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ABSTRACT 

The evolution of a system of cosmic strings is studied following an analytic 

model introduced by Kibble and developed in a previous paper. The properties 

of a scaling solution in the radiation dominated era are studied in detail, and it is 

shown that the conclusions of the previous paper are not sensitive to changes in 

the model for loop fragmentation. The scaling solution is also compared with the 

numerical results of Albrecht and Turok. A crude attempt is also made to mimic 

transient effects in the simulations, and the implications of these transients are 

discussed. The bound on the string tension due to primordial nucleosynthesis is 

discussed in some detail. The bound at present is Gp 2 4 x 10s6. The evolution of 

a string system is also studied in the matter dominated era and in the transition 

between radiation and matter domination. The results are summarized in a 

pair of analytic fits that describe the evolution of the string system through the 

transition. 
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1. INTRODUCTION 

In a previous paper1 (I), I presented an analytic treatment of the cosmolog- 

ical evolution of cosmic strings in based on a formalism introduced by Kibble? 

The fate of a system of cosmic strings depends on a complicated energy loss 

mechanism that is presumed to allow the energy density in strings to scale like 

that of radiation. If there are no interactions between strings, then it is well 

known3’4 that the strings will rapidly come to dominate during the radiation 

dominated era. Small closed loops of string are harmless because they will os- 

cillate and eventually decay away through gravitational radiation. The difficulty 

arises because when strings are formed, the majority of the strings are in the 

form of infinite strings which cannot radiate away. If we include interactions 

which allow strings to change partners when they cross, however, then the infi- 

nite strings can lose energy by the production of loops which will radiate away. 

It is generally assumed that, through the production of loops, the infinite strings 

will lose enough energy so that their density scales as l/t2 just like the matter 

that dominates the universe. (Of course, the density in strings must be much 

smaller than the matter density.) Kibble2 has shown that such a scaling solution 

can appear naturally as a stable fixed point of his string evolution equations. He 

has also shown that it is possible that such a scaling solution does not exist. In 

this case the energy density of the strings will come to dominate the universe at a 

very early time. This would rule out the cosmic string theory of galaxy formation 
5-13 which currently appears to be quite promising. 

The success of this scenario depends critically on the probability that, once 

formed, a loop will survive for a very long time without reconnecting to a long 

string. This is necessary because the gravitational radiation rate is very slow. In 
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(I), I showed that this requires that the “parent” loops which break off from the 

network of long strings must fragment into a large number of “child loops? The 

fragmentation of the parent loops is important because large loops have a high 

probability to reconnect to the long strings. Whether the loop production rate 

and the fragmentation probability are large enough to allow a scaling solution can 

only be answered by numerical simulations of the detailed dynamics of strings. 

Preliminary indications from the simulation by Albrecht and Turokf4 are that a 

scaling solution does exist. The fact that they also observe a high fragmentation 

probability lends credence to their result. However, these simulations have a 

fairly small dynamic range so the results will have to be confirmed if we are to 

have confidence that they are correct. The implications of the possibility that 

strings will come to dominate has been investigated by Kibblef’ but throughout 

most of this paper, I will assume that a scaling solution exists so that the strings 

will never dominate. 

In this paper, the analysis presented in (I) will be extended in several ways. 

In Sec. 2, I briefly review the formalism developed in Ref. 2 and in (I), and I 

present a method for numerical evolution of the string evolution equations. The 

third section is devoted to the study of the scaling solution in the radiation dom- 

inated era. A simplified model of cosmic string evolution is used to point out an 

apparent inconsistency in the published numerical results of Albrecht and Turok. 

Their value for the number density of loops is shown to be inconsistent with the 

standard picture that loop production is the primary energy loss mechanism for 

the long strings unless the typical child loop size is very much smaller than that 

quoted from the numerical simulations!2 It is suggested that this may be the 

result of deficiencies in their simulations, but several alternative explanations are 
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explored. 

In Sets. 3.2 and 3.3, the properties of the scaling solution in a radiation 

dominated universe are studied as the various unknown parameters of the model 

are varied. A different model for the fragmentation of loops is also introduced 

and examined. Particular attention is paid to the dependence of the density of 

loops on these parameters because of the discrepancy mentioned above and be- 

cause the bound on the string tension p from primordial nucleosynthesis depends 

sensitively on this number. The results of this investigation are summarized in 

analytic fits that give the number density of loops as a function the density of long 

strings at the scaling solution, the loop reconnection suppression factor 6, and 

the probability of self-intersection ps,. [In the case of the second loop production 

function, ps, is replaced by the number of child loops, Nl.] 

One of the major results of (I) was a bound on the string tension ~1 obtained 

by limiting the density of gravitational radiation emitted by the loops to be con- 

sistent with the restrictions placed by the successful primordial nucleosynthesis 

scenario. The the energy density of the gravitational radiation emitted by the 

strings is larger than the energy density of the strings by a large logarithmic fac- 

tor. The total energy density in gravitational radiation behaves gravitationally 

just like any other relativistic particle species so its density is limited to be less 

than 17% of the density of the known electrons, photons, and neutrinos at the 

time of nucleosynthesis? Unfortunately, in (I) I misquoted this number to be 

8%. [This same mistake also appears in Refs. 17 and 18.1 Since the gravita- 

tional radiation density is proportional to @, the correct bound is a factor 

of 4 weaker than the bound given in (I). The correct bound, as given in the 

Erratum to (I), is G/L 5 4 x 106. [G is Newton’s constant.] In this paper, the 
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derivation of this bound is discussed in somewhat more detail than in (I). The 

analytic fits for the loop density are used to give the bound on Gp as a function 

of the density of long strings, 6, and ps,. Changes in the bound due to different 

assumptions about particle physics and the underlying field theory of the strings 

are also discussed. It is also pointed out that this bound conflicts with recent 

claims 1g’20 that gravitational lenses with a separation of several arc minutes are 

a predicted consequence of cosmic strings. 

Sec. 4 deals with the approach to the scaling solution from an initial condition 

similar to that used in the numerical simulations. The evolution equations are 

integrated numerically starting with an initial condition devoid of small loops in 

an attempt to mimic the approach to the scaling solution seen in the numerical 

simulations. It is shown that the string system approaches the scaling solution 

only fairly slowly, and it is argued that this may be a contributing factor to 

anomalously low value for the density of loops reported by Albrecht and Turok. 

In fact, it is noticed that for a non-negligible range of parameters, it is possible 

that the string system seems to approach a fictitious “scaling solution” on short 

time scales. Then, after a time much longer than the numerical simulations 

can run, the density in strings slowly begins to overtake that of radiation. This 

can occur when the rate of loop production is sufficient for a scaling solution 

when loop reconnection is neglected. Only after a large number of loops have 

been produced does loop reconnection become important, but when this occurs 

it interferes with loop production to such an extent that a scaling solution cannot 

be maintained. In order to rule out this unpleasant scenario it is necessary to 

obtain more detailed results from the numerical simulations. 

The evolution of strings in the matter dominated universe is studied in Sec. 
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5. First, it is shown that the scaling solution in the matter dominated era has 

several differences from the solution in the radiation era. In the matter era, very 

little loop production is needed to prevent the strings from coming to dominate. 

