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ABSTRACT 

A potpourri of Skyrme-model results for the meson-baryon system is surveyed. 

This talk is devoted to a study of meson-nucleon scattering in skyrmion models of the 
nucleon. [l”’ We shall focu s o n the characteristic energy-range of the baryon resonances, 
typically 1.5-2.5 GeV. This is well beyond the point where the chiral Lagrangians are 
conventionally applied; nor is it known at present how to apply QCD directly in this 
domain. Thus it is especially interesting to see what insights emerge in this regime from 
skyrmion physics. The results presented here will only be valid to leading order in l/N,, 
where Ne is the number of colors of the underlying gauge theory.“’ 

The object of our investigations will be effective Lagrangians (Skyrme’s included) 
of the form 

L, = g Tr (a,Uaj‘Ut) + . *. . 
16 (1) 

The leading term is the usual 2-flavor or 3-flavor nonlinear sigma model, depending on 
whether 27 E SU(2) or U E SU(3). The dots stand for higher-derivative terms, which 
are not usually exploited in traditional soft-pion physics. Nevertheless, they are needed 
to stabilize a soliton, or “skyrmion,” whose topological charge (following Skyrme) is 
interpreted as baryon number. The standard identification of the pion field in (1) in 
the baryon-number-Osector of the 2-flavor theory is via: 

U(z) = exp($Z(z) -3). 
r 

(2) 

Thus the pions can be thought of as “small fluctuations” about the trivial vacuum 
U(z) - 1. 

It is a straightforward procedure to introduce additional fields into (1) in such a way 
as to preserve chiral invariance. I” In particular, the traditional approach to studying 
the coupling of pions to the nucleon isodoublet N is to set 

&N = 2 - Tr (a,U#‘Ut) + N(i7pDp - n)N + gADpjim Nf’ypr5N. (3) 

Here D is the covariant derivative appropriate to the manifold G/H, where G = sU(2)1, x 
sum -and H = SU(2)i,,qi,. From this Lagrangian, all soft-pion theorems pertaining 
to the ?rN interaction, such as Weinberg’s calculation of the S-wavescattering lengths,“’ 
can be derived. 
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It is the moral of this talk that the purely mesonic Lagrangian (1) contains at 
least as much information as does (3)! Not only does (1) properly encompass soft-pion 
physics, as Schnitzer has shown,“’ but in addition-well beyond the soft-pion regime- 
it yields surprisingly accurate predictions concerning the spectrum of nucleon and A 
resonances and the qualitative behavior of the large majority of ?rN and EN partial- 
wave amplitudes. 

The study of meson-nucleon scattering in skyrmion models involves splitting the 
Goldstone field ii into two pieces: a spatially-varying c-number piece, i.e., the skyrmion, 
and a fluctuating piece, which we identify with physical mesons. [‘I The skyrmion will 
be assumed to be of the hedgehog form: 

Uo(Z) = exp(iF(r)3. f?). (4 

Calculating the T-matrix then reduces to a problem of potential scattering, from which 
partial-wave phase-shifts can be extracted in the usual manner. In addition, it is nec- 
essary to fold in a little group theory, as we now describe. 

For simplicity, let us focus on the non-strange processes TN + TN , ?rN + 7rA 
andrA+rA. The quantum numbers needed to describe such processes are: the 
initial and final pion angular momenta L and L'; the initial and final spin (or isospin) 
representation of the baryon s and s’, which equal t for nucleons and $ for A’s; and 
the total pion-baryon isospin and angular momentum I and J. The T-matrix describing 
such processes can then be shown to be:i9”01 

T({LsIJ} + {L’s’I’J’}) = ~,,~~,z,bv~b., (-lf-’ 
L+1 

x &2s + 1)(2s’ + 1) c (2K + 1) 
K=L-1 

{sff;;}{f--:)TKLILm (5) 

The expressions in curly brackets are 6&symbols. The quantities ‘TKL,L, which are 
functions of pion energy, are the “reduced amplitudes” of the model, obtainable numer- 
ically from a phase-shift analysis about the skyrmion. The Kronecker 6’s express the 
reassuring fact that I and J are conserved in these models, as they ought to be. 

