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ABSTRACT 

String models of unified interactions are elegant sets of Feynman 
rules for the scattering of gravitons, gauge bosons, and a host of massive 
excitations. The purpose of these lectures is to describe progress towards a 
nonperturbative formulation of the theory. Such a formulation should make 
the geometrical meaning of string theory manifest and explain the many 
“miracles” exhibited by the string Feynman rules. As yet only partial suc- 
cess has been achieved in realizing this goal. Most of the material presented 
here already appears in the published literature but there are some new re- 
sults on gauge invariant observables, on the cosmological constant, and on 
the symmetries of interacting string field theory. 

1. INTRODUCTION (WITH APOLOGIES TO E. AMBLER)“’ 

A Frenchman named Chamfort, who should have known better, once said 
that chance was a nickname for Providence. 

It is one of those convenient, question begging aphorisms coined to dis- 
credit the unpleasant truth that chance plays an important, if not predominant, 
part in human affairs. Yet it was not entirely inexcusable. Chance does oc- 
casionally operate with a sort of fumbling coherence readily mistakable for the 
workings of a self conscious Providence. 

The history of the string model is an example of this. The fact that an S 
matrix theorist like Veneziano [” should discover the key to the quantum theory 
of gravity by looking for solutions of hadronic finite energy sum rules is alone 
grotesque. That Wess and Zumino’s’ should discover spacetime supersymme- 
try by generalizing the two dimensional supersymmetry of the Neveu-Schwarz- 
Ramond model, that Schwarz and Green”’ should spend years they could ill 
afford probing into the shadowy structure of the superstring, that the theory 
of Everything should be discovered because Harvey”’ and Thierry-Miegi6’ no- 
ticed an odd identity for Casimir operators . . . these facts are breathtaking in 
their absurdity. 

*Work supported by the Department of Energy, contract DE-AC03-76SF00515. 

Invited lecture series given at the Spring School on Supersymmetry, 
Supergravity and Superstrings, Trieste, Italy, April 7-15, 1986 



Yet, when these events are seen side by side with the other facts in the 
case”’ it is difficult not to become lost in superstitious awe. Their very absurdity 
seems to prohibit the use of the words “chance” and “coincidence”. For the 
sceptic there remains only one consolation: if there should be such a thing as 
superhuman Law, it is administered with subhuman efficiency. The choice of 
the dual model of hadrons as an instrument for revealing the superstring to the 
world could have been made only by an idiot. 

More than most physical theories then, the string model cries out for 
an ahistorical presentation which starts from simple and deep physical principles 
and derives the dual amplitudes in a logical manner. My attempt to present such 
a description of string theories will be hampered by the fact that a true Theory 
of Strings does not yet exist. I will therefore begin with a brief exposition of the 
most coherent description of string theory now available; the covariant Feynman 
rules for string perturbation theory. I will then describe the framework within 
which all current attempts to derive these rules are based: gauge invariant func- 
tional field theory (GIFFT) I am not at all sure that the ultimate description of 
string theory will fall within this framework. Nonetheless, I believe that GIFFT 
is a correct description of string theories which is based on conceptually simple 
generalizations of things that we know. Even if it turns out to be a bit clumsy 
(as it seems at present) it appears to be the likeliest avenue of access to a more 
satisfying description of strings. 

There has been an explosion of interest in string field theory this year. I 
have been unable to refer to every paper on the subject in the text. Reference 49 
is a long (but probably still incomplete) list of papers on string field theory. The 
approach to string field theory presented here is a combination of ideas developed 
in collaboration with Michael Peskin and Christian Preitschopf and the elegant 
formalism invented by Ed Witten. I would like to thank them and Dan Friedan 
and Emil Martinet for numerous conversations about string theory. Finally, I 
would like to remind the reader that the initial development of covariant string 
field theory was solely due to Warren Siegel (ref. 18). His papers have been a 
continuing source of inspiration for myself and my collaborators. 

2. STRINGY FEYNMAN RULES 

In ordinary field theory, the perturbation expansion may be expressed in 
terms of path integrals for a single spacetime degree of freedom zp(~), which 
propagates with the standard action of a relativistic particle. The propagation 
may be visualized as taking place on a net in spacetime whose topological proper- 
ties depend on the field theory Lagrangian and the order of perturbation theory. 
The endless series of possibilities for the topology of such a net is responsible for 
the complexity of higher order Feynman graphs and at least partially responsible 
for the wide range of possible Lagrangians. 
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If on the other hand we consider a string propagating in space time we see 
a very different picture. The string world sheet is a two dimensional manifold, 
and the simple requirement that it be smooth considerably restricts its topology. 
If the manifold is to represent the propagation of a closed oriented string for 
example, it is completely classified by giving the number of handles and the 
number of boundaries (corresponding to incoming and outgoing strings). This 
leads one to suspect that a perturbation expansion of a theory of interacting 
strings would have only one diagram in each order. This is indeed correct, though 
as we shall see, these unique dual diagrams are related to ordinary Feynman 
diagrams in a manner reminiscent of the relation between the latter and the 
diagrams of old fashioned time ordered perturbation theory. 

At the present time, the only complete derivation of the dual Feynman 
rules which I am about to present is in the so called light cone gauge. A theory 
of interacting strings is constructed in infinite momentum frame Hamiltonian 
formalism. The perturbation series for this Hamiltonian is worked out and then 
one sees how to add up the various terms in a given order to give a single dual 
diagram. To be frank, a complete and rigorous derivation of the dual diagrams 
has only been constructed (including such details as numerical factors) through 
one loop order. Lorentz invariance becomes obvious only at the end of the calcu- 
lation, and other fabulous properties of string models such as duality and general 
coordinate invariance, are not obvious at all. It is tempting to regard the infinite 
momentum frame string theory as a gauge fixed version of a beautiful action 
which manifests all of these wondrous properties at a glance. In later chapters 
we will review the attempts that have been made to realize this dream. 

The string Feynman rules are written in terms of a conformally invariant 
two dimensional field theory, which is also invariant under two dimensional gen- 
eral coordinate transformations. For the expansion around flat ten dimensional 
space this field theory is given by a Lagrangian first written by Brink, DiVecchia, 
Howe, Is’ Deser and Zumino”’ and explored by Polyakov. ‘lo1 

String S matrix elements are given in terms of expectation values of certain gen- 
erally coordinate invariant, conformally invariant operators (called vertex oper- 
ators) in this field theory. This gives us the tree level S matrix. As usual the 
expectation values can be written as Euclidean functional integrals. The fields in 
these functional integrals are defined on the plane, or equivalently, the Riemann 
sphere. L loop corrections to the amplitudes are given by the same functional 
integral on a surface with L handles. (These are the rules for closed oriented 
strings. Open and non-orientable strings have slightly more complicated rules.) 

3 



In order to actually compute these expectation values we have to choose a 
gauge for two dimensional coordinate transformations and Weyl transformations 
and introduce the corresponding Faddeev-Popov ghosts. We also have to make 
sure that there are no anomalies in the classical invariances of the action. This 
restricts the dimension of space time to be 26 for the bosonic string. If we are 
expanding around a curved space time, it also restricts the geometry to be such 
that the corresponding non-linear sigma model has vanishing beta function. It 
has been argued”’ that this restriction is equivalent to the classical equations 
of motion for the string field theory. We will derive the restriction to d=26 in 
another way below. 

The ghosts for local conformal invariance are trivial, they have no kinetic 
energy. Those of two dimensional reparametrizations have a Lagrangian 

The total Lagrangian of the system is 

It is invariant under the Becchi-Rouet-Stora-Tyutin (BRST) transformation: 

6xP = E(dzX + @,x’L) 6b = tz G3,b + c&b + 2&cb + g g 
> 

(2) 

6c = +azc + E&c) (4 

At the level of classical manipulations, the BRST transformation is nilpotent. 
However, this breaks down at the quantum level. The commutation relations for 
the conformal gauge variables of the string are given by (we specialize to open 
strings where 8 and E are fixed in terms of b, c by the boundary conditions) 

x’“(z) = p + ; c ; (af: - accn) (9 + 2”) 
G-0 

b(z) = C Zvnm2bn; 

c(z) = pn+lCn; 

4 



[a:, a;] = n6(n + m)rfv ; [bn, cm]+ = S(n + m) . 

