) and (31). Noting that [using 

(75)2 = -11 Eq. (66) can also be written as 

we see that Eq. (14) may be generalized to 

f=i3-J. 

d. Lagrangian Formulation 

(67) 

(68) 

In order to construct a Lagrangian formulation for generalized electromag- 

netism, we first look for a Lagrangian density from which Eq. (46) may be 

derived. It is immediately evident that the Lagrangian given in Eq. (1) is equiv- 

alent to 

c -&FF - :jA >s 

in Dirac algebra, #19 where the symbol < >s means take the scalar part. Taking 

the scalar part eliminates the bivector and pseudoscalar parts of the geometric 

products. (Th ere are no vector or pseudovector parts to eliminate.) This is 

essential for Lorentz invariance. (Actually, the pseudoscalar part is also Lorentz 

invariant, except under inversions.) 

#19 Note the factor -2 when one compares the (quadratic bivector) FF term of Eq. (69) with 
that of Eq. (1). I n contrast, the product of two Dirac vectors has the factor +l relative to 
the analogous tensor product. 
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Analogous to Eq. (2), th e action is formed by integrating the Lagrangian 

density over all space-time. In Dirac algebra the differential volume of space- 

time can be written as the (Dirac) pseudoscalar 

d8-l = c dt A dx A dy A dz, (70) 

where dt, dx, etc. are vectors. Properly combining the scalar Lagrangian density 

with the pseudoscalar dn, the electromagnetic action is 

se = 1 
C / 

< (-&FF - tjA)dfl >P, (71) 

where <>p means keep the pseudoscalar piece. Equivalently, we can use a scalar 

Lagrangian density by adopting a hybrid notational form employing the tensor 

(scalar) d4x for th e i d ff erential4-volume and write the action as 

se = i Led4x, 
J 

where 

(72) 

It is straightforward to demonstrate that the condition that SAS, be stationary, 

independent of 6A, yields Eq. (46). Analogously, 

srn = i / 
Lmd4x, 

where 

L,=&GG>s-i<kM>s, (75) 

will, through the (arbitrary) variations 6M, yield the vector part of Eq. (52). As 

in the tensor formalism, the homogeneous Maxwell’s equations [Eq. (47) and the 

trivector part of Eq. (52)] are not derived from an action principle but rather 

are viewed as deriving from the definitions of F and G in terms of A and M.[~‘] 

Thus, as before, we have a Lagrangian from which we can obtain by a least action 

principle the symmetrized Maxwell’s equations. 
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The question now is how to extend this result and find a Lagrangian from 

which one can also derive the correct equations of motion for electrically and 

magnetically charged particles. Since we have already seen that fJc,+ fc, will yield 

the symmetrized Maxwell’s equations, it is reasonable to look for a Lagrangian 

that includes all the terms of Lc, + lc,. Such a Lagrangian is 

L = & < 3*3 >s -i < JA >s, (76) 

where 3” = F - 75G; that is, the * symbol (in analogy to complex conjugation) 

changes the sign of the 75 (which should be explicitly written out #20 ). 

When we multiply out the interaction term - JA, we obtain 

-JA=-(j-jE)(A-G)=-(JA+iti-jQ-LA). (77) 

The scalar part of - JA is -(j s A + i -6) = -j . A - k. M, the same interaction 

terms as in lc, + &. This scalar part, then, comprises what we call the standard 

interaction terms. The cross terms (jG + iA) = (j&f - kA) comprise a sum 

of bivectors and pseudoscalars, and hence do not survive the < >s operation. 

Thus, we see that, in fact, J = lc, + Jc,. 

In order to utilize these cross terms, something new is necessary. We observe 

that the pseudoscalar piece of JA cannot be used to obtain suitable equations of 

motion because Sp has no corresponding pseudoscalar piece. #21 Thus, we have 

to look for a way to obtain scalars from the cross terms. As indicated in Sec. 2a, 

this is possible by using a surface integral formulation #22 in Dirac algebra. 

#20 Actually, the * symbol as it is employed here should be viewed as a notational convenience 
rather than as a rigorous operator of Dirac algebra. 

#21 Since the Lagrangian of Ref. [7] specifically includes pseudoscalar pieces, it is not appro- 
priate to use for the derivation of the equations of motion for electrically and magneti- 
cally charged particles. Even dropping the pseudoscalar pieces will not yield a suitable 
Lagrangian because of the requirement of dyality invariance. See Footnote #25. 

