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ABSTRACT 

We show that the Jacobians associated with chiral rotations can be under- 

stood as arising from a change in the boundary conditions when fermionic theories 

are defined in a finite volume. In particular, a suitable choice of boundary con- 

ditions renders consistent an otherwise anomalous theory leading naturally to a 

Wess-Zumino term in the effective action. 
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It is by now fairly well known that because of the chiral anomaly, the fermionic 

path integral is not invariant under a chiral rotation even when the fermion 

masses are zero. 

In a series of papers, Fujikawal has shown that the fermionic measure is not 

invariant under a chiral rotation (change of variables) and there is a non-trivial 

Jacobian associated with this transformation. 

This Jacobian plays a very important role and in many cases allows the exact 

computation of the low energy properties of the effective bosonic theories after 

“integrating out” the fermions.2 Furthermore the evaluation of these fermion 

determinants yields a Wess-Zumino3 term in the effective action of the bosonic 

fields.4 Chiral Jacobians and Wess-Zumino terms also arise in anomaly free the- 

ories after decoupling heavy fermions and are fundamental for the consistency of 

the resulting low-energy effective theories.5 

More recently it has been suggested that certain anomalous theories can be 

rendered consistent by adding a Wess-Zumino term to the effective action. 697 

Usually the chiral Jacobians and ensuing Wess-Zumino terms are discussed in a 

path integral framework since they are related to the fermionic measure. It is 

therefore of interest to study these aspects at the level of canonical quantization. 

In this letter we try to understand the effect of chiral rotations and the 

ensuing Jacobians in a Hamiltonian formulation of the theory. We first define the 

theory in a finite spatial volume and carefully analyze the nature of the boundary 

conditions and their effect on the ground state structure of the theory. Then the 

chiral Jacobians are related to the response of the ground state to the change in 

the boundary conditions under a chiral rotation. We are able to reproduce in a 

simple way the well-known Jacobians of the 1 + 1 and 3 + 1 dimensional abelian 
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gauge theories. 

Boundary conditions in 1 + 1 dimensions: 

The first quantized Dirac Hamiltonian in this case reads 

H = -iy5 $+... 

where the dots stand for mass terms and couplings to external (real) background 

fields. The theory is defined in the interval -L 5 x < L. The most general 

boundary conditions (b.c.) are the ones that render H self-adjoint; it is then 

straightforward to see8 that they are classified as 

type 1 : $(L) = ,i(a+-75P) $(-L) (2) 

type 2 : X+(L)y5$(L) = 0 X+(-L)r5$(-L) = 0 (3) 

where x and $ are any wavefunctions and a,P arbitrary real parameters. In this 

letter we only study massless theories and their chiral properties, for which only 

type 1 boundary conditions are suitable. In general, type 2 b.c. break chirality. 

Consider the simplest case when there are no masses or background fields in 

Eq. (1). The eigenstates of H form right (R) (r5 = +l) and left (f?) (r5 = -1) 

branches with the b.c. given by Eq. (2). 

T/JR(L) = ei(a+P)?#bR(-L) &(L) = &+Q(-L) 

with eigenvalues (n is an integer) 

&,n=; (n+$) 

(4 

(5) 

The twisted b.c. induce an asymmetry in the spectrum. Notice that we could 

have traded the twisted b.c. in Eq. (48) f or static background fields in the 
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Hamiltonian since the eigenstates of 

H = -65 & + -y5A1 + A0 (6) 

are of the form 

x(x) = e (7) 

with x0 a constant spinor (eigenstate of 75) and choose 

L L 

a= 
/ 

AHOY ; P = 
J 

Ao(y)dy 
-L -L 

and x(L) = x(-L). 

The ground state of the theory is defined by filling up all the negative energy 

states. As usual, the second quantized field is expanded in terms the single 

particle wavefunctions and creation and annihilation operators. 