The vacuum state is defined by 

(5) 

&Ifl)=bnIfl)=CnIfl)=O; n>O. (6) 

We will normal order all operators with respect to this state. 

Formally, if Ta are the generators of the residual gauge group of a gauge 
theory: 

[%Tb] = fab”c (7) 

then the BRST generator is given by 

Q = c=(T, + ; Z-ih) (8) 
where Tih(3 cbf,bc &) are the generators of residual gauge transformations 
on the ghosts. Simple manipulations involving the Jacobi identity prove that 
Q2 = 0. 

For the string the residual gauge transformations are the conformal trans- 
formations generated by the Virasoro operators: 

L[L: 
f (;f?) zn+l (c&b + 2(&c)b) : -1 6(n) . 

(9) 

These operators have anomalous commutation laws 

[G, Lz,] = (n - m) G,, + % (n3 - n)6(m + n) 
(10) 

[Lib, Le] = (n - m) Liym - y (n3 - n)s(m + n) . 

The operator Lib which appears in ((9)-(10)) is not normal ordered with respect 
to the vacuum. Rather, its ordering is chosen so that LO, L-1, L1 generates an 
SL(2) subalgebra of the Virasoro algebra. For the Virasoro generators of the xp 
variables, this requirement is equivalent to normal ordering with respect to the 
vacuum. In other words, we normal order the Virasoro generators with respect 
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to an SL(2) invariant state (it is unique). The vacuum defined above is related 
to this SL(2) invariant state by the action of c-1. It therefore satisfies 

F-0 = clp) 
(11) 

(Lo + 1) 10) = 0 . 

The anomalous commutation rules of the L, and the necessity of normal ordering 
the BRST charge, ruin the proof that Q2 = 0. These difficulties cancel when the 
spacetime dimension, d, equals 26. Notice that it is at precisely this point that 
the full conformal generators Ln + Lf‘ have no commutator anomaly. It can be 
proven in general (as long as the ghosts are free fields) that the BRST charge is 
nilpotent if and only if the full commutator anomaly vanishes.“” 

Given a nilpotent BRST charge, string Feynman rules are constructed in 
the following way: we identify a set of local vertex operators whose integrals 
over the world sheet are BRST invariant. These are all dimension two conformal 
fields.[“’ If the spacetime background which defines the conformal field theory 
we are studying has some isometries, the vertex operators can be classified by 
their transformation laws under the isometry group. In particular, if spacetime 
has some flat, Euclidean, dimensions, the vertex operators can be chosen to carry 
fixed energy and momentum. Scattering amplitudes are then defined as the vac- 
uum expectation values of time ordered products of integrated vertex operators 
in the two dimensional conformal field theory. Higher loop corrections are cal- 
culated by expressing the expectation values as Euclidean functional integrals, 
and then performing the same functional integral on world sheets of arbitrary 
topology. 

In order to complete our description of the machinery necessary for con- 
structing these rules we must show how to compute expectation values in the 
theory at hand. The space of states in the BRST invariant theory is a tensor 
product with many factors. Of particular interest is the factor describing the 
ghost zero modes. These are fermionic operators obeying: 

[bo,co]+ = 1 . 

The factor space in which they act is two dimensional. Define the state 1-1) by 

bo I-1) = 0 . 

Then the space is spanned by 

(12) 

11) ; co 11) ’ 
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These states each have zero scalar product with themselves but their over- 
lap is one. The piece of the vacuum In) w ic is in the zero mode factor, is the h h 
state ]I). Th us operators which have nonzero expectation value in this state 
must carry precisely one factor of the zero mode CO. 

It should be emphasized that the general framework for string perturba- 
tion theory presented above is not tied to the flat space backgrounds in which 
string theory is traditionally presented. Any representation of the Virasoro alge- 
bra with appropriate central charge can be the basis for a sensible string pertur- 
bation theory (actually there are further restrictions which appear only at one 
loop). However since we do not yet know very much about the representations 
of the conformal group associated with curved manifolds, practical calculations 
are restricted to generalized toroidal backgrounds. 

Let us now introduce a useful operator: the ghost number g, by 

g - x(b- ncn + c-nbn) + i [CO, bo] 
n>O 

g is antihermitian and takes the values -l/2 and -3/2 respectively on the states 
In) and IO). The ghost number of any other state is determined by noting that 
c(z) carries ghost number 1 and b(z), -1. It follows that [g,Q] = Q. 

The basic equation of the first quantized string theory that we have de- 
scribed is QA = 0. Obviously solutions are determined only up to BRST exact 
forms A = QE. It it thus of interest to determine what the nontrivial BRST 
invariant states look like. This has been determined by Kato and Ogawa.‘121 A 
more rigorous mathematical discussion has been given by Frenkel et. a1.‘13’ The 
methods of these authors are extremely powerful and elegant and should be use- 
ful for further investigations of the subject. The results of both of these groups 
are the following. The only nontrivial solutions of QA = 0 are states of ghost 
number &l/2 and (but only for spacetime momentum equal to zero) f3/2. The 
fact that we get both signs of the ghost number has to do with the ambiguity in 
the choice of the vacuum for the ghost zero mode. We resolve the ambiguity by 
choosing physical states to have ghost number -l/2. The general solution of the 
BRST equation with ghost number -l/2 is 

where n is the ghost vacuum annihilated by bo and \;k is a physical state: 

Lz,xl? = 0; n > 0; (Lo” - l)q = 0 (15) 

Note that the minus one in this equation is determined in the following way. 
We define Lo for any conformal field theory as the commutator of L-1 and L1 
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divided by two. This resolves the normal ordering ambiguity. One then finds 
that Lo annihilates the vacuum in the xp sector while it has eigenvalue -1 on the 
ghost vacuum, n. 

The nontrivial BRST cohomology with nonzero momentum thus consists 
of states of ghost number -l/2 which are in one to one correspondence with the 
physical states of the dual resonance model. The ghost number -3/2 cohomology 
is one dimensional and consists of the state which is invariant under the SL(2) 
subgroup of the conformal group. 

This ends our brief survey of string Feynman rules. In the next chapter 
we will exploit the technology that we have described here to construct a gauge 
invariant, free string field theory. 

3. FIELD THEORY OF OPEN BOSONIC STRINGS 

The basic equation of the first quantized string theory that we described 
in the previous section is the BRST equation 

QA=O. (16) 

The program of string field theory is to derive this equation as the equation of 
motion of a functional action S[A]. Since the solutions of (16) are determined 
only up to a BRST exact form, 6A = Qc, the action we will write down has 
a natural gauge invariance. One may wonder why a similar gauge invariance 
does not arise in the transition from the relativistic particle action to the Klein- 
Gordon equation. In fact it does,[“’ but the gauge transformations are trivial. 
The usual scalar field is a gauge invariant field strength, and since it has a local 
action, there is no need to keep the gauge structure. 

The equation Q=O does not completely determine the class of allowable 
string states. Physical states of the string are BRST invariant equivalence classes 
with ghost number -l/2. Generically they take the form 

Q@!-l L,\E=(LfJ-l)\E=O; n>O (17) 

though there are still some states of the form Qc within this class. An action 
of the form (AIQIA) will obviously have QA = 0 as its equation of motion. 
Furthermore, this action will be nonzero only if the ghost number of A is -l/2. 
Thus we make the natural assumption that: The classical fields of string field 
theory are the states of the first quantized string with ghost number -l/2. The 
action is then 

(AIQIA) (18) 

which is nonvanishing. 
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As promised, this action has the gauge invariance 6A = QE, where E 
is a general state with ghost number -3/2. To understand the content of this 
invariance we expand A, c, and the action as: 

A = 
/ 

ddx{tj(x) - ia!lA,(x) + b-lcot(x) + . . . } In,x) 

E= 
J 

ddx{b-rA(x)In,x)+...}; 5YIn,x)=x~I~,x); J+=+ $ 

- 1 + C [afna{ + n(c-nbn + b-ncn)] 
n>O > 

+ c&d1 + ; c-lbo + . . .) + . . . 