#22 This option was precluded in Ref. [4] by maintaining the definition of the action in terms 
of a path integral. 
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To see how this might be done, it is instructive to write a sequence of equiv- 

alent expressions in Dirac algebra #23 for the variation in the action associated 

with the standard interaction terms: 

&SI, =-t dz.(eA+gM) = i 
f J 

(da-d).(eA+gM) 

ar\(eA+gM) =a 
I s 

< daa(eA + gM) >S . 

We can see that the penultimate expression in Eq. (78) is equal to 

f 
J 

da-(eF+gG) = --& 
J 

do~“(eFpv+g’Gp,), 

which, using Eq. (19)) can be converted to path integral form: 

+ -1 
C J 

* (eFp, + gGllv)dzVGzp, 

a 

P) 

(79) 

(80) 

the appropriate term to combine with &Sp to obtain the Euler-Lagrange equa- 

tions of motion for electrically and magnetically charged particles-but without 

the cross terms. 

Using Eq. (77)) the cross terms (in their appropriate form) can be consistently 

entered with the standard terms into the final expression in Eq. (78): 

J < daa(eA + gM - eit?i + gi) >s . (81) 

The cross term contribution to the variation in the action is 

#23 To be consistent with our tensor expansions, a minus sign is included in the boundary 
theorem[8] in going in Dirac algebra from the path integral (a Dirac vector product) to the 
surface integral (a Dirac bivector product). That this is appropriate is verified by the fact 
that Eq. (80) yields the correct result for the standard interaction terms. 
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&SIC = $ 
J 

< dc+& - g&i) >s . (82) 

Taking the scalar part, Eq. (82) becomes 

&SI, = $ / da. (ea. it% - gd -2) = f / da. (ee - gf’). (83) 

In tensor notation the final expression in Eq. (83) is equal to 

where we have again used Eq. (19). The &SI, given in path integral form by Eq. 

(84) combines with the &Sls of Eq. (80) and S,Sp to yield the correct equations 

of motion, Eqs. (65) and (66). 

We observe that (in the absence of magnetic charges) the usual least-action 

formulation for &SI - &e i A,dxp or - e s FPydc+’ places a condition upon the 

(derivatives of the) vector lotential A, along the path of the electrically charged 

particle. This condition is such that E along the path accelerates an electric 

charge and H across the path deflects it, in accordance with Eq. (63). The cross 

term - e J ~Pydo~y consistently combines the magnetoelectric field into this 

relationship with E’ adding to E and H’ adding to H, in accordance with Eq. 

(65). However, in the case of e J ~P,do~u, the condition upon the (derivatives 

of the) vector potential MP differs from that placed upon A,; using the surface 

integral formulation, the relationship of MP to path geometry is “inverted.” The 

75 effects this inversion (in Dirac algebra) by performing an exchange (analogous 

to dyality exchange) of the roles of the dxV and the 6xj‘ in the (equivalent) path 

integral form for the cross interaction. 

By the same token, for the cross term - g J jPydapv, the relationship of the 

electromagnetic potential A, to path geometry is inverted. As a consequence, as 
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is required for an electromagnetic field acting on a magnetic charge, H along the 

path accelerates the monopole and E across the path deflects it. And ? combines 

with G in the appropriate way, as given by Eq. (66). 

It is now necessary to go back and see if there is a contribution of the cross 

terms in the action associated with variations in 6A and 6M; these variations 

were used to obtain Maxwell’s equations (from the standard interaction terms). 

Whereas the standard interaction terms make a nonzero contribution to the ac- 

tion prior to the variational procedure, the cross terms do not; this is true either 

when one takes the pseudoscalar piece of the entire action integral, as in Eq. (71), 

or when one takes the scalar part of the Lagrangian density only, as in Eq. (72). 

(Recall that < jG + iA >s= 0.) A n since in the surface integral formulation, d 

prior to the variational procedure, we have a null surface area (6xp = 0), we 

conclude that in any case 

. 

s,, = 0. (85) 

It also follows from these considerations that whatever form we choose for the 

cross terms, these cross terms have null coefficients in the relationships ensuing 

from the variations of SA and 6M. That is, while 6,SrC # 0, as given by Eq. 