Although, in Eq. (5), K plays the part of a dummy index, it actually has an 
interesting physical interpretation. Specifically, K can be viewed as the vector sum of 
the pion’s angular momentum and isospin in the unphysical frame in which the pion 
scatters, not from a nucleon, but rather from an unrotated hedgehog soliton. This frame 
is “unphysical” in that a nucleon properly corresponds to a rotating hedgehog soliton 
in the skyrmion approach.Ial 

Pleasingly, all the model-dependence in (5) arising from the details of the terms 
indicated by dots in the Lagrangian (1) is subsumed in the reduced amplitudes TKL#L; 
the 6&symbols, in contrast, follow purely from the assumed hedgehog symmetry of 
the skyrmion. Equation (5) is thus analogous to the Wigner-Eckart theorem in that 
a large number of physical matrix elements (the T’s) are expressed in terms of a sub- 
stantially smaller set of reduced matrix elements (the 7~‘s) weighted by appropriate 
group-theoretical coefficients. 

One can carry the analogy further by finding those special linear combinations 
(analogous to the Gell-Mann-Okubo formula) for which the model-dependent right- 
hand side of (5) cancels out; the net result will be a set of energy-independent linear 
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relations between physical scattering amplitudes that serve as a test of the applicability 
of skyrmion physics to the real world. For example, for rrN + IAN , one. can for each 
value of L 2 1 solve for the two independent isospin-i amplitudes (i.e., with J = Lf i) 
as linear combinations of the two isospin-) amplitudes!‘9”01 How well do these relations 
work as applied to the experimental scattering data? Consider the case of the F waves 
( i.e., L = 3). Figures la and lb depict the real-world F35 and F37 amplitudes,[“’ 

. respectively (indicated by solid lines), compared with the linear combinations of the Fl5 
and Fl7 amplitudes (dotted lines) to which they should correspond, if Eq. (5) holds 
true.“’ The degree of agreement is impressive. 

Similar relations hold”’ for TN + AA . Figure lc displays the FPl5 amplitude 
compared with the appropriate multiple of the F&5 amplitude predicted by Eq. (5). 
One can even find relations between TN + ~FN and ?rN + rrA amplitudes; a typical 
such prediction is illustrated in Fig. Id. In both cases, although the sizes of the two 
comparison curves are not in especially close accord; the disagreement is on the order 
of the typical error-bars of the data. We should point out that the agreement in the 
signs of the amplitudes is in itself a completely nontrivial result. 

It is straightforward to generalize Eq. (5) to the case when the initial and/or fi- 
nal meson has arbitrary spin and isospin; one need only replace the 6j symbols by 9j 
symbols. ‘l” This allows us to treat in the skyrmion framework such experimentally acces- 
sible processes as IAN + pN and TN --+ wN . A typical relation for zN + pN is illus- 
trated in Fig. le. Alternatively, one can generalize Eq. (5) to incorporate strangeness, 
which entails interpreting U in Eq. (1) as an SU(3) matrix.‘18”” This enables us 
to study KN and KN scattering as well. In this context, one can obtain predictions 
relating TN -+ IAN to KN + TN ,11’1 as exemplified in Fig. lf. 
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Fig. 1. Model-independent linear relations between experimental amplitudes. (a) “I TN -+ TN : 
FM us. iF1.5 + +Fl,. (b)[” RN + TN : Fa7 us. &Fls + AFIT. (c)‘*’ AN + TA : F& 
us. @F&5. (d) w nN-,nNus.nN+xA: -$j(Pll - Pl3) us. !PPas - gPP,l. (e)“” 
rN-rpN: --@DJ1 us. SD,,. (f)““’ rN -+ KN vs. RN + KN : sF15 - $$$Fs7 vs. 

Fo5 - 1437 wF17. III all cases, the first-named amplitude is depicted by a solid line, the second 
by a dotted line. AS usual, the graphs depict the T-matrices in the complex plane. 
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We should reiterate that all the curves in Fig. 1 are drawn from experiment. In 
other words, they are examples of model-independent predictions of skyrmion physics. 
(As far as we know, no such relations follow from SU(6), or from the quark model.) In 
our eyes, Fig. 1 is compelling evidence for the validity of the hedgehog-soliton picture 
of the nucleon. 

Of course, one can also adopt a model-dependent approach to Eq. (5). This in- 
volves specifying an effective meson Lagrangian, calculating the TKL~L’s numerically, 
reconstructing the complete partial-wave T-matrix using (5), and then comparing with 
experiment. ‘r401 Let us focus on the venerable Skyrme model, in which the first term 
of Eq. (1) is supplemented by the soliton-stabilizing term & Tr[(a,U)Ut, (t3,U)Ut12. 