AA=Qc 
Am = 0 
AA,(x) = a,A(x) 
At(x) = +p’A(x) 

s=+ Cp(p2-2)++; 
/ J 

A”plA,,+f/[2fi/cflAP 

--$ $ 
J 

4(p2 - 2)q5 - $ 
J 

(+A, - d,A,)2 

(3.4)a 

(3.4)b 

WC 

Note that the scalar field 4 is a tachyon and is gauge invariant (remember our 
comment about the relativistic particle and the Klein-Gordon equation). The 
string gauge invariance reduces to ordinary Maxwell gauge invariance for the 
massless vector field. At higher levels we find massive spinning fields described 
by Stuecklebergian1’51 gauge invariant Lagrangians. Siegel and Zweibach[“’ have 
conjectured that these Lagrangians can all be obtained by dimensionally reduc- 
ing massless spinning Lagrangians in one higher dimension. They have carried 
out the expansion of the string action through particles of spin five. These ex- 
plicit computations depend of course on the detailed structure of the Lagrangian 
describing single string propagation in flat space time. It should be emphasized 
that nothing else that we will say in these lectures depends on these details. 
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Rather, it involves only the structure of the Virasoro algebra and its supercon- 
formal generalizations. Thus most of our discussion is applicable to the descrip- 
tion of small string fluctuations about an arbitrary background spacetime whose 
associated sigma model is conformally invariant. As mentioned in the previous 
section, these are the classical solutions of string theory.“] 

It is important to point out that the classical gauge invariance of the string 
action depended on the fact that the BRST charge is nilpotent, which is only true 
in 26 dimensions. Classical string theory is not a gauge invariant system in any 
other dimension. There are probably further violations of string gauge invariance 
in string loop amplitudes. Eliminating them further restricts the structure of the 
theory. (There is a good argument, which I will not reproduce here, that all such 
anomalies vanish if the integrands of the loop amplitudes are invariant under 
modular transformations) 

We now have a gauge invariant action which obviously reproduces the 
correct kinematics for the low lying levels of the string. In order to see that it 
gives a complete description of the string spectrum we must somehow fix the 
gauge and show that the quantum mechanics of our system is equivalent to the 
light cone functional field theory of strings invented by Kaku and Kikkawa.[“’ 
In order to show this we will first gauge fix our action to the covariant gauge 
discovered by Siegel.“” Then we will use an argument of Parisi and Sourlas”“’ 
to show that Siegel’s formalism is equivalent to that of Kaku and Kikkawa. A 
direct derivation of the descent to the light cone gauge can be found in Ref. 20. 

The gauge fixing condition for Siegel’s gauge is simply BOA = 0. It is easy 
to see that it is always possible to choose the gauge parameter c so that this 
equation is satisfied. Just expand the BRST operator in powers of the ghost zero 
modes: 

Q=coK+d+6-2b,,#. 

Explicit expressions for the coefficients of CO and bo are: 

U = C : TZCnCen : . 
n 

Nilpotency of Q implies: 

d 

K, 6 
u 

:+c 
n 

(20) 

E nbnc-n E -I 

(21) 

=0 d6+6d=2KU d2=ti2=0. (22) 
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We can also expand the state A and the gauge parameter E as: 

A = 9 + cox 
c = El) + COCl - (23) 

The gauge transformations are then: 

Aa = (d + 6)~~ - 2 4 cl 

Ax = Kc0 - (d + 6)~~ . 
(24 

It is clear that as long as the operator K is invertible we can use EO to eliminate 
x. This is similar to the elimination of the longitudinal components of the vector 
potential in Landau gauge electrodynamics. There is no more off shell gauge 
invariance. Transformations which preserve the condition bA = 0 do not effect 
the Q component, except for states with K = 0. 

The Faddeev-Popov determinant for this gauge fixing condition is the 
determinant of the operator boQ, which is then the operator which appears in 
the Faddeev Popov ghost action. Since Q2 = 0, this operator is singular and the 
ghost action has its own gauge invariance AG = QE, with E an arbitrary state 
of ghost number -5/2. There is no similar gauge invariance for the antighost 
field. The operator bo projects out the piece of the antighost field (which is a 
state of ghost number l/2) that does not contain the operator co, but since this 
projection is completely nondynamical, we do not have to include a Faddeev- 
Popov determinant to compensate for it. The ghost system thus bears some 
resemblance to that encountered in the theory of p-form gauge fields”‘] (there 
are ghosts for ghosts) but is somewhat simpler (there are no hidden ghosts’“’ 
and the ghost counting is trivial). Baulieu and Ouvry”” have shown how to 
introduce extra auxiliary fields to make the analogy with p form gauge fields 
exact. It is not clear that this is useful for studying the interacting theory. 

It is clear that we can gauge fix the ghost system with the same gauge 
condition that we employed for the classical fields. The ghosts of ghosts will be 
bosons, their action is gauge invariant under a transformation identical to that 
of the classical field and the ghost (except that the gauge parameter has ghost 
number -7/2) and the procedure obviously continues indefinitely. The upshot of 
all of this is that our gauge fixed system consists of all states of the Hilbert space 
of string fields and ghosts which are annihilated by the antighost zero mode. The 
only piece of the BRST charge which has non-zero matrix elements between such 
states is the term proportional to K. Our gauge fixed action thus has the form 

(QlcoKI@) ; bo Ia) = o (25) 
which is the action originally proposed by Siegel. 
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We next want to show that Siegel’s action is equivalent to the light cone 
gauge action of Kaku and Kikkawa. It is important to remember that the expan- 
sion coefficients of odd numbers of two dimensional ghost fields in the functional 
field @(x, b, c) are Grassmann variables since they are odd order ghosts in the 
spacetime sense. This rule can be easily remembered, for it is simply the re- 
quirement that the functional field have fixed statistics. This is a remarkable 
connection between spacetime and world sheet statistics. We will see more of it 
when we deal with the superstring. 

Let us assume that we can choose the conformal field theory which defines 
our “matter” representation of the Virasoro algebra so that it is a free field 
theory in two space time dimensions (the two light cone directions) plus an 
operator K_L which only refers to the transverse dimensions. If we think of LO 
as the Hamiltonian of a nonlinear sigma model, we are taking the background 
spacetime metric to be in light cone gauge. The string field theory action now 
takes the form 

fr (p+p-) + Lf‘ - l+ : CC&~, : +Kl] n 
Since 

kc a&] = nJ(n+ m) 

we can write this as: (on E LY;) 

I> 
a . (26) 

(27) 

k (P+P-) + (KL) + x n (a-n& + cm,,& (28) n n 
which has an obvious (Parisi Sourlas) supersymmetry connecting on and cn. Now 
consider an arbitrary “String Green’s Function”, of functional fields which do not 
depend on the ghosts or the longitudinal oscillators 

J da eiS[@]Q(p~,p~,p~,x~(a)) a.. fD(p:,pk,p:xT(o)) . (29) 

Clearly, this will have the same va .ue as the Kaku-Kikkawa Green’s function: 

/ 
d~e’SKK[‘P]~(p:,pl,p:,x:(cr))...9(p:,pk_,p~,~:(a)) 

SKI@] = ( @ $ (P+P-) + (K_L - 1) 
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if 

det(K*+pl)=edet(K~+En(an &+cn &) +p2) . (31) 

Note that integration over the Siegel gauge functional fields gives a superdeter- 
minant because the coefficients of odd numbers of ghost coordinates have Fermi 
statistics. The superdeterminant is given by: 

sdet (Kl+cn(on&+cnc) +p2) 

mdt 
= J t tre 

-t(&+P") tr e-tna&str e-tnc& 1 
0 (32) 
mdt = J t tr e-t(KJ-+P2) (1 - emnt) 

I 
0 

= det(Kl + p2) 

and the equivalence with the Kaku Kikkawa formalism is proven. 