We define the ground state expectation values of the right (left) charges as 

the total number of occupied right (left) states, using a heat kernel regularization 

QR = lim c 
e-IER,rL12s ; Qe = lim c 

e-IE~~~12s~ 
s+o+ s-+0+ (8) 

E~,n<o EL,, 50 

Using (5) it is straightforward to find 

A-t-q-1 1 ; Q~ lim - - 
[ 

L 
s-+0+ s7r 

b-P) - 1 . (9) 
27r I 

= 

The above charges still have to be normal ordered. We choose to normal order 

with respect to cx = ,B = 0 (periodic b.c.). Actually Eq. (9) is true for 0 < 
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. 
c1! + /? < 1 (same for c~ - /3). As cx and p are changed adiabatically from zero to 

their final values we see that whenever c~ + ,B, (a! - p) pass through an integer, 

one right (left) 1 eve1 crosses E = 0; this level is occupied (empty) in the adiabatic 

approximation. Alternatively, the charges could have been defined by (-l/2) 

times the spectral asymmetry CE, sign(E,) e-IEnls giving the same result. The 

normal ordered adiabatic charges read 

&R = 
+pp) - - - p - - - 

; Q=QR+Q~=;; Q~=QR-QL=%* (1’) 

Consider the action (still in 1 + 1 dimensions) 

where O(x) is a background field (taken as static in what follows). The Hamilto- 

nian corresponding to Eq. (11) (defined in the interval -L < x 5 L) is 

H = -iy58, + g (12) 

and we assume periodic b.c. T/J(L) = +(-L). 

Performing the chiral rotation 

the Lagrangian (11) b ecomes a free field Lagrangian L: = x(iq)x, but now the 

boundary conditions for x are 

x(L) = e”75Aex(-L) A6 = B(L) - 8(-L) . (14 

Certainly this chiral rotation (change of variables) does not change the local 

physics, which can be seen as follows. The solutions of H11, = E$ with H given 
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by Eq. (12) are of the form 

$R(x) = 4ReikRz-ie(z) , qe(x) = 4eeiklz+ie(z) 
(754R,t! = f+R,t) 05) 

with ER = kR, El = -Ice. Periodic boundary conditions yield 

These are the same eigenvalues obtained from the Hamiltonian of Eq. (12) with 

de jdx = 0 b u with the wave functions obeying the twisted boundary conditions t 

Eq. (14). In fact, the chiral rotation cancelled the background field in Eq. (12) 

but at the expense of twisting the b.c. The physics has not changed when the 

proper change in the b.c. is taken into account. In both cases the vacuum charge 

is given by (see Eqs. (10)). 

In terms of path-integrals, we can write 

s [D+] ei-f W?+r5GWG2x = q] 
J 

[DX]e~j-~(~~)X~2~ 

Where the Jacobian accounts for the change in the measure, or 

J[fl] = dew + r”84 
det[$] ’ 

(17) 

(18) 

In the above discussion we assumed that the eigenfunctions of H obeyed 

periodic b.c.; these are the b.c. assumed on the left-hand side of Eq. (17). Since 

the fermionic path integral on the r.h.s. of (17) corresponds to a free theory, 
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periodic b.c. are assumed in the denominator of (18). Then performing the chiral 

rotations on the fields and taking into account the change in the b.c. yields 

(19) 

where T.b.C (P.b.C) t d f t s an s or wisted (periodic) b.c. clearly, 

&= dx 
s 

iS&2det[ij3 + ~“$301 = 

q&q s 
dx i&% J[e] = 1 

s(a,O) G s 
da: e 

dx ’ (20) 

In Eq. (20) the charge is normal ordered with respect to the vacuum with periodic 

b.c as imposed by Eq. (19). A ssuming locality and Lorentz covariance J[0] can 

be read off as 

The physics of the Jacobian now becomes clear; it is compensating for the 

change in the boundary conditions of the fields. The observables (currents, 

charges) are invariant under a chiral change of variables,when the change in 

b.c. is properly accounted for, and that is exactly what the Jacobian does. 

It is straightforward to generalize Eq. (21) w h en background gauge fields are 

present. Now consider the Hamiltonian of the chiral Schwinger model in the 

interval -L 5 x < L (A,(fL) = 0) 

H = (-ix)& + [Ao(x) + A1 (x)] (F) . (22) 

Since only right-handed fermions are coupled to A, this theory is anomalous.g 
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The eigenstates of (22) are the right-handed spinors 

tiR(x) = XRe 75XR = +XR (23) 

and we assume the right-handed b.c. (the left-handed are assumed to have peri- 

odic b.c. and decouple)” 

L L 

GR(L) = ei(a+P)?+!JR(-L) CY = - 
s 

n(y)dy ,f? = 
s 

&/+#h) = A4 - (24) 
-L -L 

where we have introduced the local interpolating fields 7r, 4. With the solutions 

(23) and the b.c. (24) we find 

&R=& (s+(l:+p) 6 = (Ao + Al) dy . 