Since we know that loop production must be copious in the radiation era, it is 

expected that energy loss from loop production will also be an effective energy loss 

process in the matter era. This means that there must be a great deal of string 

stretching to balance the energy loss to loop production. This in turn implies 

that the density in long strings will be a substantially smaller fraction of the total 

energy density in the matter era than in the radiation era. Unfortunately, the 

prediction of the actual number density of the long strings depends the behavior 

of the long strings when their curvature is close to the horizon size, so we will 

probably have to wait for numerical simulations in the matter dominated era to 

obtain this number. Once it is obtained, however, it may not be very difficult 

to describe the behavior of strings during the transition from the radiation era 

to the matter era. This is the main result of Sec. 5.2 in which the evolution 

equations are numerically integrated through the transition. It turns out that 

even though the transition takes much too long for a numerical simulation to 

follow it, the characteristics of the transition seem to be well described in terms 

of parameters that can be determined by the study of the scaling solutions in 

both the matter and radiation eras. 
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2. THE STRING EVOLUTION EQUATIONS 

In this section, I review the formalism used to study the evolution of cosmic 

strings in (I), and I present a numerical method for solving these equations with 

arbitrary initial conditions and with a scale factor R(t) that is an arbitrary 

function of time. 

2.1 REVIEW 

This formalism treats the production and reabsorption of closed string loops 

by a system of infinite (or long) strings. It is crucial to understand these processes 

because they control the fate of the string system. It is easy to show using simple 

dimensional arguments that we can always expect loop production to be efficient 

enough if we can neglect the reabsorption of loops by infinite strings. This is 

because we have a free parameter that controls the rate of loop production. The 

loop production rate is controlled by the ratio of the scale length of the system of 

infinite strings to the horizon size. By setting this ratio to be sufficiently small, 

we can increase the rate of loop production (with respect to the expansion rate) 

until it is sufficient for the existence of a scaling solution. Once we allow for loop 

reconnection, however, this argument no longer holds. Now, if we set the scale 

length of the string system to be much smaller than the horizon, the reconnection 

rate will also become very large. Thus, in this limit we expect the system of loops 

and infinite strings to reach a state resembling equilibrium with little or no net 

energy transfer between loops and infinite strings. Therefore, it is important to 

consider the reconnection process in detail. 

In this formalism, the system of strings is divided into two classes: (1) long 

strings which include infinite strings and loops with a radius much larger than 
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the average separation between the strings, and (2) loops. The energy of the long 

strings in a comoving volume V is given by 

E PV =- 
L2 ’ (2.1) 

This equation defines the scale length of the long string, L, which is roughly 

the average distance between strings. Without interactions, the equation for the 

time derivative of E in an expanding universe is: 

I?= E; (l-2(v2)) , (2.2) 

where R is the scale factor, and (v2) is given by 

From (2.2) and (2.3) we can see how the energy density of the long strings will 

scale in several limiting cases. If the strings are moving at very small velocities, 

Eq. (2.2) tells us that the density in strings scales as ps - l/R2 as we might 

expect. If the strings move at the speed of light, we see that pe - l/R4 just like 

ordinary relativistic matter. Finally, if the scale length of the strings (L) is much 

smaller than the horizon, then it can be shown 3,~ that (v2) = f. So, in this case 

the density of strings scales as ps - l/R3 like nonrelativistic matter. Turok and 

Bhattacharjee have shown that, with no interactions, 3 is the maximum possible 

value for (v2) so that the density of a non-interacting system of strings must 

scale like ps - l/Rn where 2 2 n 5 3. 

A realistic treatment of string evolution must include the interactions between 

the strings. In order to describe these interactions, we must know the probabil- 

ity that two segments of string will intercommute (change partners) when they 
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cross. In general, this will depend on the angle and the relative velocity of the 

crossing, but we will take the intercommuting probability (p) to be a constant. 

The question of the intercommuting probability for the simpler case of global 

strings has been studied by Shellard2’ and he has found that the strings will 

intercommute in almost all cases. Therefore, I will usually take p to be 1. If the 

correct value for p is not 1, then the correct scaling solution can be obtained by 

resealing 7 such that p/7 remains fixed. 

The size of a loop will be denoted by z = e/L where e is the proper radius of 

the loop. [This means that its energy is 27r& The real radius of a loop is always 

smaller than L] The number density of loops with proper radii between A? and 

A!? + dl is be given by 

so that the energy density in loops of size x to x + dx is 

; f(x) dx . (2.5) 

Note that in general f( x can have explicit time dependence, but at a scaling ) 

solution it will be time independent. 

The most straightforward assumption to make in order to determine the 

interaction rate between strings is to treat the strings as a gas of uncorrelated 

string segments. This may not be too bad for the long strings, but it would 

clearly overestimate the probability that a loop will reconnect to a long string 

for the following reasons. For instance, when a long string collides with a small 

loop, it seems likely to collide with the loop at two points. This would mean that 

the loop is initially absorbed by the long string, but a second loop of roughly half 
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the size of the first would be produced by the second intercommutation. Also, a 

loop has a smaller cross section for a collision then an uncorrelated segment of 

the same length. These effects will be accounted for by including a factor 6 < 1 

in front of the loop reconnection term in the evolution equations. We can expect 

each of the effects mentioned above to suppress reconnection by at most a factor 

of $ so we can expect that 6 > 0.25. Perhaps 6 k: 0.5 is about right. 

If we treat the systems of loops and long strings as uncorrelated segments 

(with the one correction for loop reconnection), then the string evolution equa- 

tions can be derived? 

$1 ($t,x)) = $ (x=(x) -xbf(t,x)) +&f(x) , (2.6) 

I2 li -=- 
E R (1 - 2 (u”)) + F / x [6 f(t, x) - a(x)] dx , 

where B is an average velocity defined by 

P-7) 

(2.8) 

ur and ~7, are the velocities of colliding segments. 

Eq. (2.7) is describes the long strings. It is obtained by adding interaction 

terms to (2.2). Th e integral on the right hand side of (2.7) describes the energy 

gain from loops and the energy loss from the long strings through loop production. 

Loop production is described by the loop production function, a(x), which will 

be discussed in detail below. Eq. (2.6) d escribes the loops. The i term in the 

(2.6) is included to account for loop decay by gravitational radiation. 22’23 I will 
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set 

i= -lOGp, (2-g) 

consistent with the results of Refs. 22 and 23. I have assumed that the loops 

under consideration are small enough so that 
( > 

u&, = i, and the stretching of 

the loops can be neglected. Loops that are large enough so that this is not true 

should be included as long strings. 

If we set R = R,tN and L = 7t where R, and 7 are constants, then we can 

attempt to find a scaling solution. Eq. (2.6) becomes 

(2.10) 

+ 3(1- N) f(x) - y f(x) . 

The solution of (2.10) is 

a, 

f(x) = 7 / dy a(y) $‘~+--~)/r x ; ~ (; 1 :)3-3N+pu6E’7 , 
z 

(2.11) 

where c = lOGp/7. Substituting this into the long string equation, (2.7), we 

obtain 

00 
0 = N(1 + (u”)) - 1+ 5 

1 [ 
dya(y) y 

0 

which is a constraint equation. 
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Eq. (2.12) can be used to find a scaling solution with the following procedure: 

First, we must input (u2) and B as functions of 7. [In (I) it was argued that for 

P = 1, L should be the scale of curvature of the long strings as well as their mean 

separation. This implies that the velocities should be functions of 7.1 Next, we 

must insert a loop production function a(x) into (2.12) and adjust 7 until (2.12) 

is satisfied. Kibble2 has shown that in the radiation dominated era (2.12) will be 

satisfied by either no value of 7 or by 2 values. In the former case, of course, no 

scaling solution exists while in the second case only the larger value of 7 which 

satisfies (2.12) corresponds to a stable solution. If the initial value of 7 is less 

than the lowest value which satisfies (2.12), then the system will evolve away 

from the scaling solution toward 7 = 0. If the initial value is greater than the 

unstable solution of (2.12), then 7 will approach the stable solution. 