So there we have it. Free string theory is a gauge invariant functional 
field theory and the appearance of gauge bosons and gravitons is no longer a 
mystery. As in any gauge theory, it is interesting to enquire about the gauge 
invariant observables of the theory. This is particularly true for string theories, 
where at present the only sensible quantity one can compute is the S-matrix - an 
unacceptable situation. Indeed, most of the massive states of the string model 
are unstable, and their S-matrix is meaningless (they have widths of order the 
Planck mass). Among the massless states, only neutral ones like the graviton 
have an S-matrix which is free of infrared divergences. In Yang-Mills theory, 
the S-matrix of physical states is derived from gauge invariant Green’s functions. 
Are there analogs of such Green’s functions in string theory? 

The equation of motion QA = 0 is a statement of the vanishing of the 
field strength of our string one form. Let us try to construct a general gauge 
invariant linear functional of A. It has the form < GIA > and is non-zero only if 
G has ghost number l/2. It is gauge invariant only if G is BRST invariant. If G 
is BRST exact, then < GIA > vanishes when A satisfies the equations of motion. 
On the other hand we have seen that the only BRST invariant quantities which 
are not exact are on shell states which satisfy KIG >= 0. This would seem to 
lead to the disappointing conclusion that the only gauge invariant quantities in 
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string theory are on shell. Before despairing however, let us compute the two 
point functions of < GIA > for some simple G’s. We will compute in the Siegel 
gauge and so we might as well take G’s which are proportional to CO. BRST 
invariance then implies 

(d+b)G=l,tG=O (33) 
Simple solutions of this are: 

G = co 
/ 

ddx J(x) If-I, x) 

G = 
I 

ddxJp(x) cot+ In, x) ; VJ, = o . 

The two point function of < GIA > computed in the Siegel gauge is (G I $ I G). 
For the first example, this just gives the two point function of the scalar tachyon 
field while for the second (if we write Jr = c~yx”ayA4~n) we get the two point 
function of the Maxwell field strength tensor. Thus our argument that gauge 
invariant off shell quantities vanish was fallacious. It is analogous to the claim 
that the off shell Green’s function of a scalar field vanishes because any off shell 
source can be written as the Klein-Gordon operator acting on some other func- 
tion. It will be a major challenge to generalize these gauge invariant quantities 
to the interacting theory that we will discuss in the last lecture. 

4. OPEN SUPERSTRINGS 
In the previous section we constructed an elegant gauge invariant action 

for bosonic open string theory. The basic objects from which the action was 
built were differential forms on the Virasoro group, otherwise known as Faddeev- 
Popov ghosts for reparametrizations. In order to repeat our performance for 
the superstring we will have to understand the corresponding ghosts for super- 
reparametrizations. Lack of time (and its conjugate variable, energy) force me 
to forgo a detailed discussion of the reparametrization invariant Lagrangian for 
the first quantized spinning string, its gauge fixing in the superconformal gauge 
and the derivation of the corresponding BRST formalism. I will refer you to the 
excellent discussions of these points in the existing literature”” Thus, as in the 
case of the bosonic string, I will begin by writing down the algebra of residual 
gauge transformations in the superconformal gauge: 

[Ln, Lm] = (n - m)Ln+, + f (n3 - n) S(m + n) 

[La, Fh] = (k n - ti) Fh+, (35) 

[F&F+.&] = 2Lm+h + f (?P - $ spa + ?i) . 
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The dotted indices take on integer values in the so called Ramond sector, and 
half integer values in the Neveu-Schwarz sector. These sectors arise because the 
fermion fields ?,P‘ of the spinning string can satisfy two different sorts of boundary 
conditions on the world sheet. Both sectors are needed in order to construct a 
unitary string theory. The superconformal generators F;, (in the Neveu Schwarz 
sector they are usually denoted G) are built out of odd numbers of fermion fields 
and so carry integer or half integer values of Lo depending on the moding of the 
fermions. The ground state energy (Lo) is zero in the Ramond sector and -l/2 
in the Neveu-Schwarz sector, when we take the ghosts into account. 

We introduce the usual ghosts bn and cn for the Virasoro generators and 
corresponding superghosts 7h and /3h = -&. The ghost fields are 7(z) = 

Czi-‘7h and /3(z) = CZ-:-~/?~. S’ mce we are dealing with a superalgebra, 
the superghosts are commuting variables. The commutation relations between 
ordinary and superghosts are a matter of convention which can be changed by a 
Klein transformation. In[“’ we chose them to anticommute so that they mimic 
the properties of superdifferential forms. However, it appears to be more conve- 
nient to follow the main body of literature on the subject and have superghosts 
and ghosts commute like ordinary fermi and bose fields. 

There are many inequivalent representations of the superghost commuta- 
tion relations. This is true for all Bose systems, but usually a positive definite 
Hamiltonian picks a unique representation based on its ground state. The su- 
perghost Lagrangian is however first order and no such principle applies. Indeed, 
the inequivalent representations are essential for understanding the covariant 
fermion vertex operator and supersymmetry.[26’ We define the qth Bose sea vac- 
uum by 

Pn l!7> = 0 n > -q - 312 

7n IQ) = 0 n 2 q + 312 
q is integer in the Neveu-Schwarz sector and half integer in the Ramond sector. 
If we represent the states of the superghost system as functions of the 7%, the 
Bose sea vacua are given by: 

Iq) = fi b(m) . 
n=q+3/2 

(37) 

It is easy to see from this representation that we cannot transform one Bose sea 
vacuum into another by acting with polynomials in p and 7. In a moment we 
will construct operators that do this job. 
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We will define the scalar product in the superghost state space in such a 
way that /?h = -/3!, and 7h = 71b. Using these hermiticity properties and the 
commutation relations, it is easy to show that 

(PM = S(P + Q + 2) - (38) 

All other scalar products can be obtained from this one by using the commutation 
relations. Finally, we define the superghost number by 

SF = ~[/3~,7-ril+ + 3 [Po,70]+ - (39) n 
Note that it is an antihermitian operator. 

Superghost number is the integral of a conserved world sheet current 

gF= J:p,:= /j(z). 
We would like to use this current to obtain another representation of the su- 
perghost Hilbert space analogous to the bosonization of fermions.[“’ Thus we 

introduce a scalar field 4(z) k j: j(z)). Th e o p erator product expansions of 
the superghost energy momentum tensor with itself and the superghost number 
current are: 

j(4 
T(z)j(w) - (z $3 + (z _ 43 

(411 

To reproduce the first of these we must write 

T(z) = : + j2(z) + &j(z) : (42) 

but then the c-number in the second OPE comes out 13 instead of 11. This indi- 
cates that “bosonization” does not work in a naive manner. Another indication 
of this comes when we try to write the /? and 7 fields as exponentials of 4. The 
exponentials are fermions rather than bosons. 

In ref. 26, both of these problems are solved by introducing a free fermion 
system whose c number anomaly is -2. The fields are called c and q and they 
have dimensions 0 and 1 respectively. The energy momentum tensor is 
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and 

[%I, En]+ = S(m + n) . 

Fields with the properties of /? and 7 are constructed as 

The conserved 6 - q charge is 

It takes the value -l/2 on the vacuum state defined by 

tlnIn)=O n>O 
68 In) = 0 n>O. 

The qth Bose sea vacuum is related to this state by 

Iq) = eq4(0) In) . 

(43) 

(44 

(45) 

(46) 

(47) 

(48) 

Finally, by combining the superghost number gp with the ( - v charge we get a 
quantity B = gF + gt,, which commutes with ,L3 and 7. B is thus the label for 
the inequivalent Bose sea Hilbert spaces: the qth sea has B = q + $ . 

The BRST charge for the spinning string is constructed in the same way 
as that of the bosonic string: 

Q=C [c-~(L~ + +L!~) +7-h (Fh + iFi")] . (49) 

Q2 = 0 if the spacetime dimension is 10. 

We would now like to build a spinning string field theory action in terms 
of the BRST charge. We must first choose the quantum numbers of physical 
states, the ghost number and Bose sea charge. In the bosonic case there was a 
unique non-trivial cohomology of the BRST operator with ghost number -l/2. 
Here this is no longer true because of the occurrence of Bose seas. We will 
make the conventional choice of Neveu Schwarz sector as the q = -1 Bose sea. 
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The vacuum state in this sector has total ghost number (ghost + superghost 
number) -l/2 and Bose sea charge -l/2 as well. We will restrict all classical 
Neveu-Schwartz string fields to have these quantum numbers. We do not make a 
separate restriction on ghost and super ghost number because the BRST charge 
does not have a homogeneous transformation law under these symmetries. 