(84)) we have at the same time 

bAsIc = &i&& = 0, (86) 

and the inclusion of the cross terms in the action integral does not impair the 

original derivation of the symmetrized Maxwell’s equations. Thus, by using Dirac 

algebra and the surface integral form for SI,, we have found a Lagrangian for- 

mulation that unifies electromagnetism and magnetoelectricity. 

e. Symmetric Stress Tensor 

In source-free regions the source terms in Maxwell’s equation are null, and 

24 



one may write for such regions 

tlF=O, (87) 

which is equivalent to 

FLO, (88) 

where the over-arrow denotes the reversion operator, reversing the order of the 

7 vectors. Thus, ‘F = -F and % = a; in the latter case, the arrow also dictates 

differentiating to the left rather than to the right. 

Using Eqs. (87) and (88), one can construct (still for a source-free region) ’ 
the quadratic form 

The Dirac vector (actually, four Dirac vectors labeled by cl), 

(89) 

(90) 

has been called the stress-energy vector[81 and can be used to define an energy- 

momentum tensor,[301 

a symmetric 4-by-4 matrix of Dirac scalers. Using the rules of Dirac algebra, it 

is straightforward to demonstrate that 

(92) 

where W” is the usual symmetric stress tensor[31] of electromagnetism. In a 
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source-free region, Sp” is conserved.[8] That is, 

d,P~ = d&y” * SP) = a . p = 0, (93) 

or, equivalently, 

d,P = 0. (94) 

When sources are present, Eq. (45) replaces Eq. (87) in the construction of 

the quadratic form of Eq. (89), and Eq. (94) becomes 

f3,P = ~j.Ji’=-~$‘.j. 

When one incorporates monopoles into this analysis, Eq. (57) replaces Eq. (45), 

in which case Eqs. (90) and (95) generalize in a straightforward way to 

and 

a,sdJ*.~+.J, 
C (97) 

respectively. Equation (97) justifies the generalized Lorentz force vector density 

given in Eq. (68). 
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4. Invariance Relationships and All That 

a. Gauge Invariance 

It is well known that the field tensor F is invariant under the gauge transfor- 

mation 

A-,A’=A+ax, (98) 

where x is a scalar. This is easily verified using Dirac algebra: 

F4”=ar\A’=dA(A+d~)=F+c?r\&=F; (99) 

the (antisymmetric) wedge product of a vector with itself is zero.18] To maintain 

the Lorentz condition for A’, x must satisfy d2x = 0. Analogous results hold for 

G and M, under the gauge transformation 

M+M’=M+t-U, (100) 

where X is a scalar obeying a2X = 0. 

Now the term j . A in the Lagrangian is not gauge invariant as it stands, 

but the contribution of ax to the variation in action &?I, is null. This is easily 

seen when one goes back to Eq. (18) and writes for --e f dx . A’ the equivalent 

expression from Eq. (78) : 

e 
s 

< dadA’ >s= e 1 J =e da - (~3 A A + d A 3~). (101) 

. Again, the a Aax = 0 drops out, leaving the action integral gauge invariant. This 

result is routine for classical electrodynamics[32l and, of course, holds in similar 

fashion for the standard magnetoelectric term because a A dX = 0. 
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In analogous fashion, one can also verify that S,SI~ is gauge invariant. We 

write for the cross term involving g and A’, 

9 J < da&i’ >s= g 
/ 

< do&i + 75~94 >s= g 
J [ 

do- 3 - (i+r5&) . (102) 1 
The extra term here, 

g/dc+-(7,ax)] = -g/dof(aq,x)] = -g/do.[(BAil).7sx] =O, (103) 

again because a A a = 0. Similarly, the cross term involving e and &’ will be 

gauge invariant under the transformation given by Eq. (100). Thus, we see that 

the unified electromagnetism developed in this paper satisfies gauge invariance 

under the transformations defined by Eqs. (98) and (100). 

b. Dyality Exchange Relations and Dyality Rotations 

It is well known that the symmetrized set of Maxwell’s equations (in vector 

form) are invariant under the dyality exchange relations:[331 

E-AH, H-q=E, (104 

and 

(105) 

Partitioning the electric and magnetic fields into those associated with (pc, j) 

and those associated with (oc, k), as is done in Sec. 2, leads to no difficulty with 

the concept of dyality exchange relations. For example, Eq. (104) becomes 

(E+E’)-+f(H+H’), (H+H’)+T(E+E’). 006) 

More specifically, (the electric) Coulomb field interchanges with (the magnetic) 

Coulomb field, and (the electrically generated) solenoidal field interchanges with 
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(the magnetically generated) solenoidal field. That is, 

E+fH’, H’-+r.E, andH+FE’,E’--+fH. (107) 

Similarly, by extension, one obtains 

(108) 

The partitioning given in Eqs. (107) and (108) logically accompanies the source 

exchange relations of Eq. (105). 