A somewhat different approach is probably better for finding scaling solutions 

given our limited knowledge of the loop production function. It is fairly easy to 

obtain an estimate for 7 from the results of numerical simulations, but it is more 

difficult to compute the loop production function without a very careful analysis 

of the numerical results. Therefore, if we assume that a scaling solution does 

exist, it is more reasonable to fix 7 to a value that seems to be consistent with 

the simulations and then compute the loop production normalization constant 

from the constraint equation, (2.12). Th is is the approach that is used in Sec. 3. 

2.2 SOLUTION OF THE EVOLUTION EQUATIONS WITH ARBITRARY INI- 

TIAL CONDITIONS 

In addition to the scaling solution, it is of interest to study the solution of 

(2.6) and (2.7) under conditions when a scaling solution would not apply. In 
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the period of transition between the radiation dominated era and the matter 

dominated era we would expect that the string system will transform from a 

radiation era scaling solution to a matter era scaling solution. However, there 

is no reason to expect that the strings will respond quickly to the change in 

the expansion law, so we must allow for departures from the scaling solution 

in the early part of the matter dominated era. This period is, of course, the 

most important time as far as galaxy and cluster formation is concerned, so it is 

important that it be understood. 

Another application of the method developed in this section will be a test 

of the numerical simulations. Because we will be able to evolve (2.6) and (2.7) 

for an arbitrarily long time, we will be able to test the numerical simulations by 

starting with initial conditions similar to theirs and follow the string evolution 

for a long time. This will enable us to see whether the string system can really 

evolve to a scaling solution in the time available in the numerical simulations. 

The main point of this numerical method is simply to note that the scale of 

the long string system (L) is a much more natural time that t. On the left hand 

side of (2.6) there will appear a term proportional to 

$ (;,,t.x,) = -g (;m,x,) - (9) r’(t,x) , (2.13) 

where we have neglected the i term due to gravitational radiation because it 

only has a significant effect for very small loops (which only have a negligible 

effect on the evolution of the long strings). If I discretize L and x such that 

Li+l/Li = xj+l/xj (for all i and j) then, the total time derivative in (2.13) can 
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be approximated by 

$ ( ;fbx)) = 
Ei+lL~l.f(G+l ,xj) - EiLr’f(&, xj+l) 

At . (2.14) 

This formula treats the x dependence in eq. (2.13) exactly. Using (2.14) for the 

time derivative of ff(t,x), (2.6) becomes 

f@ i+l, xj-1) = (t’z) 3 [f (ti, xi) + At F xj (a(xj) - 6 f(h,Xj))] * (2.15) 

At = ti+l - ti is an unknown in (2.15), and it must be found from the discrete 

analog to (2.7) which is 

(9)’ ($)2 = (~)“(.‘)i + A,? /x(bf(ti,x) -a(x)) dx . 

(2.16) 

Since the relationship between R and t is given by an exact solution to Einstein’s 

equations, (2.16) involves only a single unknown, At. Although (2.16) cannot 

be inverted to solve for At directly, an arbitrarily accurate approximate solution 

may be found by an iterative procedure. This allows us to find t as a function of 

L which can then be inserted into (2.15) to find f(x). 
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3. PROPERTIES OF THE SCALING SOLUTION 

IN THE RADIATION DOMINATED ERA 

In this section, the some of properties of the scaling solution, (2.11), will be 

explored. In (I), t i was noted that, for many choices of parameters, the condition 

(2.12) cannot be satisfied and no scaling solution exists. Although a priori there 

is no compelling reason to assume that nature will have chosen the parameters 

so that a scaling solution does exist, I will assume that this is the case. There are 

two reasons for this. First, this seems to be the most interesting case (modulo 

Ref. 15), and second, a scaling solution seems to be indicated by the numerical 

simulations of Albrecht and Turokf4 In Sec. 3.1, I use a simplified model for 

string evolution to check some of the numerical results that have been quoted 

from the numerical results of Albrecht and Turok. Sets. 3.2 and 3.3 are devoted 

to studying the properties of the scaling solution as the various parameters of 

the model are varied. In Sec. 3.4, I study the primordial nucleosynthesis bound 

on Gp in some detail, and I show how it varies as a function of the parameters. 

3.1 CHECKING THE NUMERICAL SIMULATIONS 

In this section, I show that there is an apparent discrepancy between some 

of the published results of the numerical simulations and the analytic results 

presented here. Although this discrepancy can be seen from (2.11) and (2.12), 

the root of the problem is very simple, and it is more transparent to examine it 

in a simple model without the complexities of loop reconnection. Later, I will 

show that including the effects of reconnection generally tends to increase the 

discrepancy. I will assume that the density in long strings is 

P LS =A;, A = 2.5 f 0.5 , (3.1) 
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which is the value quoted by Albrecht and Turok in Ref. 14. In Ref. 12, the 

number density of loops is given as 

3’2 udl 
t3lqW 3 

(3.2) 

with u B -0.01. The factor of (/3/27r)3/2 in (3.2) comes about because we have 

measured the loop size with the proper radius e rather than the ordinary radius 

used in the simulations. The energy of a loop of radius t is denoted in Ref. 12 

as pr with p N 9. Thus, the relationship between e and r is 27r.f! = /3r. 

Now if there were no loop production, the energy density of the long strings 

would scale like nonrelativistic matter. Therefore, for a scaling solution we must 

(3.3) 

have 
. 

. 
PLS = - 3$,, - hp 

. 

= - 4iP,, , 

where blp represents the energy loss through loop production. Now we must make 

some model for the formation of loops. According to Ref. 12, the typical radius 

of the child loops is 0.2t. Let us model loop production by assuming that in the 

time interval t to t + dt the only (child) loops formed have radii between t/nc and 

(t+dt)/nl (where, following Ref. 12, we should expect that n( II 5(2~//?) N 3.5). 

The reconnection of loops to long strings will be ignored. 

This assumption allows us to make a simple connection between eq. (3.3) 

and eq. (3.2) which will allow us to relate u and nl. Inserting expression (3.1) 

into (3.3), we obtain 

Apdt 
- = dpfp . 

2t3 (3.4 
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But dplp = 27r4.4 n(4?) de for loops of size t/n! since no loops of this size existed 

before time t. Substituting e = t/nl, we obtain 

AJ.@ = p312 njf2vpdt 
2t3 fit3 ’ 

or 

(3.5) 

(3.6) 

where we have used A 2 2. So, we must take nl 2 90 to obtain u = 0.01, while 

n( = 3.5 corresponds to u > 0.05 which is consistent with values obtained from 

the more sophisticated model described by (2.11) and (2.12). Clearly, there is 

a significant discrepancy here. It should be emphasized that the source of this 

discrepancy is not that I have claimed that u 2 0.1 as is stated in Ref. 18. I 

make the claim that u 2 0.03(9//3)3/2 which is consistent with nc 5 10 

The reader may wonder if it is possible that this discrepancy will disappear if 

some of the simplifying assumptions used above are dropped. Perhaps by includ- 

ing loop reconnection or using a different spectrum for the child loops, a lower 

value for u could be obtained. This seems unlikely because loop reconnection 

tends to make the energy loss process less efficient and result a larger density of 

loops. Also, if we let the child loops have different sizes, the tendency is also to 

increase the value of u. These questions will be studied further in Sec. 3.3 where 

the properties of the scaling solution will be investigated in detail. 

Another possible source of the discrepancy between the numerical results and 

the simple model is the possibility that the numbers quoted from the numerical 

simulations may not represent the actual scaling solution values. For example, 

the value of u z 0.01 was measured at t = 3t,, and it is not clear that u would 
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have reached its scaling solution value in such a short time. Furthermore, the 

density in long strings is likely to converge to its scaling solution value faster 

than the loop density, so there is no reason to expect that u has reached its 

scaling solution value just because 7 has. These questions will be investigated in 

more detail in Sec. 4 where I have attempted to reproduce the time dependent 

results of the simulations by evolving (2.15) and (2.16) from an initial condition 

similar to that used by Albrecht and Turok. We will see that the time it takes 

for the system to relax to the scaling solution may be longer than the time that 

Albrecht and Turok have allowed the simulation to run. This can contribute to 

the discrepancy between the analytic results and the numerical ones. In some 

cases, it is even possible that an apparent “scaling solution” seen on short time 

scales can disappear at later times. 