It is now clear that an expression like (AIQI A) must vanish. It has zero 
ghost number (Q has ghost number 1) but Bose sea charge -1. Clearly we must 
find an operator with ghost number zero and Bose sea charge 1 to insert in the 
action. To see what is going on let us examine the zero mode subspace of the 
t - q Hilbert space. It is isomorphic to the zero mode subspace of the bosonic 
ghosts. ~0 annihilates the vacuum, the vacuum expectation value of 1 is 0, and 
the vacuum expectation value of CO is 1. Clearly, then, the expectation value of 
Q vanished above because Q (which is built from p and 7) contains no &,. b is 
just the operator with B = 1 and g = 0 that we needed above. We thus write 
the action for the Neveu-Schwarz model as 

(Al too&IA> 

If we restrict the A field by qoA = 0, this is gauge invariant under A + A + Qc. 
To prove this we have to compute the anticommutator of Q with &. This comes 
only from the terms proportional to ~0 in Q and has no term proportional to &,. 
Thus if we restrict A to be annihilated by ~0 (which anticommutes with Q) the 
anticommutator has zero expectation value and the action is gauge invariant. 

Let us now expand the BRST charge in ghost zero modes, just as we did 
for the bosonic string: 

Q=coK+d+6-2boU (51) 

We have used the same names for the expansion coefficients here, not because 
they are the same operators that we encountered for the bosonic string, but 
because they have the same properties. Indeed, the hermiticity properties and 
commutation relations of these operators are determined by the nilpotence and 
hermiticity of Q and by the properties of the zero modes. 

Given this decomposition of Q we can now proceed to gauge fix the Neveu 
Schwarz string field theory by following exactly the manipulations we used for 
the bosonic string. Siegel gauge fixing is thus trivially carried out. When we 
attempt to fix the light cone gauge, two complications arise. First, we must 
decompose the fermionic partners of the string coordinates into transverse and 
longitudinal components. This is easily done. More importantly, we must discuss 
the statistics of the various space time fields that appear in our action. In the case 
of the bosonic string we recognized a remarkable correlation between space time 
and world sheet statistics. Coefficients of fermionic world sheet fields obeyed 
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fermi statistics in space time. If we insist on retaining this principle for the 
spinning string we come to a remarkable conclusion: half of the fields in the 
model must be thrown out if we wish to preserve the spin statistics connection 
for space-time fields. All of the fields in the Neveu Schwarz model carry integer 
spin. Consider however, the classical sector with Q = B = -l/2. Since the $+ are 
anticommuting, half of these fields will be fermions, and should be omitted from 
the action. Which half are fermions depends on the overall statistics we choose 
for the string field A. The quadratic form (Al[ooQIA) is antisymmetric since 
(eoQ)+ = &Co = - &lo + (9, too) and th e anticommutator has zero expectation 
value. Thus A must be an anticommutingvariable in order to get non-zero action. 
Schwinger”” invented a similar argument for Majorana spinors many years ago. 
If A is a fermion, then we must throw away all coefficients of even powers of T,P 
if we do not wish to violate the spin statistics theorem. This is precisely the 
GSO projection! 

One may object that such a classical argument should not be able to 
discriminate between bosons and fermions. Indeed, Schwinger’s argument can 
be circumvented at the classical level by introducing extra degrees of freedom. P” 
A quantum mechanical calculation is necessary to show that this leads to a 
violation of unitarity. It is not at all clear how the present argument is related to 
those based on modular invariance”‘] or world sheet locality[“’ which also show 
the necessity of the GSO projection for the spinning string. Note that we have 
not shown the necessity of including the Ramond sector in the action. We only 
show that the NS sector must be projected (we will show the same thing for the 
Ramond sector below). This ends our discussion of the Neveu-Schwarz sector of 
the spinning string. 

The Ramond sector of the spinning string has created a lot of confusion 
in the literature on string field theory. Many papers[S11 have been written about 
it, not all of which are correct. Several groups’s’al found an action which could be 
gauge fixed to the correct set of light cone degrees of freedom, but the connection 
of this action to the BRST charge remained obscure. Yamron Is3’ found an action 
based on the BRST charge which can be partially gauge fixed to give the action 
of Ref. 32.‘s41 Finally, an elegant form of the Ramond action which generalizes 
easily to the interacting case, was found by Witten.[351 We will describe Witten’s 
action and show how it is related to that of Ref. 32. The reader is asked to 
consult the literature for a discussion of how to gauge fix the action to light cone 
gauge. The gauge fixing is a simple generalization of what we have already done. 

There are two obvious problems with any simple minded attempt to gen- 
eralize what we have done to the case of Ramond superstrings. First of all the 
coefficient of CO in the BRST charge, which gives the diagonal term of the bosonic 
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string action, is a second order differential operator. This is appropriate for a 
bosonic action but not for a fermionic one. The second problem has to do with 
ghost number. The simplest Bose sea for the Ramond sector is q = -l/2. The 
vacuum state in this sector has vanishing ghost number and Bose sea charge. We 
take all classical Ramond fields to have these quantum numbers. 

As in the Neveu Schwarz sector we see that the BRST charge has the 
wrong quantum numbers to give a nonvanishing action. Anticipating a necessary 
factor of to we write 

s = (~IEOWI~) (52) 

where Y must have B = -1 = g. We have used Witten’s conventions for the 
space time Dirac algebra. Henceforth we drop the factor (0 to simplify the 
notation. The action will be gauge invariant if [Q,Y] = 0. The authors of Refs. 
26 have found a BRST invariant local operator with g = B = -1. They call it 
the “inverse” picture changing operator. Witten has shown that it can be written 
as 

Y = [PO,, (i) c--)(q . (53) 

Let us now expand & and X4 as 

Q=coK+J+boM 

J = -+yoF + (d + S) - 2Po[F,U] 

8’ = F,(‘) + c [m(kncm - c-p,) + b-,7”’ + y-mb,] 
m>O (54 

4 = c [?wrnCrn + a 7-m7ml 
WC-0 

SP = \ko + co@1 

QQ = co(KQo - J%) + J@. +M\E~ . 

From these formula it is easy to prove that \Eo can be gauge transformed 
to be annihilated by M and that the required gauge fixing is algebraic and does 
not produce a Faddeev-Popov determinant. Furthermore the qr field equation 
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M\E1 = -J\ko (55) 

is also algebraic (\kr is an auxiliary field) so we can use it to simplify the action. 

The elimination of !Pr and the gauge condition M!Po = 0 reduce the 
number of fields in Witten’s action to the number employed in ref. 32. The 
gauge condition has two linearly independent functions of 70 in its solution. 
Therefore the field content is equivalent to two functions of the nonzero modes 
of the ghosts and superghosts. We will combine these two functions into a single 
state by introducing fermionic operators b and c with an algebra isomorphic to 
that of the reparametrization ghost zero modes. It should be emphasized that 
they have no conceptual connection with the ghost zero modes.The two states 
represent the two independent solutions of the gauge conditions. 

The proof that Witten’s action for these two fields reduces to the one we 
will present has not appeared in the literature. We use the new fermion operators 
b and c to define a nilpotent operator 6 

(j=cF+d+6+b[F,U]+ 

We make the convention that b and c commute with all the other operators in the 
problem. d and 6 are the BRST charges for the positive and negative frequency 
parts of the Ramond algebra. Nilpotence of d then follows from the fact that 
F anticommutes with d and 6 and that (d + 6)2 = F[F, Dournarrow]+. Both of 
these are consequences of nilpotence of the full BRST charge. 