Specifying the upper signs as the (arbitrary) convention for this paper leads 

to Eq. (21). This specification leads for the field tensors to the dyality exchange 

relation: F + G, G + -F. Thus, we see that when separate field tensors are 

used for electromagnetism and magnetoelectricity, a distinction needs to be made 

between the mathematical definition of the tensor dual, e.g., Eq. (6), and the 

dyality exchange relations for Maxwell’s equations; though closely related, these 

two concepts are not identical. [Also, see Eqs. (114) and (115).] 

Rainich ~41 in 1925 pointed out that one can describe by an arbitrary angle a 

continuous symmetry between electric and magnetic quantities. This symmetry 

generalizes the concept of dyality exchange relations. Following Rainich, we can 

define (for the partitioned fields) “rotated” electric and magnetic quantities: 

ER = EcosO + H’sin8, 

HIR = -Esin8 + H’cos8 
(109) 

for the Coulomb fields; 

EIR = E’ cos 8 -I- H sin 8, 

HR = -E’sin0 + Hcos8 

for the solenoidal fields; and 

pR = pcose + osin8, 

OR = -p&r8 + acose (111) 

for the sources. When one collects all the rotated terms (which relate to a newly 
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chosen reference direction in the electromagnetic charge plane), one again obtains 

a set of symmetrized Maxwell’s equations, but this time in terms of the rotated 

quantities. A dyality rotation of 8 = ~7r/2, then, generates the dyality exchange 

relations, Eqs. (107) and (105). Partitioning the fields into electrically generated 

quantities and magnetically generated quantities entails no difficulties.#24 One 

just rotates the Coulomb and solenoidal fields separately as a generalization of 

Eq. (107). 

It is straightforward to incorporate the concept of dyality rotations into the 

Dirac algebraic Maxwell’s equations. These rotations, inducedi by e7se, are 

j -+ 3 *R = e7sej (112) 

for vectors (and trivectors) and 

F + FR = e-rseF (113) 

for bivectors. The origin of the minus sign in Eq. (113) stems from the fact 

that 7~7~ = -rp75, which can be seen to operate, for example, in Eq. (55). In 

general, then, one writes 

5 J+ JR=e750J (114 

and 

3 --b 3R = e-7503 . (115) 

It is obvious that the generalized Eqs. (57), (61), (62), and (68) are invariant 

.- under an arbitrary dyality rotation as defined by Eqs. (114) and (115). Similarly, 

#24 On this point one also notes that Lorents transformations do not mix electromagnetic and 
magnetoelectric quantities. 
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it is straightforward to demonstrate that L: of Eq. (76) is dyality invariant: 

1 * lR = $ < (e-75e3)*(e-75e3) >s -f < (e75’J)(e75’A) >s= Lc. (116) 

(The bivector and pseudoscalar parts of 3*3 and JA are dyality invariant as well 

as the scalar part.)#25 Likewise, Eqs. (96) and (97) are dyality invariant. In 

short, all of the unified electromagnetic theory developed in this paper is dyality 

invariant under arbitrary dyality rotations. 

c. Parity Violation 

It was observed long ago that when one incorporates ‘magnetic monopoles 

into electromagnetism, there is difficulty with parity conservation.l35] The usual 

approach to the resolution of this difficulty is to assert that magnetic charge is 

pseudoscalar and electric charge is scalar[35-361 (or vice versa). This approach 

finds its basis in an assumption about the generalized electromagnetic field. It is 

assumed, for example, that the external magnetic dipole field made by a north 

pole and a south pole at some (small) separation should be indistinguishable 

from a dipole due to the circulation of electric charge.#26 By this assumption, 

while the components of the generalized electromagnetic field tensor will behave 

in the same way under the parity reflection operator as do those of the “electric” 

electromagnetic field, for consistency electric and magnetic charge must have op- 

posite parity. But, following the ideas behind the the analysis in this paper, if 

the generalized electromagnetic field partitions into electromagnetic and mag- 

netoelectric parts physically as well as mathematically, then the basis for this 

#25 We note here that neither of the two terms in the Lagrangian of Ref. [7] (which in our 

notation would be written as < 33 >s,p and < TA >s,p, where <>s,p means keep 
both the scalar and pseudoscalar parts of the geometric products) is invariant under dyality 

exchange. For example, TA = ?A =+ (e75’J)*(e7sBA) = ee2’@J*A # YA. Hence, that 
c Lagrangian cannot be used to derive consistent equations of motion for electrically and 

magnetically charged particles. 
#26 It is recognized, of course, that on the scale of the configuration of the sources of the dipole 

fields, there are structural differences in the magnetic dipole due to magnetic charges and 
the one due to electric currents.l37l 
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assumption does not obtain, and one can take a different approach. That is, 

instead of assuming that the place to connect electromagnetism to magnetoelec- 

tricity is the field tensor (identical properties of F and c under parity reflection), 

one can assume that the junction of electricity and magnetism should be at the 

source#27 (identical properties of j and k under parity). We pursue the latter 

view here. 