Recently, I have been informed by the authors of Ref. 14 that several im- 

provements have been made in their program. A few runs have been made with 

this improved version. The preliminary results24 are that p c 15 with u = 0.01. 

This new value for /3 would significantly lessen the discrepancy except that their 

value for A (see eq. (3.1)) is now A B 3 or 4. So the discrepancy has not yet 

been resolved. Turok has suggested that the resolution of the discrepancy may 

lie in the possibility that there is significant loop production at small loop sizes 

(- 0.01t). u f t n or unately, the preliminary data from the new simulations is not 

yet sufficient to test this hypothesis, so we will have to wait and see. 
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3.2 THE LOOP PRODUCTION FUNCTION 

In order to understand the solutions to (2.11) and (2.12) it is important to 

understand how they depend on the loop production function a(x) and to known 

what types of loop production functions are reasonable. In (I) it was shown 

that a limit on the total integral of a(x) can be obtained by assuming that the 

segments of the long strings that collide and intercommute can be regarded as 

uncorrelated. The limit is 

FL = 
/ 

up(x) dx , FL < 1 , (3.7) 

where Fl is the fraction of long string intercommutings that produce new loops. 

Even if the assumption that the long strings behave like uncorrelated segments 

is not very good, it is very likely that FL < 1 anyway. The subscript “p” has 

been added to the loop production function to indicate that this bound applies 

to the loop production function for parent loops only. The distinction between 

parent loops and child loops is made because the rate of collisions between long 

string segments clearly cannot fix the rate of child loop production. This must 

certainly depend on the probability that the parent loops self-intersect. 

As was argued in (I), the loop fragmentation process has critical importance 

for the evolution of the string system. This simplest way to include the fragmen- 

tation process is directly in the loop production function. The model for loop 

fragmentation presented in (I) assumed that a loop has a constant probability 

psr to split up into two equal sized pieces. ps, was assumed to be a constant 

independent of loop size or “generation? This led to the definition 

ul(x)=A,xn6(~-x), E-1 ps,= (3.8) 
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In order to relate al (x) to Fl, I have chosen a form for up(x), 

UP(4 = & 9(x-t/2)e(e-x), E-1. (3.9) 

Energy conservation implies that 

/ 
sup(x) dx = 

/ 
xal(x)dx , 

0 0 

so 

n+2 A, = - 
2.438 2 E -n-l 

FL . (3.10) 

Another model for loop fragmentation has been suggested by Turok.24 He 

has suggested that a parent loop fragments in such a way that all the resulting 

child loops have approximately the same size. This can be modeled by a loop 

production function of the form 

u2(x) = Nf F16(x - &) 9 (3.11) 

where Nl is the number of child loops produced assuming the typical (proper) 

radius of a parent loop is L. [If the typical parent loop size is different from this, 

then it is best just to take l/Nl as the typical size of a child loop.] Note that 

if the reconnection of loops is neglected, this will reduce to the simpler model 

introduced in Sec. 3.1 with Nl = ync. 

The rationale for introducing the second loop production function is to test 

how string evolution depends on the shape of the loop production function. The 

loop production functions al(x) and ~22 (x) are ideal for this because they represent 
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the opposite extremes of the possible shapes for the function (given that we 

must have a variable to describe the fragmentation of the parent loops). The 

function al(x) is independent of scale (except for the size of the parent loops) 

producing child loops on all scales smaller than L while uz(x) represents the 

opposite extreme. The loop production function that describes the real evolution 

of the string system is likely to be “intermediate” between the two. Therefore, we 

should expect that any conclusions that hold for both of these loop production 

functions will hold for the real loop production function as well. 

3.3 PARAMETER DEPENDENCE OF THE SCALING SOLUTION 

In this section, we will study the scaling solution under the variation of the 

input parameters. I will take 7 (the scale length of the long string system) to 

be an independent variable and Fl to be a dependent one that is fixed by the 

constraint equation (2.12). A convenient variable with which to describe the 

density of small loops is 

c7 = x3i2f(x) . (3.12) 

From (2.11) it can be seen that f(x) - xS3i2 over most of its range so that o 

will vary only very slowly with x. Another advantage of this notation is that Q 

is independent of 7 to a very good approximation. 

Assuming that o is approximately a constant, (2.4) can be used to calculate 

the total density of strings at the scaling solution. [If I use a(x = 0.01) as the 

“constant” value for cr, this gives ps to better than 5%.] Expressed as a ratio to 
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the total density of relativistic matter the density in strings is given by 

ps =’ = (32r3Gt2)-1 (&) jdx& PT??l 

128~ Q 
---da = iqzz 7312 

(3.13) 

1! 14.1 -z- fi , 
7312 

where I have used E = lOGp/7. To obtain the result in eq. (3.13), I have 

included a factor of 2/3 which is the result of using (2.11) for the behavior of 

f(x) at small x rather than taking f(x) - xS3i2 and inserting c as the lower limit 

of the integral. The relation between u and the parameter u used by Albrecht 

and Turok is 

&%a 
u=P3/ar3/2. (3.14) 

In Figs. 1 and 2, I have plotted o vs. the loop size !?/t = 7x. The different 

graphs in Figs. 1 and 2 correspond to different values of the loop production 

function parameters ps, and Nt. For all the graphs, I have fixed the density in 

long strings to be pLs = 2.5p/t2 (or 7 = l/a) which is the value reported by 

Albrecht and Turok.‘4 (u2) has been taken to be 

() ( u2 = ; 1 +lkr4 ) 
2 , (3.15) 

as in (I) with k = l/16. In the radiation dominated era, it is probably a good 

approximation that (u2) k: i. Hence, the value of k and the exact form of (3.15) 

are not very important here. 
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The sharp cusp that appears in the graphs of Fig. 2 is a somewhat unnatural 

artifact of the delta function loop production function. The curves in Fig. 2 

decrease monotonically after the cusp as a result of the absorption of loops by 

the long strings. This is in contrast to the lower curves in Fig. 1 in which Q 

does not begin to decrease until e/t - 10m3. For large values of ps,, there is 

substantial loop production even for the smallest values of e, and it is only the 

effect of the gravitational decay of loops that makes Q decrease for small e. 

Another difference between the two loop production functions can be seen 

in Fig. 3. In this figure, I have plotted the “loop production efficiency” vs. the 

probability of self-intersection ps, for both the loop production functions, al(x) 

and a2 (x) . [As before, I have fixed 7 = l/m, k = l/16 and 6 = 1.5.1 The “loop 

production efficiency” is defined to be the fraction of the loops that break off from 

the long strings that do not eventually reconnect to the long string network. In 

order to plot the efficiencies for both the loop production functions on the same 

graph, it was necessary to assign a value of fi,, for each value of Nl. Note that 

p,, is a variable defined only in the context of al (x) not u2 (x). For the purpose 

of Fig. 3, I have defined fiS,(Nl) to be the value of ps, that gives a median loop 

size of l/Nl. Thus, as in (I), we have 

i&I = 2-- WWP . (3.16) 

[The curves in Fig. 3 terminate when ps, becomes small because no scaling 

solution exists for these values.] 