From this point onwards, the algebra involved in gauge fixing the action 
to the light cone gauge is a straightforward generalization of that which we did in 
the Neveu-Schwarz sector.A notable feature of the covariant gauge fixing in this 
sector is that the complications usually associated with Nielsen-Kallosh ghosts 
for high spin fermionic gauge fields are completely bypassed. The discussion of 
spin and statistics parallels that in the Neveu-Schwarz sector. Since Q and Y 
commute, the XP field must still be anticommuting, but now, since the coefficient 
fields carry half integer spin, we must project out states with odd numbers of 
fermion operators. Again this coincides with the proper GSO projection. We 
therefore have a completely sensible picture of the free superstring in terms of 
gauge invariant functional field theory. Witten has extended this formalism to 
the interacting open superstring. 

5. CLOSED STRINGS 

It is easy to be fooled into thinking that the field theory of closed strings 
is a trivial generalization of that for open strings. The Hilbert space of the closed 
bosonic string is the direct product of two open string spaces (corresponding to 
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left and right moving modes), except for the zero mode of the xp field. There 
are two copies of the Virasoro algebra and a BRST charge Q = QL + QR for 
the whole system. The non-trivial cohomology of the BRST charge is given by 
physical states of the form 

where Ia) is the ghost vacuum and: 

L)@)=LI@)=O; n>O 

PO +I0 - 2)p9 = (Lo -Lo)pD) = f-J 

These states have total (left moving plus right moving) ghost number equal to -1. 

If we try to make a field theory action that reproduces these equations 
by using the BRST charge in the action we find that the ghost number does not 
add up correctly and the naive action is zero. The obvious cure is to insert an 
operator of ghost number one in the action, in analogy with what we did for 
the Neveu Schwarz superstring. This has been done for example by Lykken and 
Raby. “” However, it gives a gauge invariant action only if the string functional is 
subjected to the a priori constraint (LO - 10) IA) = 0. Thus one of the Virasoro 
conditions must be imposed as an off shell constraint rather than an equation 
of motion or a gauge condition. The resulting formalism can be described in a 
subspace of the closed string Hilbert space in which one of the zero modes of the 
ghost is discarded, and the states are subjected to the above constraint. If CO is 
the remaining zero mode, the operator: (barred and unbarred quantities refer to 
left and right movers respectively) 

+d+;i+6+x+bo(U +v) 

is nilpotent and can be used to form the gauge invariant action (~lijl~). The 
gauge invariance of this action includes linearized general coordinate transforma- 
tions. Gauge fixing proceeds in precisely the same manner as it did for the open 
string (the algebra is completely identical in the constrained subspace) and we 
obtain the Kaku-Kikkawa light cone action for closed strings. Note that in this 
action the field is also constrained to be annihilated by LO - LO. 

Although one of the Virasoro conditions is being treated in a very different 
manner from the others, there is no apparent inconsistency in the action we have 
written. Indeed in the light cone gauge one can write an interacting action with 
fields which satisfy the constraint. This action is the basis for the only manifestly 
unitary calculations of string scattering amplitudes and as far as one knows 1371 
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gives results in agreement with the world sheet path integral. Nonetheless I feel 
a bit uneasy with the present formulation of the theory and I have the feeling 
that we have to do a lot more to truly understand the closed string. I will present 
two more pieces of evidence that something is wrong. 

The first has to do with superstrings. A closed spinning type II string has 
four sectors, corresponding to the choice of Ramond or Neveu-Schwarz boundary 
conditions for left movers and right movers separately. The heterotic string has 
two sectors, the left movers can be described by a compactified bosonic string 
while the right movers are either the NS or R sectors of the spinning string. When 
describing Ramond sectors, we will use the formalism of Ref. 25 in which all zero 
modes of the superghosts are discarded. By throwing away one of the bosonic 
ghost zero modes as well, we can in every case except the Ramond-Ramond 
sector, construct a modified BRST operator which is nilpotent in the subspace 
of states with equal left moving and right moving energy. For the NS-NS sector 
of the type II string or the NS sector of the heterotic string, this operator has the 
same form as the one we constructed for the closed bosonic string. The d’s and 
S’s must be reinterpreted to stand for BRST generators of the NS algebra, but 
their algebra remains the same. In the NS-R sectors of type II, or the R sector 
of the heterotic string we write: 

This operator is again nilpotent in the subspace of states with equal left and 
right moving energy. 

In the Ramond-Ramond sector this analogy breaks down. It is tempting 
to write down a straightforward generalization of what has gone before, gluing 
together two Ramond open strings. A gauge invariant action can be constructed 
in this manner - but it has the wrong spectrum! Knowledgeable readers will 
be reminded of a well known difficulty with the field theory formulation of the 
massless level of the type IIB string. This sector contains a massless particle 
which can be described by a rank four antisymmetric tensor gauge field. The 
field equation for this gauge potential is the self duality of its (rank five) field 
strength. This is the ten dimensional analog of a right moving scalar field in two 
dimensions. No one has ever found a covariant bilinear lagrangian formulation 
of this system. If one simply introduces a Lagrange multiplier field, one doubles 
the number of degrees of freedom. This is precisely what occurs for the covariant 
action of the Ramond-Ramond sector described above. For both type I and type 
II systems it gives twice the correct number of degrees of freedom. 
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The only way that we have found to resolve this problem is extremely 
ugly. We write an action with no spacetime derivatives in its diagonal terms: 

s = (NM) 
(56) --- ij=~~+(d+6+;i:+Z)-b@{F,lJ}+F{F,U}). 

Q is nilpotent in the space of states satisfying: 

(F-F)lX)O 

so the action is gauge invariant. In (57) F and F are the world sheet super- 
symmetry generators for left and right movers. Unfortunately, this constraint is 
dynamical, unlike the K = K constraint we have encountered in other sectors. 
This is a consequence of the fact that the left moving and right moving fermions 
$+ have independent zero modes. 

In effect, a dynamical constraint is an equation of motion that does not 
follow from the Lagrangian. To get a sensible system which we can quantize, 
we must solve the constraint. This should be done without inverting any time 
derivatives, otherwise the resulting action will be non-local in time. The only 
simple way we have found to solve the constraint is to use light cone coordinates. 
The action can be gauge fixed to the light cone gauge by arguments exactly 
analogous to those already presented. The result is 

s=$,.BT p2+K+ 
2 2P+ 

where B is an O(8) bispinor. This is the correct light cone gauge Lagrangian for 
this sector and contains (after GSO projection) the correct spectrum of states. 

This treatment of the Ramond-Ramond sector of the type II superstrings 
is a major disaster. It is not a manifestly covariant formulation of the theory. 
One gets the feeling (as one already did for the closed bosonic string) that we 
are leaving out some gauge invariance but the precise nature of the missing 
ingredients is unclear. 

A further indication that something is wrong comes from the calculation of 
the one loop “cosmological constant” in string field theory. We will describe this 
computation below and find that our computation disagrees with that done by 
Polchinski in the world sheet path integral formalism’38’ One should emphasize 
that the “cosmological constant”, defined as the logarithm of the string field 
theory vacuum amplitude is not necessarily a physical object in string theory. 
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At present the only fully gauge invariant objects that we know are scattering 
amplitudes. In light cone string field theory, one can calculate one loop scattering 
amplitudes which “contain” the cosmological constant (as the coefficient of the 
dilaton tadpole) and find an answer which agrees with Polchinski’s. However 
when one calculates the vacuum amplitude in the light cone field theory one gets 
the result we will present below. Thus it is not clear whether we should worry 
about the disagreement. 

In any free field theory, the logarithm of the vacuum amplitude is the 
trace of the log of the kinetic operator K. For open strings this gives: 

sTrhK = 
O”dt J tsTr exp(-tK) = 

O”dt 
/ 

tTr exp(--tKJ 
0 0 

In the second equality, Kl is the Kaku-Kikkawa light cone kinetic energy which 
we obtained by the Parisi-Sourlas trick. This expression coincides with that 
derived from the world sheet formalism. t represents the modulus (ratio of cir- 
cumference to length) of the world cylinder, and it is integrated over the correct 
domain. 