The dyality invariance of the unified electromagnetic theory developed above 

offers support for this view. If any given charge (where, for the sake of argument, 

we presume that both types exist) can be viewed as electric or magnetic or, in 

fact, a mixture of both, depending upon one’s choice of the dyality angle, is it 

not reasonable to suppose that electric and magnetic charge are really different 

manifestations of the same essence? #28 If this be the case, then it follows that 

electric and magnetic charge would both be scalar (or both pseudoscalar). 

Joining electricity to magnetism at the source leads to the following charac- 

terization with respect to parity reflection: 

scalars : e, g, 4, II, 

polar vectors : j,k, E, H’, A, M 

axial vectors : H, E’. 
(117) 

With this construction, in the presence of both electric and magnetic charge, 

the (unified) electromagnetic field 3 and energy-momentum tensor Sp” would be 

objects of mixed parity, inconsistent with the usual assumption. Of course, when 

#27 The question of which entity is primary, source or field, was raised by Misner, Thorne, and 
Wheeler,[38] who left the issue unresolved. 

#28 The mathematical situation is paradoxical even if physically, there would be only one kind 
of charge (electric, say). One can, by a dyality rotation of B = &r/2 go from a description of 
electromagnetism in an electric world to one of magnetoelectricity in a magnetic world. But 

F since the underlying physical situation is the same in both cases, why should there be a shift 
in the parity? The problem is that there is no natural way to relate the discrete operation, 
parity reflection, to the continuous variable, dyality angle. This difficulty is avoidable by 
defining the parity of electric and magnetic charge to be the same in the first place. A 
similar model has been proposed by Tevikyan.[3g] 
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there are no magnetic charges, G = 0, and 3 = F and Sp” = WV will have the 

usual parity assignments, and there will be no parity violation. 

d. Stationary Action Integral 

The symmetrized Maxwell’s equations, as well as the equations of motion of 

electrically and magnetically charged particles, are derived above by the least 

action principle in a formalism of unified electromagnetism. In the past, it is this 

latter derivation that has been problematical. In our derivation, many of the 

difficulties are resolved, once we recognize that 6xp is an infinitesimal function. 

For the mathematical procedure to be valid, 6xp must be (small enough) 

such that only the first term in the Taylor’s expansion of the potentials (not 

counting the self-potentials) along the path from a to b is significant. This first 

term, of course, is the field tensor, which, as a consequence of the Euler-Lagrange 

equations, enters as a factor in the Lorentz force. For the standard interaction, 

for the Lorentz force on an electric charge the relevant term is the 2 i FpudxuGx~ 
a 

b 
of Eq. (10); for the cross term it is the 2 J &pydxubx~ of Eq. (84). Both are 

a 
linear in 6xp. 

If one is considering point particles, by inspection it is clear that 6xp can be 

kept sufficiently small (The displaced path must be much closer to the equilib- 

rium path than is any [other] charge.), and the derivation goes through, provided 

that two particles never occupy the same point in space-time. Since the prac- 

tical possibility of point particles colliding is infinitesimal, we argue (as does 

Rohrlich[4]) that this should not be viewed as a serious difficulty. If one is still 

concerned about exact, head-on collisions, then the resolution must be found by 

going to such a small scale that the particles are no longer points but (smoothly) 

i distributed in space. 

If currents can be viewed as smoothly distributed, the derivation still goes 

through (but not by inspection). The argument is best made using the surface 
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integral form for the relevant terms in the action integral and following the path 

of a point particle #2g under the influence of fields from a smoothly distributed 

source. In keeping with the spirit of the infinitesimal 6x“, one must still limit 

the excursion of the (arbitrary) surfaces of the surface integral such that only 

the first term of the Taylor’s expansion of the potential is relevant. But with an 

external current density in the locality of the equilibrium path, the equivalence 

of alternative choices for a surface becomes questionable. Whereas with the 

fields from point particles we could declare as illegitimate any displaced path 

or spanning surface that came too close to a passing charge (6xp could still be 

arbitrary, but small), it is conceivable that in the case of distributed currents, the 

equilibrium path of the charge we are following could pass right through another 

current distribution. This situation represents the head-on collision referred to 

above. In this case, the volume enclosed by two arbitrary surfaces spanning the 

same loop defined by the equilibrium path and a given 6xp cannot be rendered 

devoid of charge, no matter how small (a nonzero) 6xp. 