A couple of the main features of Fig. 3 have already been discussed in (I): 

namely that the efficiency of loop production can be increased by either increasing 

the self-intersection probability or by decreasing 6. Now, we can also see that 
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the form of the loop production function also affects the efficiency. For a fixed 

median loop size we see that the efficiency of loop production function u2(5) 

(the 6 function) is generally about 20% larger than that for al(z). Because the 

function al(z) produces child loops of all sizes, it will give a large fraction of 

child loops that are close to the horizon size which will be likely to be absorbed 

by the long strings. Thus, producing all the child loops of the same size is the 

most efficient way for the long strings to lose energy. 

The scaling solution depends on several other parameters in addition to the 

probability of self-intersection and the form of the loop production function. 

These parameters include 7, (u2), t (see (3.8)) and 6, the suppression factor 

for loop absorption by the long strings. In this paper, I will set E = 1.5 and 

ignore any possible variation of this parameter on the grounds that my results 

will be qualitatively the same with any value for [, and that in order to change E 

enough to make a significant change in any of my numerical results I must assume 

that the radius of the parent loops is very different than the average separation 

between the long strings. 

In this section, I will take (u2) to be given by (3.15) with k = l/16. This gives 

( > U2 N f which is probably about right. If the true value of (w2) is different from 

what I have assumed, then my value for cr can be corrected with the following 

formula 

l- (v") 
u = 1 - ($) *o ' (3.17) 

where the 0 subscript indicates the values I have obtained with my assumptions. 

(v2) cannot be larger than i unless the interactions between the long strings 

cause the string system to become much more bumpy than a random walk. More 
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likely is the possibility that (u2) 5 3. [Th is seems to be what the numerical 

simulations find.] In this case, the long strings will gain energy by stretching 

according to (2.2). Th is energy must be lost through loop production, so that 

the number of loops produced would have to be increased over what I have 

assumed here. Thus, if (u2) < i, then CT > a,. This would make the discrepancy 

with the numerical simulations even larger. 

The variation of the scaling solution with 7, and to some extent 6 can be 

treated very simply by noting that Q is almost independent of these variables 

when they are in the range of interest. For the case when the loop production 

function is a delta function (eq. (3.11)), t i is not difficult to show that this is true. 

Let us insert the loop production function, (3.11), into the constraint equation 

(2.12), and solve for Ft. To first order in 6/Nl we obtain, 

F’ N 2 ’ - tu2) 
pa14l$’ 

Inserting this value for FL into (2.11) and (3.12), we find that 

(3.18) 

Q N l- tv2> ~Pq~--1/~t)/7 

$I2 
L 1-2s 

(3.19) 

cv l  - (u”> 

N;i2 (l+‘(z)) *  

Thus, when S/N, is small, cr is almost constant. Variation of Q is further sup- 

pressed by the fact that we are generally interested in only a small range of 

the possible values for 7. The numerical simulations seem to indicate that 

2 < l/r2 < 4. Thus, even if we take Nl to be as small as 2, Q varies by only 6% 

when we change 7 from the value l/m that was used above to 0.5. If Nl = 5, 

then we can allow 7 to be as small as l/3 without changing u by more than 10%. 
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Although, I have shown that 0 is insensitive to 7 only for the delta function 

loop production function, it is true to almost the same accuracy for the power 

law loop production function, al(s). Unfortunately, there is not such a simple 

argument to show that this is the case, but explicit calculation confirms that it is 

true to 5% or better. Only, when ps, > 0.95 or ps, < 0.55 does this relationship 

begin to break down. 

The values of CT as a function of 6 and p,, or Nl are summarized in Table 1. 

This gives the results of an analytic fit to my numerical evaluation of o which 

was calculated from (2.11), (2.12) and (3.12). If we combine these formulas with 

eqs. (3.13) and (3.14), we can calculate the energy density of the string system 

or Albrecht and Turok’s number density parameter v directly from the input 

parameters. The accuracy of this procedure is usually about 5% or better and 

almost always better than 10%. 

loop production loop production 

function function 

a1 (2) a1 (2) 0.5 0.5 1.31(1 - p,,)1'03 

a1 (Xl a1 (Xl 0.3 0.3 l.ll(l - p,,y 

a1 (4 a1 (4 0 0 0.76(1 - P,,)~= 

a2 (4 a2 (4 0.5 0.5 0.78N;"*64 

a2 (4 a2 (4 0.3 0.3 0.65Ni".58 

a2 (4 a2 (4 0 0 0.5 N;'-' 

6 6 t7 error 

23% Psr > o-5 

< 2% ps, > 0.35 

2 7% ps, > 0.35 

s 5% 40 > NL > 2 

54% 40 > NL > 1.5 

exact 

range of 

validity 

Table 1. Fits for Q as a function of 6 and psr or Nl. 

With the results summarized in Table 1, we can now see how the discrepancy 
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discussed in section 3.1 is modified when we include the effects of loop reconnec- 

tion. In general, including the reconnection process by setting 6 # 0 gives larger 

values for Q and Y, so it makes the discrepancy with the numerical simulations 

worse. In fact, with loop production function Q(X), it can be shown that cr is a 

monotonically increasing function of 6. To lowest order in 6/Nl, this is clear from 

(3.19). A .more general argument can also be given. From the argument given 

in section 3.1 it is clear that the density in small loops must be proportional to 

the density in long strings. However, loops that will eventually reconnect behave 

essentially like long strings because they will not ever become small enough (with 

respect to the horizon) to radiate efficiently. Thus, increasing 6 has the effect of 

increasing pLs which results in a proportionate increase in Q and u. 

For large values of Nl or ps,, this argument seems to contradict the results 

listed in Table 1. For Q(X), this is just due to the errors in the fits, but for al(x) 

with a large value for ps,, o does begin to decrease for large values of 6. This 

can happen for al(x) because the child loops are produced at all sizes. Since the 

larger loops are preferentially reabsorbed by the long strings, increasing 6 can 

have the effect of increasing the proportion of small loops that are produced. For 

6 5 0.5, this effect only dominates when psi 2 0.85, and even then it is a small 

effect. 

3.4 THE NUCLEOSYNTHESIS CONSTRAINT 

In (I), I presented a simple argument to show that the bound on the density 

of unknown particles that comes from primordial nucleosynthesis 16 can provide a 

stringent limit on the cosmic string theory of galaxy formation. [This constraint 

was found independently by Davis. l7 ] Without gravitational radiation the energy 
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density in strings would scale as l/R3 because the energy density is dominated 

by small loops which behave just like nonrelativistic matter. In a scaling solu- 

tion (when the universe is dominated by relativistic matter) ps - 1/R4, so the 

difference between pe - l/R3 and ps - l/R4 must be the energy density emitted 

in gravitational radiation. This means that the strings radiate a large fraction of 

their energy density into gravitational radiation in each expansion time. Thus, 

the total density of gravitational radiation is larger than the energy density in 

strings by the factor 4?n(t/to) w h ere to = mg/p2 is the time when the strings be- 

gin to evolve freelyT5 Since the density in strings is of the order of a few tenths 

of a percent of the density of relativistic matter (a few x mprm), and since 

en(t/t,) - 60 at the time of nucleosynthesis, the energy density of gravitational 

radiation is likely to be close to the upper bound provided by nucleosynthesis. 

[The upper bound is 17% of the density of the known relativistic matter.? ] 

Here, I present a more detailed argument taking into account the change in 

the expansion law when various particle species go nonrelativistic and annihilate 

as well as the slight change in the expansion due to the presence of strings. Let 

us assume that at to energy density in relativistic matter is given by 

Prdto) - PO = 32?r3Gt2 , 
0 

(3.20) 

and that the string density is 

t2 
Ps = VP0 g (3.21) 

where v is the ratio of the string density to the relativistic matter density intro- 

duced in eq. (3.13). Initially pgr = 0, and then it is evolved according to 

. . 
bgr = $Pa -4;psy. (3.22) 
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Eqs. (3.20), (3.21), and (3.22) can be used with the Friedmann-Robertson-Walker 

version of Einstein’s equation to yield the following solution: 

R=Ro ; 0 
$+f 

to 
0 

2+% 
Prm = PO 

t 
(3.23) 

Psr=Paq (I- (;):> . 