An analogous calculation for closed strings gives 

f dflTrexp (-t(Kl + El) + iO(K, - Xl)) 

The 9 integral imposes the constraint that left moving and right moving energies 
match. It is easy to see that this result is simply the sum of the one loop 
vacuum energies of all of the physical particle states contained in the closed 
string. Polchinski has shown that this is the same, up to an infinite factor, as 
the vacuum bubble given by the world sheet path integral. The (t, 6) integration 
region is a strip of width 27r in the upper half plane. Polchinski shows that the 
integrand is invariant under modular transformations of the integration region. 
Thus, our result is the integral over a fundamental region of the modular group 
(which is the world sheet result) times the infinite order of that group. I have been 
unable to motivate dropping this infinite factor on the basis of the rules for the 
closed string field theory that we have formulated. It cannot be a consequence of 
some additional discrete gauge invariance of the string field which is not fixed by 
Siegel’s condition. This would lead to an infinite factor multiplying the vacuum 
amplitude, while we have an infinite factor in the log of the vacuum amplitude. 
I do not know if this annoying discrepancy is a red herring or a profound clue to 
the construction of a correct closed string field theory. 
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6. INTERACTING STRINGS 

Several proposals have appeared in the literature for generalizing the 
gauge invariant free string actions that we have discussed to include interac- 
tions. Peter West has described the Siegel-CERN- Kyoto”” approach to this 
problem in his lectures at this school. I will describe the elegant approach in- 
vented by E. Witten. A gauge invariant string field theory action should satisfy 
at least three criteria. It should generalize non-abelian gauge invariance (and for 
closed strings, general coordinate invariance) in an interesting way, and provide 
an explanation for the ubiquitous occurrence of gauge bosons and gravitons in 
string theory. It should provide a simple derivation of the elegant dual Feynman 
rules, and it should be simple enough to allow us to understand non-perturbative 
effects in string theory. Witten’s action satisfies the first criterion, at least for 
open string theories. It does not appear to satisfy the second. The third, which 
is obviously the most important, may or may not be satisfied. It is too early to 
tell. 

The starting point of Witten’s construction is the idea”“’ that string fields 
are differential forms on the Virasoro group. More precisely, they are semi infinite 
differential forms. In physicists language, an ordinary differential form on the 
Virasoro group would be a functional of the ghost field c(z). Alternatively, one 
could describe it as a state built on the empty Dirac sea of the ghosts. However, 
it is clear that in order to have a sensible action of the Virasoro algebra on the 
forms (in particular to have finite eigenvalues of Lo) we must fill the Dirac sea. 
Thus in effect, all forms with finite Lo have infinite rank. As usual it is convenient 
to introduce a new concept of rank that measures the difference of the rank of a 
form from the rank of the “vacuum” form (the full Dirac sea). This is essentially 
the ghost number. In this language, the BRST charge Q is the exterior derivative 
on forms. 

Our free action for string forms was a bilinear in the form A and its field 
strength or exterior derivative QA. Readers with the right kind of background 
will be immediately reminded of a Chern Simons form. Witten’s formalism is a 
fleshing out of this analogy. Firstly, we clearly want to call A a one form. This 
means that the rank of a form is given by its ghost number plus 3/2. The gauge 
parameter is then a zero form. In order to construct a topological invariant such 
as the Chern-Simons form, we have to find analogs of the wedge product and the 
integral of a differential form. Let us call the analog of the wedge product of two 
differential forms A and B 

A*B. 
It should take forms of rank n and m and multiply them together to give a form 
of rank n + m. Thus A * B should have ghost number equal to gA + gB - 3/2. 
The exterior derivative Q should be a graded derivation of wedge multiplication: 
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Q(A * B) = QA * B + (-)AA * QB 

In this formula (- l)A is minus one if A is a form of odd rank and plus one if the 
rank of A is even. 

The standard wedge product for forms turns the space of forms into a 
Grassman algebra. However, from Yang-Mills theory, we are familiar with forms 
that take values in matrix algebras, for which the wedge product is an associative 
but not anticommutative operation. Thus we should only require that * be 
associative. Given a wedge product we are almost ready to define most of the 
usual operations of exterior calculus. What is lacking as yet is the notion of the 
integral of a differential form. This is a linear c-number valued function on forms 
which satisfies: 

J A*B=(-l)AB QA=O. 

Finally, we should require that * and s are such that the abelian Chern-Simons 
invariant s A * QA is the free string action < AlQlA > that we constructed 
above. 

If we can define such a product and integral then we can repeat many of 
the usual constructions of Yang-Mills theory. Define gauge transformations of a 
1 form A by: 

Then the field strength: 

F=QA+A*A 

transforms covariantly: 

6F=F*c-c*F 

and we can make various gauge invariant objects by integrating products of F 
and A to make Chern-Simons invariants. Usually one can only form a single 
Chern-Simons invariant for a given dimension. The same will be true here if we 
insist that the integral operation carries a fixed ghost number. In particular, if 
we want the integral of A t QA to be nonzero, the integral must vanish unless its 
integrand carries ghost number 3/2. With this restriction we are led to a unique 
gauge invariant action: 

S(A) = 
/ 

A * QA + 2/3A * A * A 

Note that it is automatically trilinear, as expected for a string theory. The field 
equation which follows from S(A) is F = 0. It is thus an integrability condition, 
and raises the exciting possibility that string theory is a completely integrable 
system. Witten’“’ and Friedan and Shenker’421 have suggested this in the context 
of rather different considerations. 
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The introduction of a product and integral in the space of string forms 
thus offers us the possibility of building an elegant and unique interacting string 
action. Witten has found explicit definitions of s and * which obey the rules 
that we have outlined above.‘4S1 He has argued that it gives the familiar three 
point couplings of the Veneziano model. Giddings[44’ has computed the four point 
amplitude from this formalism. We do not have time here to go into the details of 
the construction, but will content ourselves with making some general comments 
about invariance properties and uniqueness of Witten’s definitions. (Recently 
Giddings, Martinet and Witten[“’ have shown that the Feynman rules of this 
theory generate the world sheet form of the dual amplitudes to all orders in the 
loop expansion.) 

The dual Feynman rules are invariant under reparametrizations of the 
string world sheet. In actual computations one must choose a gauge, but even the 
gauge fixed Feynman rules are invariant under conformal transformations. One 
might have expected the string field theory action to be conformally invariant. 
This is indeed the case for the kinetic energy term that we have constructed, 
since the BRST charge commutes with all the conformal generators. However, 
the interaction term of Witten’s action does not have full conformal invariance. 
I believe that this was inevitable and that any string field theory will have this 
problem. The world sheet diagram for an elementary open string interaction is 
shown in figure 1. Any description of this interaction in terms of an action for 
fields which are functionals of X(a), must make a cut along the world sheet to 
identify the surface on which the strings interact (assuming that the interaction 
is local). Witten’s cut is shown in figure 2. This identification obviously violates 
conformal invariance. 

Fig. 1. The world sheet for Fig. 2. The cut across the world sheet 
3-string scattering. that defines Witten’s interaction. 

More formally, consider any action defined in terms of a * product and 
an integral. The free action is conformally invariant by itself, so the interaction 
term must be as well. The only apparent way to enforce this is to insist that 
the conformal generators L, be derivations of the * algebra and that s L,A = 0 
for all A. The integral is a linear functional on the space of string states and 
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thus can be represented as the scalar product with some state 11). I must be a 
state of ghost number -3/2, and if the action is conformally invariant it must be 
annihilated by all the conformal generators. In particular, it must be annihilated 
by LO. But there is only one state of ghost number -3/2 which is annihilated 
by Lo. It is the SL2 invariant state IO), d escribed in Section I. This state is 
not annihilated by L, with n < -2. Thus there is no state annihilated by all 
the conformal generators. A given definition of s and * is characterized by the 
subgroup of the conformal group which leaves it invariant. The integral is defined 
by a BRST invariant state I of ghost number -3/2. Thus 11) = IO) + Q IB) where 
IO) is the SL(2) invariant state. I is probably completely specified by the Virasoro 
subalgebra which leaves it invariant. For example, if the subalgebra contains LO 
then I is the SL(2) invariant state. I will now argue that with a few assumptions, 
one can say the same about the product. 