For the standard interaction terms, the arbitrariness of the surface in the 

presence of a charge distribution near the equilibrium path is not a problem. To 

see this, we first convert the path integral to the surface integral 2 J dc+‘Fpu 

as indicated by Eq. (18). Since we wish to know if this integral is a function of 

the placement of the arbitrary (infinitesimal) surface, we take the difference of 

two such surface integrals. But this is just the integral over the total surface 0 of 

the enclosed 3-volume w. Now this (total) surface integral is equal to the volume 

integral of a divergence: WI 

th where dw, is the increment of the p 3-volume in Minkowski space-time. But 

-;I by Eq. (7), du$~u = 0, and the derivation is independent of the placement of 

#29 One could be more general and consider the world line of an increment of charge, but this 
extra complication is not necessary at this juncture. 
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the surface chosen to span the loop. Any charge distribution that may be in 

the vicinity of the equilibrium path makes no (direct) contribution to the Euler- 

Lagrange equations of motion (via the standard interaction terms). 

However, following a cross term through this same sequence leads to 

-e 
zc / 

d~-CL”+, = - : 
C s 

&+&G~” = ?j! 
J 

dwpk’L. (119) 

While there is now a possible difficulty because k“ # 0, we must remember 

that (by assumption) kp is finite and well behaved. This fact is crucial because, 

owing to the sliver-like nature of the volumes enclosed by two arbitrary surfaces 

spanning the closed loop, dwP is second order in 6xp; in analogy to dc?’ - 

dx”6xp, we have dw, - ~pupadxuGxf’c5xa. Th’ 1s means that the term given by Eq. 

(119), proportional to kp, is second order in the infinitesimal displacements 6x11 

and can be neglected relative to the CPU term given by Eq. (84), which is linear in 

6x11. Again, any charge distribution that may be in the vicinity of the equilibrium 

path makes no (direct, first order) contribution to the Euler-Lagrange equations 

of motion. We have made no additional restrictions on 6xp; it is still arbitrary, 

but suitably small. 

This result shows that the derivation of the equations of motion for the elec- 

tric and magnetic charges is not only unrestricted by any kinematic conditions, 

but that, in fact, the derivation of these equations remains valid even when two 

particles collide head-on, provided that at some small scale the particles can be 

viewed as having smoothly distributed non-singular charge distributions. #3o In 

addition, because in this derivation the (direct) cross terms proportional to cur- 

rent density can be neglected, no relationship or restrictions between electric and 

magnetic charge evolves from the derivation. (It is indicated below, however, that 

for bound states involving both electric and magnetic charge, quantum mechan- 

‘r- ical considerations will lead to a version of the Dirac quantization condition.) 

#3O Viewing particles on a scale at which they are no longer points also resolves the problem 
that the angular momentum proportional to eg will flip sign in a head-on charge-monopole 
collision. See R. A. Brandt and J. R. Primack, Ref. [5]. 
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5. Summary and Discussion 

The formulation of a generalized electromagnetism that includes both elec- 

tric and magnetic charge is explored in the framework of Dirac algebra. Initially, 

using the two-potential approach of Cabibbo and Ferrari, the formulations of 

electromagnetism, associated with electric sources jp, and magnetoelectricity, 

associated with magnetic sources kp, are developed separately. The use of two 

potentials, of course, obviates the need for singular strings. These two formula- 

tions are then adjoined to yield the usual symmetrized set of Maxwell’s equations, 

which in Dirac algebra is but one compact equation. In order to set this expo- 

sition in context, a detailed comparison is made with the corresponding tensor 

formulation. While certain aspects of this part of the analysis are facilitated by 

the use of Dirac algebra, in comparing the Dirac and tensor formulations, it can 

be seen that the use of Dirac algebra is thus far not essential. 