The quantity that is limited by nucleosynthesis is the total density of strings and 

gravitational radiation divided by the density in ordinary relativistic matter. 

From (3.23) this is given by 

(3.24) 

where the first term on the right hand side is the contribution from pe and the 

last two terms come from pgr. 

Eq. (3.24) is still incomplete because the effects of annihilation of the massive 

particle species has not been included. This will have a negligible effect on the 

string term because the strings will adjust themselves to stay in a scaling solution 

with the same fraction of the total energy density both before and after the 

transition. The annihilation will have a non-negligible effect on the density of 

gravitational radiation because the universe expands slightly faster during the 

transition so that the gravitational radiation emitted before the transition will 

be redshifted. The change in pgr/prm is given by (gi+r/gi)‘/3 where gi and gi+r 

are the effective number of particle species before and after the transition. 26 [For 
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the purpose of calculating gi, a fermion counts as 7/8 of a boson.] With the 

annihilation correction factors, (3.24) becomes 

(3.25) 

+(~)"(($-1) . . . . 

Note that the ti values that occur in (3.25) should be later than the time of the 

appropriate phase transition by a factor of about lo4 because this is roughly 

the amount of time it takes before the loops that were formed at the phase 

transition to begin to dominate the string energy density and the production 

of gravitational radiation. Eq. (3.25) can be used to calculate (ps + pgr)/prm 

as a function of q. By requiring (pa + pgr)/prm < 0.17, an upper bound on r] 

can be found. (3.23) can then be used in combination with Table 1 to obtain 

an upper bound on Gp as a function of the input parameters: 7,6, and ps, or Nl. 
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6 x 1O-5 to 1 10.75 

nucleosynthesis starts, 2’ = 1 MeV 

Table 2. Values of gi. 

In order to obtain bounds on Gp, it is necessary to make some assumptions 

about the value of g at times before the Weinberg-Salam phase transition. The 

values for gi that I have used are given in Table 2. I have assumed that there are 

no new particles with a mass less than about 1Or3 GeV which is the temperature 

when the strings begin to move freely. This minimizes the dilution of pgr that 

occurs when gi changes and leads to the strongest possible bound on Gp. These 

values of gi give the bound q < 0.0092 which is used to obtain Figs. 4 and 5. A 

more conservative assumption would be that g > 100 for T > 1 TeV so that a 

significant amount of gravitational radiation would not start to build up before 
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then. In this case, I obtain q < 0.0171 which weakens the bounds in Figs. 4 and 

5 by a factor of 3.5. The weaker bound could also apply in some of the more 

exotic cosmic string models in which the Higgs potential is very flat. With a 

very flat potential, the Higgs can get a very large expectation value even with 

a small mass term. Thus, strings with Gp - 10m6 could conceivably form at 

the Weinberg-Salam transition. Very flat potentials seem to occur in superstring 

theories compactified on Calabi-Yau manifolds:’ but these potentials are not 

flat enough to give strings with Gp - low6 that form at the weak scale. 

The upper bound on Gp is plotted as a function of ps, and l/r2 = pLst2/p 

in Fig. 4 and as a function of Nl and l/r2 in Fig. 5. The finite thickness of 

the curves in 4 and 5 corresponds to varying 6 between 0.3 and 0.5. 6 = 0.5 

provides the more stringent limit on Gk except in Fig. 4 for psr > 0.85 in which 

the opposite is the case. The shaded lines in the figures indicate the regions of 

parameter space that seem to be excluded by the numerical simulations. The 

allowed regions are l/r2 > 2.0, and ps, < 0.85 or Nt < 10. These bounds 

are intended to be conservative estimates; the actual values may imply a more 

stringent bound on Gp. The bound implied by these assumptions is Gp < 4 x 

10B6 in the case of a “desert” between 100 GeV and 1013 GeV or Gp < 1.4 x 10s5 

in the more conservative case where all the radiation for T > 1 TeV is neglected. 

One factor that has not been included in the bounds on Gp is that some 

of the string energy goes into the kinetic energy of loops which is subsequently 

redshifted away. If I use the result from the numerical simulations that uloop 2 0.2 

then this will only reduce the bound on Gp by about 4%. 

Finally, I would like to emphasize that the nucleosynthesis bound contra- 

dicts recent claims that gravitational lenses with image separations of several arc 
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minutes are a predicted consequence of cosmic 1g’20 strings. These claims have 

recently received a lot of attention due to the lens candidate with a 2.6’ image 

separation reported by Turner et. cd8 Although subsequent observations now 

suggest that the quasar pair is not lensedfg it should be pointed out that if such 

an object existed it could not be easily explained as a cosmic string. The typi- 

cal separation of the images of an object that is lensed by a cosmic string 30-32 

is 47rGp, so 2.6’ corresponds to Gp - 6 x 10m5 an order of magnitude above 

the nucleosynthesis bound. Values of G/J greater than 10s5 are also in disagree- 

ment with measurements of the microwave background anisotropy 33 as well as 
12,13 estimates of Gp from galaxy and cluster formation arguments. 

4. RELAXATION TO THE SCALING SOLUTION 

In the preceding sections, I have concentrated on the properties of scaling so- 

lutions and studied those properties under a wide range of assumptions regarding 

the various parameters that characterize the analytical model. I have assumed 

that the evolution of the string system in the radiation dominated era is in fact 

described by a scaling solution, but the evolution of a real system of strings will 

depend on the initial conditions. It is known that if the initial value of 7 is not 

too small: then the string system will evolve toward a scaling solution (if such 

a solution exists), but it is not yet clear how quickly the scaling solution will be 

reached. Since the strings have been evolving freely since to - 10m31 set ., it is 

extremely unlikely that a scaling solution would not have been reached by any 

time of interest for the galaxy formation. 

A more realistic concern is that the time it takes a string system to reach a 

scaling solution is long compared to the length of time that it is practical to run 

34 



- -.. ..-_ - 

numerical simulations. The simulations done by Albrecht and Turok started with 

only 20% of the initial string length in the form of loops, whereas in a scaling 

solution the density is dominated by small loops. Since they are only able to run 

for a short time before the horizon grows to be as large as their whole box, it is 

important to ask whether any of their results could be an artifact of their initial 

conditions. 

The most important question is, of course, whether their “scaling solution” 

could be an artifact of their initial conditions, but even if it is not an artifact, 

it seems to be quite plausible that the lack of small loops in their initial state 

may be responsible for their apparent underestimate for u. In the runs in which 

they attempt to measure Y, they start with an initial separation of strings that 

is roughly the same as that which they see in their “scaling solution? They then 

only run for a factor of 3 in time 34 before they measure u. Since their initial 

condition had few small loops, it is quite possible that their value for u is not the 

scaling solution value. Because the reconnection of small loops is suppressed, a 

large error in u would not imply that there is a similar error in the energy density 

of the long strings. 

In (I), I integrated (2.6) and (2.7) numerically in order to test the validity 

of Albrecht and Turok’s main conclusion: that a scaling solution exists. I found 

that with initial conditions similar to those used by Albrecht and Turok, it is 

indeed possible that the strings will initially seem to evolve toward a scaling 

solution and then grow to dominate the universe once a large number of loops 

have been produced. However, I argued that this scenario is only possible when 

the parameters of the model are fine tuned to be close the values which allow a 

scaling solution. With, the improved numerical method presented here, however, 
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I have been able to do a better test of this scenario, and I have found that the 

tuning required for this scenario is not so fine. 