When the background gauge fields vary in time adiabatically, QR = $. Since 

the type 1 b.c. (Eq. (2)) im pl ies J,(L) = Jz(-L), the total change in the charge 

can be written as 

T L 

AQR = dt 
ss 

d, J’LR 

0 -L (26) 
a, JPR = L (apAp + EPUdpAv) + . . . 

27r 

where we used Lorentz covariance. The dots in (26) stand for terms that cannot 

be obtained from the above arguments. They reflect the ambiguity in the gauge 

variant piece in (26)8 and can be obtained from known results. lo They are not 

relevant for what follows (alternatively we can work in a transverse gauge). From 
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Eq. (25) and (26) we see that if we assume that the b.c. (24) are dynamical and 

r(y, t) = d&(y,t) then Eqs. (25) and (26) imply 

JpR = & [(g/“” + P’) A, - (gpu - P’) a,$] 

(27) 
a,JpR = & [(apAp + EpVapAy) - apaqq . 

. In order to cancel the anomaly 4 must satisfy the equation of motion obtained 

from 

fzw-z[e,A] = -& (apdj2 + $ (apAp + EpVaCLAV) . (28) 

. However, we now see that tw-2 is the Wess-Zumino action proposed in Refs. 

(6-7). The th eor y h w ose action is L[$,A] - Lw-z[O,A] is then free of anomalies. 

At this stage, assuming dynamical b.c. to cancel anomalies is perhaps as unphys- 

ical as postulating the above form for lw-2. However, we are investigating the 

possibility that Cw-2 can be obtained after decoupling of heavy fermions in an 

anomaly free theory. 11 

The same idea allows one to compute the Jacobian in 3 + 1 dimensions. 

Consider a constant background (Abelian) magnetic field A, = (O,O, Bx, 0) (2 = 

Be^,). We choose the chiral basis and solve for the eigenstates of 

H$ = (-iZ! s ?-Z?-&5=E$ $(x, y, t) = eik~yeikzzqS(x) . (29) 

The solutions are the familiar Landau levels with center at x0 = Icy/B, and the 

wave functions are the solutions of the harmonic oscillator. The eigenvalues are 
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(B > 0)12 

En(h) = fd(h+l)IBI -a,B+ kz n#O. (30) 

For n = 0 there are two Weyl branches (right and left) with 

ER = -i-k, El = -k, . (31) 

Since the wave functions are localized in the x-direction, only those Landau 

levels that are a distance l/m f rom the x-boundaries will feel the boundary 

conditions, hence any effect of the b.c. along the x-directions will vanish as 

L, + co. 

Along the y-direction a twist in b.c. will shift the values of k,, thereby 

shifting the position of the Landau levels. By the previous reasoning, the b.c. in 

the y-direction will not affect the physics. But from Eq. (30) and (31), we see 

that a twist in the b.c. in the z-direction produces a shift in k, and changes the 

energies eigenvalues. However, for the n # 0 branches, there is no asymmetry in 

the spectrum, (because of the rt in (30)). Only the Weyl branches (Eq. 31) have 

an asymmetry and give rise to a change in the vacuum charge. If H in Eq. (29) 

has a term H1 = a,r5a,0(z), this term can be rotated away by a chiral rotation 

at the expense of twisting the boundary conditions in the interval -L, 5 z < L,. 

ti(x, y, Lz) = ei75Ae$(x, Y, -L,) a6 = e(L,) - 6(-L,) . (32) 

Since the Weyl branches have the same dispersion relation as the l+l dimensional 

examples, and since the n # 0 branches do not contribute we find 

B(4L,L,) A6 
&= 27r 7 (33) 

where B(4L,Ly)/2 T is the total number of states in the n = 0 (Weyl branches) l2 
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and AO/r is the result in one dimension (Eq. (16)). Lorentz covariance and 

locality then imply 

J&&O] - J,[A,o] = --& @vPfl a,6 ~~~ (34 

which is the result found in Ref.(13). N ow from the expression Jp(x) = -w, 

and following the steps leading to Eqs. (17)-(20) the Jacobian is defined such 

that 

i6~AJ’e1 = J’L[A, O] - Jp[A, 0] 
P 

The right hand side can be written in a way analogous to Eq. (19) but with the 

gauge fields included (the twist is now in the z-direction). Hence 

Jp] = e--(+37r2) j- a42 P’ITB(~) Fpu Fpo . 
(35) 

This argument can be also carried out for a gauge vortex configuration14 in the 

x - y plane. The 2dimensional zero modes yield the Weyl branches Eq. (31). 

More details of the results presented in this letter, as well as the treatment of 

massive theories, will be given in a forthcoming article. 
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