Figure 2 presents the partial-wave T-matrix of the Skyrme model, juxtaposed with 
experiment. The overall degree of accord is quite striking. The exceptions are in the 
lower partial waves, the S3r, Pii, P33 and 035 channels especially. We have argued at 
length elsewherefB”41 that the poor agreement in these channels can be attributed to 
our failure to factor out the rotational and translational zero-modes of the skyrmion in 
our formalism. As such, they represent failures, not of the Skyrme model per se, but 
rather of our treatment of it. We are confident that a higher-order l/NC analysis would 
dramatically ‘improve the agreement in these channels. Fortunately, in higher partial 
waves, which do not mix with the zero-modes, there is no such problem. 

Experiment 
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Fig. 2. KN * RN : comparison between 2-flavor Skyrme model and experiment (from Ref. 
14). 



The most intriguing feature of Fig. 2 is how the Skyrme model reproduces the 
pattern of size alternation evident in the experimental curves for each value of L 1 1. 
For example, the 3’15 and F’7 curves are much bigger than the Fr7 and F35 amplitudes. 
This “big-small-small-big” pattern finds a natural group-theoretic explanation in the 
context of skyrmion physics. w According to Eq. (5), the physical scattering amplitudes 
can be expressed as linear combinations of reduced amplitudes. In the F-wave sector, 
one finds, for example: 
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Fig. 3. Spectrum of N and A resonances: Skyrme model us. experiment (from Ref. 14). The 
experimental masses (with uncertainties) axe indicated by dots, the Skyrme-model masses by 
crosses. The Skyrme-model values for mN and mA are obtained from &. (9) of Ref. 2, using 
our ubest fit” parameters (e = 4.79, f= = 15OMeV). 



Note that, whereas the Fl7 and F35 amplitudes receive the bulk of their contributions 
from 7433, the Fl5 and F37 amplitudes are composed primarily of ?& and 7333. The 
big-small-small-big pattern can thus be simply explained by the assumption that 7433 
is small compared with 7 233 and 7333, etc. Indeed, this turns out to be true numerically 
in the Skyrme model; presumably it is true as regards the optimal effective Lagrangian 
of Nature, as well. 

Figure 3 presents the spectrum of nucleon and A resonances of the Skyrme model 
compared with experiment. The Skyrme-model masses are the results of a least-squares 
fit to the data, with all resonances weighted equally. (Recall that the model has two 
“free parameters,” fX and e.) The agreement with Nature is surprisingly good-better 
than 7% on average up to 3 GeV. Interestingly, two resonances, the N(1882) Fl5 and 
the A(2350) F 37, are not present in the 2-flavor Skyrme model but only in the S-flavor 
model; other than this, the two versions yield identical spectra.[‘*’ 

Figure 4 displays both the a-flavor and 3-flavor Skyrme-model amplitudes for the 
process zN + zA , indicated by dotted and solid curves, respectively. In general, the 
agreement with experiment is excellent. It is especially pleasing that the model correctly 
predicts a negative 0013 amplitude, in stark contrast to all the other PP, DD and FF 
channels. Likewise, in the model as in Nature, the FFl5 amplitude curves around much 
more than its three F-wave counterparts. We should also note that-unlike SU(G)-the 
Skyrme model correctly predicts the signs of the zN + XA amplitudes in channels in 
which the pion’s angular momentum jumps by 2 units (not depicted). 

Finally, Figs. 5-7 present a sampler of results corresponding to the processes 
RN -+ EN , zN --) KA , and EN + zA , in which the 3-flavor Skyrme model is com- 
pared with experiment. In general, the agreement is quite satisfactory. (As one would 
expect, the accord is much less good in the S- and P-wave sectors, which we have not 
depicted, due to mixing with the zero-modes of the skyrmion.) Although the Skyrme- 
model graphs are often much too large, as in Fig. 6, the relative sizes and signs between 
amplitudes are well rendered by the model. In particular, for KN + KN , note that 
the 003, FOS and Go7 amplitudes dominate their counterparts in both the model and ex- 
periment; we have dubbed this the “big-small-small-small” pattern, in analogy with the 
big-small-small-big pattern discussed earlier. Likewise the model successfully predicts 
a “down-up” pattern of sign alternation for ?rN + KA and KN --) rrrA . Not surpris- 
ingly, these patterns, too, find a natural group-theoretic explanation in the skyrmion 
framework, just as in the case of the big-small-small-big pattern. 

In closing, we would like to express our wonderment that so much detailed structure 
of the meson-nucleon T-matrix-much of it in reasonable accord with Nature-can 
emerge from a simple meson Lagrangian with no explicit quark or nucleon fields. 
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