It is then shown that it is possible to write an action integral from which one 

can derive by Hamilton’s principle not only the symmetrized set of Maxwell’s 

equations but also the equations of motion for both electrically and magnetically 

charged particles. Obtaining from an action principle proper equations of motion 

for both electric and magnetic particles unifies the electromagnetic and magne- 

toelectric formalisms. It is seen that there are no kinematic restrictions on the 

validity of the derivation of the equations of motion of the charged particles or 

current distributions, and no relationship between electric and magnetic charge 
obtains. 

This derivation is made possible by employing a surface integral form for 

the contribution of the cross interaction terms to the action. Since the surface 

integral has an equivalent path integral form, the contribution of the potential 

in both the standard interaction terms and the cross interaction terms is local in 

3 nature. The proofs that a satisfactory Lagrangian does not exist141 do not apply _- 
because a surface integral is not of the usual form assumed for the cross terms. 

It is pointed out that a satisfactory (variation of the) action integral must be 
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scalar in nature. The motivation to use a surface integral, then, derives from the 

need to accommodate the presence of 75, the pseudoscalar of the Dirac algebra, 

which appears in a natural way in the right places (and with the correct sign) in 

the cross terms of the generalized interaction Lagrangian. It is in this unification 

that the use of Dirac algebra is essential; it is the more general geometric product 

of Clifford algebra that enables a uniform treatment of the standard and the 

cross interaction terms (but only in the context of the surface integral). The 

surface integral form enables one to obtain Dirac scalars from the cross terms 

because it has two additional vectors entering into the geometric products; one 

vector is the a, the other comes from the incremental (bivector) surface element. 

The consistent unification of electromagnetism and magnetoelectricity is achieved 

only by forming inside of the <>s operator the geometric products of the vectors 

of the surface integral times the generalized electromagnetic quantities; this fact 

implies an intrinsic relationship between electromagnetism and the properties of 

Although the set of symmetrized Maxwell’s equations and the equations of 

motion for electric and magnetic charges obtained above are those that have 

been used since the turn of the century, a different perspective of the unification 

is offered. This perspective leads to the suggestion that electric and magnetic 

charge are different manifestations of the same essence, and therefore would have 

the same behavior under the parity operation. This has the consequence that the 

generalized field quantities such as 3 and SpV would be objects of mixed parity. 

That a generalized electromagnetic theory should lead to objects that are not 

eigenstates of parity is actually not such a radical notion. First, Eq. (117) is just 

a different manifestation of the long-recognized fact that the coexistence (which 

cannot be eliminated by a dyality rotation) of electric and magnetic charge must 

involve some form of parity violation. And second, Nature is known to commonly 
F 

#31 Also using Dirac algebra, but based on somewhat different reasoning, Salingaros1411 likewise 
supports the view that there must be an intrinsic relationship between electromagnetism 
and space-time. 
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provide objects that are not eigenstates of parity, e.g., the left-handed neutrino. 

On this latter point, if electromagnetism is indeed the fundamental interaction 

of physics,l42l then the mutual interaction of magnetic and electric charge in the 

dynamical construction of the elementary particles could lead in a natural way to 

the parity violation observed in weak interactions. #32 Neutrinos would not be 

defined ab initio as two-component objects,#33 but the experimental fact that 

they are always observed as two-component objects would instead derive from 

the underlying physics. 

The notion that the field bivector 3 can be partitioned into electromag- 

netic and magnetoelectric parts implies that these parts are physically as well as 

mathematically distinguishable, i.e., F and G are distinguishable. This is not a 

problem as long as there is a source current J to associate (directly) with the field 

3. However, there is a problem in the case of free fields. Once radiated, the free 

field has no source to indicate the appropriate partitioning of 3, which step is an 

integral part of this analysis. Of course, we could assume that the free F and G 

fields are intrinsically distinguishable and that each represents a legitimate free 

field solution of the electromagnetic and magnetoelectric Maxwell’s equations, 

respectively. We thus arrive at the classical analogue of the two-photon question 

of quantum electrodynamics (when one employs two potentials) and the reason 

that free fields were not covered in this analysis. 

Rather than addressing this problem by imposing the “zero field conditions,” I31 

which do not appear to be intrinsic to the formalism, we leave it as an open ques- 

tion for further study. In this context, the reasoning that led to the notion of a 

#32 In this context, one might even go so far as to argue that parity violation is evidence for 
magnetic charge. 