It is natural to assume that the Hilbert space contains an identity element 
for the star product. We will call this I, using the same symbol as that used for 
the integral for reasons which will become obvious in a moment. By definition: 

Ad=I*A=A 

for any A. Since Q and any symmetries of the action are (possibly graded) deriva- 
tions, they must annihilate the identity. It is also clear that the identity has ghost 
number -3/2. If, as we conjectured above, the subalgebra of the conformal alge- 
bra which annihilates I completely determines it, then the identity state is the 
state which defines the integral. This would certainly be the case if the symmetry 
of the action contains Lo. 

With one more assumption, we can show that the symmetry group of the 
action completely determines the * product. Any * product induces a correspon- 
dence between states and operators. The state A corresponds to the operator A^ 
defined by 

i(B) = At B. 

We can write the state A as i(I), where I is the identity. If there were a unique 
operator that created A when applied to I we would be able to construct the 
product operation uniquely from the state I. Every state would be written as the 
corresponding operator acting on I, and the * product would just be the ordinary 
operator product. Note that this definition is associative, and has the right ghost 
number properties. The integral is defined as above by the scalar product with I. 
The integral of a BRST exact form then vanishes. The two properties of Witten’s 
formalism that are not immediately apparent in this formulation are the graded 
commutativity of the integral of A*B and the fact that Q is a graded derivation. 
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Of course, the relation A = i(I) f or all states does not completely define 
the operators A^. We can only make progress by putting further restriction on 
these operators. A natural restriction exists when I is the SL(2) invariant state. 
In that case, if we require that A^ be the integral of a local density, then standard 
results of conformal field theory ensure that there is indeed a unique connection 
between states and operators. It is then fairly easy to prove the remaining Witten 
axioms. For example: 

Q(A * B) = Qiii?(I) = [Q,ifi](I) 

= ([Q&g + (-l)Az[Q,B^]*)(I) = Q(A) * B + (-l)AA * Q(B) 

In this equation we have used the fact that if A^ is the local operator which creates 
A from the SL(2) invariant vacuum then the local operator which creates Q(A) 
is the commutator or anticommutator of Q and A, according to whether A is 
bosonic or fermionic. Using the operator product expansion one can also prove 
the graded commutativity of the integral of A*B. 

Thus, in the case where we choose the identity state to be the SL(2) in- 
variant vacuum, there seems to be a unique definition of * product and integral 
that satisfies Witten’s axioms. The Feynman rules for this formalism involve 
SL(2) invariant expectation values of vertex operators and seem to be rather 
directly related to the Koba-Nielsen formulas. (There are some troublesome 
points which I have not sorted out so I will not present the details here). Unfor- 
tunately, Witten’s choice of identity is not the SL(2) invariant state. It is a state 
annihilated by the set of Virasoro generators which preserve a fixed time slice 
and preserve the midpoint of the string in that slice. These are the generators 
Kn = L, - (-l)nL-n. I b e ieve that the uniqueness theorems that hold for the 1 
SL(2) case are also valid here, so that Witten’s formalism is completely defined 
by this invariance group. 

We seem then to have a number of different gauge invariant actions for 
string field theory. What is the relation between them, and do they give equiv- 
alent results for scattering amplitudes? I can give only a partial answer to this 
question. Consider for definiteness, Witten’s definition of the * product. Let U 
be a conformal transformation which is not an automorphism of * (e.g. eiaLo) 
Now define 

A *u B = U-‘(U(A) * U(B)) 

We must also define a new integral by 

J J A= U(A) 
u 
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It is easy to verify that this is an associative product which satisfies all of Witten’s 
axioms. Thus, for example, we can go from Witten’s product to one which is 
invariant under o reparametrizations. This will define a different string field 
theory action. Using the fact that a conformal transformation of an on shell 
physical state is that same state plus a BRST exact form, it is easy to show 
that the S-matrices defined by these two actions are identical. Thus there is a 
large class of definitions of the * product which give an action different from 
but physically equivalent to Witten’s. An action based on the SL(2) invariant 
state is not in this class. The symmetry subalgebra of Witten’s formalism is not 
conjugate to the invariance algebra of the SL(2) vacuum. Nonetheless I suspect 
that a manifestly SL2 invariant formalism exists and is equivalent to Witten’s. 

Recently, Giddings and Martinec1461 have described the connection be- 
tween string field theory actions and triangularizations of Riemann surfaces. 
They also find that there should be a multitude of equivalent string field theory 
actions. It would be extremely interesting to relate the present discussion to 
theirs, for we seem to have an algebraic (according to invariance group) clas- 
sification of possible actions whereas their classification is geometrical. Clearly 
both presentations are incomplete and much work remains to be done. 

Although many of the details are cloudy, it seems clear that an elegant 
gauge invariant formulation of open string field theory exists. How should it be 
extended to the case of closed strings ? We have seen already, that even free closed 
string field theory is not in the best of shape. A question of great importance, 
is whether we need to introduce separate closed string fields or whether closed 
strings are somehow already contained in the formalism at hand. Remember 
that closed string intermediate states automatically appear in the unitarization 
of covariant open string amplitudes.“‘] In the light cone gauge, where closed 
strings are needed for covariance rather than unitarity, a separate closed string 
field is certainly needed. However, Witten has argued that the loop diagrams of 
his open string field theory already contain closed string contributions. He has 
made a beautiful proposal which suggests why this comes about. 

Let us notice that the field equations of Witten’s action can be rewritten 
in an interesting way by using the operators A^ described above. It is easy to 
verify that the vanishing of the field strength is equivalent to the statement that: 

(Q + 64)’ = 0. 

dA(B) - A * B - (-l)ABB t A 

or in other words that Q + dA is itself a BRST operator. This is a realiza- 
tion of the suggestion of Friedan’48’ that the equations of string field theory 
are the requirement that the background classical field define a two dimensional 
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conformal field theory with the right value of the central charge. Closed strings 
fit very nicely into this framework. We have emphasized repeatedly that every- 
thing in our formalism goes through for any field theory of the xp field which is 
conformally invariant. Thus different consistent background space time geome- 
tries are equivalent to different choices of Q in the above formalism. Solutions of 
the open string equations correspond to different BRST operators which differ 
only by an inner derivation of the * algebra. Different consistent space time 
geometries (which we suspect correspond to different classical solutions of closed 
string field theory) correspond to BRST generators whose difference is not an 
inner derivation. Thus, according to Witten, we should think of a general state 
of the system of closed plus open strings as a general graded derivation of the 
* algebra. The classical equation of motion of this system is just Q2 = 0. In 
order to complete this program we must find an action from which this equation 
follows and a suitable parametrization of the set of all derivations. I refer the 
reader to Witten’s paper for further discussion. 

7. CONCLUSIONS 

It is clear that string field theory is still in a state of flux. The beautiful 
results obtained by Witten have pointed the way to a full understanding of the 
underlying structure of strings, but much work remains to be done. I believe 
that a proper understanding of all possible (equivalent?) realizations of Witten’s 
axioms is necessary in order to make a clean connection with the dual Feynman 
rules and Riemann surfaces. The details of Witten’s outline for closed string 
field theory must be filled in, in particular one must find an action and a useful 
parametrization of the space of all derivations of the * algebra. Witten has 
generalized his open string field theory to the superstring but the heterotic string 
still looks like a sport of nature. The ugly duckling has yet to be recognized as 
a swan. We must clearly find a better framework for describing it. 

There remain many other obscure points and open problems. We must 
gain a much better understanding of the nature of the cosmological constant in 
string theory. We must find a Hamiltonian formulation of string theory analogous 
to the Wheeler-Dewitt formulation of quantum gravity. We must understand the 
“Wave Function of the Universe” and the tunneling processes between different 
classical vacua of string theory. We must find out whether we can attack the 
parts of string theory relevant to low energy physics by weak coupling and/or 
“effective field theory” techniques or whether there are some low energy questions 
which have “essentially stringy” answers. Most important of all, we must find 
some way to subject string theory to experimental tests, at least by calculating 
the parameters in an effective field theory which describes accessible physics. 
The developments in string field theory over the past year have made it seem 
that the answers to these questions may not lie asymptotically far in the future. 
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