The numerical calculations in (I) were done very crudely, and the numerical 

methods used gave rise to instabilities that limited the integration to a factor of 

20 or 30 in time. The method used here as described by eqs. (2.15) and (2.16) 

is completely stable, and can be integrated for an arbitrarily long time. 

In order to imitate the numerical simulations, eqs. (2.15) and (2.16) were 

evolved from an initial state with no small loops, i. e. f(x) = 0. This may 

seem to be a slight exaggeration of Albrecht and Turok’s initial conditions since 

they start with 20% of the initial string length in loops; however, it should be 

recognized that this 20% percent includes all loops of size greater than or equal 

to the scale length whereas I include loops of size larger than the scale length 

with the long strings. In any event, the comparison between my results and the 

numerical simulations should only be taken to give a qualitative description of 

the magnitude of the errors that may occur in the numerical simulations. 

The results of one of my numerical calculations are summarized in Figs. 6, 

7, 8, and 9. These graphs show the results of several separate calculations with 

6 = 0.5, ( = 1.5 and k = l/16 with the initial condition f(to,x) = 0. Fig. 6 

is an example of the approach to a scaling solution from this initial state with 

PSI = 0.81 and FL = 0.47. It shows how the density in loops changes with 

time. a/y2 is plotted here rather than u in order to include the 7 dependence 

of the loop density. The first curve in Fig. 6 corresponds to t = 1.5to, and the 

subsequent curves each correspond to about a factor of 8 later than the previous 

one. The behavior of the string system can be easily understood from this figure 

and Fig. 7(a) which gives l/r2 (or pLst2/p) as a function of time. Initially there 
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are no loops, and the density of the long strings begins to drop, quickly losing 

energy through the production of loops. By about t w 20to (the third graph in 

Fig. 6) a sufficient number of loops have been produced so that the absorption 

of loops by the long strings halts the decrease in the density of the long strings. 

Now, the absorption process begins to dominate slightly and the density in long 

strings starts to grow slowly. This growth is also reflected in the loop density 

which now grows slowly due to increased loop production by the long strings. 

By about t M 104to, the smallest loops reach 10s6 times the horizon size and 

disappear off the end of the graph. [If I had included the gravitational radiation 

terms in (2.15) and (2.16), then these graphs would taper off at small l/t just 

like the graphs in Figs. 1 and 2.1 For the rest of the run (until t = 1015to), the 

energy density in both the long strings and the loops increase slowly toward their 

scaling solution values. 

If I had chosen different parameters the time dependent solution would be 

qualitatively the same as long as I keep ps, _ > 0.7. If the typical child loop size 

is about one tenth of the typical parent loop size, l1 then the correct value for p,, 

is about 0.80 f 0.05. However, the value l/10 for the size of the child loops is 

just an estimate, so we should not restrict ourselves to psr >_ 0.7. In (I), I argued 

that if ps, < 0.7, a scaling solution is not guaranteed; depending on the values 

of FL and 6, a scaling solution may or may not exist. This would not necessarily 

be a problem except that for certain values of FL and 6, it is possible that the 

numerical simulation will see a transient that will mimic evolution toward a 

scaling solution. At early times, the string system would evolve in a way very 

similar to the approach to the scaling solution shown in Figs. 6 and 7(a), so 

when the simulations terminate, it appears that the string system has reached 
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a scaling solution. Only if the simulations could be run a good deal longer 

would the transient disappear and the string density begin to grow. Thus, if the 

correct value of ps, is in this range, it is possible that a scaling solution does not 

exist and that the main conclusion of Albrecht and Turok is entirely spurious. 

If this scenario is correct, it indicates that the loop production rate would be 

sufficient for a scaling solution if there was no reconnection. Once a sufficient 

density of loops builds up, however, reconnection becomes important, and the 

loop production rate is no longer sufficient. In (I), I suggested that this scenario 

was possible, but that it would only occur when the parameters have been fine 

tuned. My most recent calculations show that this is not the case; this type of 

transient occurs for a non-negligible range of parameters. 

Fig. 7 shows the behavior of the density of long strings (l/r2) as a function 

of time. Curve (a) is from the same calculation as Fig. 6, my scaling solution 

example. Note that although l/r2 starts at its scaling solution value of 3.5, it 

quickly drops to about 2.7, and then only approaches the scaling solution value 

very slowly. Curves (b), (c) and (d) show th e evolution of l/r2 with parameters 

for which no scaling solution exists, namely: psr = 0.62 and FL = 0.65, 0.55 

and 0.45 respectively. The point to emphasize here is that in all three of these 

graphs it looks as if l/r2 is approaching a constant if we see only the portion of 

the curves between t = 1 and about t B 10 that the numerical simulations are 

limited to. In each of these cases, however, the universe is doomed to become 

dominated by a mixture of cosmic strings and their gravitational radiation. Note 

that this occurs for a fairly large range in Ft. 

Things are not so bad if 6 is smaller or ps, is larger. Then, the percentage 

of loops that reconnect is smaller and the transient behavior is less pronounced. 
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The transient is also reduced if the loop production function Q(X) is used for 

the same reason. Turok24 claims that the most recent numerical results seem 

to indicate that there is significant loop production at very small sizes. This 

would indicate a fairly large value for psr. If this is confirmed, then this type of 

transient is not likely to be a serious problem although it still might contribute 

to errors in the measured value of u. 

The type of ambiguity that may be caused by a transient can be seen in 

somewhat more detail in Figs. 8 and 9 which are the analogs of Fig. 3 in Ref. 

14. They give the energy density of all the strings with a radius greater than 

r (recall that r = ~!/a) as a function of t. When the evolution is followed to 

times of order 30t,, both curves seem to approach a scaling solution. In reality, 

the string density in both figures continues to grow at later times. In Fig. 8, 

a scaling solution does exist so the only effect of the transient is to reduce the 

string density at early times. This will give rise to errors in the values for l/r2 

and u as determined by the numerical simulations at early times. The slope of 

these graphs can be used to calculate the value of the loop density parameter 

u (see Eq. (3.2)) with the formula, u = e. From Fig 8, we can see that for 

P SI = 0.81 attempting to calculate u at times as early as 3to or 6t, can easily 

give an error of a factor of 2 or 3. In Fig. 9, the apparent approach to a scaling 

solution is completely misleading because no scaling solution exists in this case. 

It should be mentioned that there is one substantial difference between Figs. 

8 and 9 and the corresponding graphs that can be obtained from the numerical 

simulations. Figs. 8 and 9 include only non-self-intersecting loops because I 

have taken loop fragmentation to occur instantaneously. The simulations, of 

course, also include loops that have not yet completed fragmenting. So, it is not 
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entirely straightforward to compare these graphs to the numerical simulations. 

Nevertheless, the figures should coincide with the simulations for small loops, so 

there is some correspondence between Figs. 8 and 9 and the simulations. 

It should also be emphasized that the transient behavior discussed in this 

section is strongly dependent on the parameters 6 and psr (or Nl) which control 

the efficiency of the loop production process. If the parameters are taken so that 

loop reconnection is very much suppressed, and the loop production efficiency is 

w 1, then both 7 and Y evolve to the scaling solution values fairly quickly. On 

the other hand, if the loop production efficiency is small, then this problem is 

even worse. Therefore, it is important to try and measure the efficiency of loop 

production in the numerical simulations in order check that a scaling solution 

has indeed been reached, and if so, to estimate the uncertainty of the results. 

5. STRING EVOLUTION INTO THE 

MATTER DOMINATED ERA 

In this section, the evolution of a system of strings will be investigated in 

the matter dominated era. The scaling solution in the matter dominated era is 

studied in Sec. 5.1, while the realistic case of the transition from radiation to 

matter domination is treated in Sec. 5.2. 