#33 Expositions of the Standard Model (e.g. Ref. [43], which p rovides earlier references) gener- 
ally (and reasonably) justify the assumption that neutrinos are two-component objects by 

i 
: noting that experimentally this is how they always are observed. But in this regard, the 

Standard Model must be characterized as descriptive rather than as explanatory. Of course, 
since the descriptive success of the Standard Model is so good, any theory that purports to 
explain this physics on some other basis must be shown to reduce to the Standard Model 
in some approximation. 
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distinguishable F and G has its genesis in the continuous dyality symmetry char- 

acterizing the classical equations of unified electrodynamics; nevertheless, from 

experiment one knows that dyality symmetry is broken: electrons are observed, 

but not “magnetons” ; one photon is observed, not two. That Nature should 

be characterized by a spontaneously broken dyality symmetry, as seems quite 

probable, implies that quantum mechanics, which can better describe electrons, 

photons, and their interactions, will be an essential ingredient in the further 

study; the path integral formalism of Feynman1441 seems particularly well suited 

to this purpose. 

One final comment. While the (classical) analysis in this paper does not 

reveal any general connection between electric and magnetic charge, one should 

not conclude#34 that we have’ lost Dirac’s incisive insight: the existence of 

magnetic charge could account for the quantization of electric charge.1’1 In this 

connection a distinction should be made between scattering or non-stationary 

states and bound or stationary states. It is evident that using the gauge invariant 

action from this paper in a quantum mechanical phase factor e “Ilfi for a particle 

wavefunction will lead to the appropriate Aharonov-Bohm interference effectsl46l 

for non-stationary or scattering states, including magnetic charge. In similar 

fashion, if one views a bound state wavefunction to be a stationary Aharonov- 

Bohm interference pattern resulting from a suitable summation of all possible 

orbits (or Feynman paths), then one can obtain an integral (approximation) of 

the form of Eq. (84) in which the equivalent of 6sp will have spatial components 

comparable to the size of the bound state. In this situation, the 3-volume wc of 

the (ensuing) equivalent of Eq. (119) comprises the volume of the bound state 

(orbits). Generalizing to a bound state of two particles of electric and magnetic 

charges er , gr and ez, gz, respectively, the appropriate self-consistency condition 
i 

#34 It has been asserted that the two-potential approach entails the loss of Dirac’s quantization 
that we have lost Dirac’s incisive insight: condition.[20y45] 
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for the phase of particle 1 is AL$) = 27r&, where#35 

For point particles,#36 the result is 

w2 - e2gl = nf42, (121) 

the appropriate generalization of the Dirac quantization condition. #37 The same 

considerations for A,?c2) Ic lead to the same equation, Eq. (121), for the relationship 

between the charges of the two particles. 

#35 Though the underlying physics arguments differ from those of Cabibbo and Ferrari,131 
Eqs. (120) and (121) are the same as theirs, but with the generalization to particles of 
dual charge. 

#36 To the extent that the individual particle sizes are significant relative to the bound state size, 
it appears that a correction factor will be necessary in Eq. (121) to account for finite-sized 
(and possibly overlapping) distributions. An estimate for this correction can be made by 
using the semiclassical angular momentum argument of Saha14’l and Wilson;[48] Eq. (121) 
would read < cos6’ > (erg2 - e2gr) = &c/2, where 0 is the angle between a unit vector 
along a line joining incrementals of charge and a unit vector along the axis of (cylindrical) 

i 
symmetry, and < cos 0 > is the average value of cos B as determined by the charge den- 
sity distributions as weighting factors. : In principle, if the physics were known, a proper 
calculation could be made using the Feynman path integral formalism. 

#3i’ One recalls that Schwingerl 4gl obtained the quantization condition eigz - e2gi = nhc for 
objects of dual charge; Zwanzigeri 5ol obtained that same result using group theoretical 
considerations. 
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FIGURE CAPTION 

1. Depiction of the geometry of the action integrals associated with the in- 

teraction terms of the Lagrangian. Only the three spatial dimensions are 

indicated; the time variation along the path is given by xp = xh(r). A typ- 

ical point S?(T) on the equilibrium path (the heavier line) is shown. The 

path integral of Eq. (8) g oes from point u to point b along the equilib- 

rium path (in the direction opposite to the arrows). The integral around 

the closed loop, Eq. (17)) associated with the variation of the action (of 

the interaction terms) goes in the direction indicated by the arrows along 

the displaced path (the lighter line) and back along the equilibrium path. 

As indicated, the displaced path is an arbitrary, infinitesimal distance 6xp 

from the equilibrium path. The surface integral of Eq. (18) is over a surface 

that spans the closed loop, i.e. the integration path, of Eq. (17). 
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