5.1 SCALING SOLUTION IN THE MATTER DOMINATED ERA 

It was originally pointed out by Kibble2 that the scaling solution has a some- 

what simpler form in the matter dominated era. If we neglect the gravitational 
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radiation terms in (2.11) and (2.12), then (2.11) becomes 

(5-l) 

and the constraint (2.12) becomes 

When z is sufficiently small, we can approximate the integral in (5.1) by taking 

the lower limit of integration to be 0. This makes the integrals in Eqs. (5.1) and 

(5.2) identical allowing them to be eliminated so that 

f(x) = ;(I - 2 (u”), ---y , for small x . F-3) 

x is considered to be “sufficiently smalln when 

2 co 

/ dYYU(Y) -K dYY4Y) - 
/ 

(5.4 
0 0 

Since I have also implicitly assumed that x >> c, it is quite possible to have loop 

production functions for which (5.3) is never a very good approximation. For 

Gp = 10w6, this occurs for ps, > 0.9. For psr d 0.8, however, it is not too bad. 

Just as in the radiation dominated era, it is convenient to define a loop density 

parameter, 

Qm E Xf(x> 9 (5.5) 

that scales out the asymptotic x dependence. The matter era analog of Fig. 1 is 

Fig. 10 which is a plot of Q m as a function of e/t for different values of psi. The 
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other parameters are fixed at exactly the same values as those in Fig. 1 except 

that k = l/5. Note that Q m is constant over a large range of e/t only when ps, is 

fairly small unlike u in Fig. 1. This is because the condition (5.4) does not hold 

for a large range in x when psr is large. 

From (5.3) it is clear that in the matter dominated era the energy density 

of the strings is no longer dominated by the smallest loops. Instead, there is 

roughly an equal energy density in every logarithmic interval of loop size. The 

total energy density only depends logarithmically on the minimum size of the 

loops (& ks 10Gp). This means that the in a matter dominated universe, the 

total string energy density scales as log(Gp) Gp rather than (Gp)li2 which is the 

case during radiation domination. 

Although the evolution equations are simpler in the matter dominated era, it 

is actually more difficult to study the scaling solution in the matter dominated era 

because we can no longer assume that (u2) z f . From Eq. (5.2), we can see that 

if (u”) were 3, then the right hand side of (5.2) would have to vanish implying 

that a(x) = 0. But, we know that u(x) must be rather large in the radiation 

dominated era so that the long strings can lose energy fast enough to allow 

PLS - 1/R4. In the matter dominated era, this energy loss mechanism must be 

balanced by the stretching of the strings, and this implies that (u2) $ f. We can 

no longer get away with assuming that string stretching is negligible because it 

is the only energy increasing process available to balance the energy loss through 

loop production. Thus, in order to solve for a scaling solution in a universe is 

dominated by nonrelativistic matter, it is necessary to have a reasonable form 

for (u2) as a function of 7. 

Unfortunately, without further numerical simulations, it is difficult to make 
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any quantitative statements about (u2). S ome qualitative statements can be 

made, however. It is a clear from energy conservation that the scale length of the 

strings in the matter dominated era (7m) must be significantly greater than the 

scale length during the radiation dominated era (rr), so the value of (u2) must 

be significantly smaller. It can also be shown that if (u2) is a reasonably steep 

function of 7, then the value of 7 = 7m at the scaling solution depends strongly 

on the form of (u2) but only weakly on the other parameters such as 6 and psi. 

For instance, if I use (3.15), then k = l/16 + 7m w 1.5, k = l/5 + m = 1.3, 

and k = l/2 + 7m w 1.0. 

5.2 STRING EVOLUTION DURING THE TRANSITION TO MATTER DOM- 

INATION 

When we study the evolution of strings in the radiation dominated era it is 

generally only necessary to study the behavior of the scaling solution. This is 

because we are generally interested in studying the strings a long time after t, 

(the time when they begin to move freely). So the strings have enough time to 

evolve to a scaling solution before we have any interest in them. In contrast, 

we are interested in string evolution at the very beginning of the matter dom- 

inated era because this is when the loops that are expected to be responsible 

for the formation of clusters of galaxies are formed. Therefore it is important to 

understand the behavior of strings during the transition period in some detail. 

This can be accomplished through numerical integration of the evolution 

equations using the method given by Eqs. (2.15) and (2.16). First, we need the 

solution of Einstein’s equation that describes the transition. The solution for a 
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universe with both matter and radiation (p - (R + Re4)/R4) is 

1=2-L [(&j\iF+j * t (5.6) 

This can be inverted by the standard formulas for solving cubic equations to yield 

a (very messy) analytic expression for R(t). 

With (5.6) and its inverse, (2.15) and (2.16) can now be iterated numerically 

through the transition to the matter dominated era. I have done this calculation 

for 93 different sets of parameters, starting with a scaling solution at t = 10s5t,, 

and running until t = log t,,. The parameters were chosen to have values that 

seem to be consistent with the results of the numerical simulations. The following 

ranges of parameters were used: 0.46 < 7r 5 0.76, 0.66 5 ps, 5 0.94, 4 5 Nl 5 

20, 0 2 6 2 0.7, and 0.02 2 k 2 0.5. In addition, several runs were done with 

(u2) given by functions other than (3.15). 

My results for y(t) can be summarized with the following analytic fit, 

7m(t/t*)’ + 7r 
7 = (t/t*)< + 1 ’ 

This expression fits the numerical results remarkably well; the rms error was less 

than 0.5% in each of the 93 runs. It is also somewhat remarkable that all of 

the parameters in (5.7) can be determined to a reasonable accuracy if we know 

only the scaling solution values for 7 in both the radiation era and the matter 

era. [These are 7r and 7 m respectively.] < turns out to be almost independent of 

the input parameters with a mean value of 5 = 0.47 with a variation of at most 

10%. Deviations from r of 10% occur only at the boundaries of the parameter 
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space that has been explored. The variation in t* can be given by the following 

expression, 

[O-78+ 2-93(7m -7r)-O.65(7: - $)I . (5.8) 

The maximum error from this expression is about 5% for .fh (te/teq) or 20% for 

t *- 

The fact that y(t) is essentially independent of all the parameters except for 

7r and 7m seems to indicate that the time scale of the string system’s response 

to the change in expansion rate is much slower than the change in the expansion 

rate. This means that during the transition, the strings are very far from the 

type of equilibrium that characterizes a scaling solution. This also explains why 

the time when the strings are midway through their transition, t*, tends to be 

roughly a factor of 50 greater than t,,. +(t*) is roughly the same as it would be 

if R(t) changed discontinuously from R - t’i2 to R - t2j3. If (u”) = a, then 

from Eq. (2.7) we get 9 = 7/4t when R changes discontinuously. This is nearly 

identical to the result obtained from Eq. (5.7) at t = t*: +(t*) = g/2t. 

My results for f(t, x) can also be summarized with an analytic fit, 

f(t,X)=y (l+‘Atq-$+~m > * (5-g) 

This fit typically has an rms error of about 10%. The parameters C and Cm 

are to be identified with the loop density parameters 0 and urn introduced in 

the previous discussion of the scaling solutions. C and Cm are to be considered 

to be constants rather than slowly varying functions of x like u and 0,. The 

best values for these parameters are obtained by setting C = cr(x = 10s2) and 

Cm = Um(X = 10m4). 
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The parameter q is a constant independent of the input parameters to a good 

approximation. Only at the edges of the parameter range does the deviation of 

q from Q = 0.47 approach 10%. It is not difficult to understand why q w $. 

Since small loops obey plooPs - Rs3 just like nonrelativistic matter, the density 

of loops with a fixed size e should just scale like tv2 in the matter dominated era 

(assuming. that loop production at the scale of e is small). In the expression for 

the energy density, (2.5), it can be seen that the prefactor of tm2 is carried by 

the factor E/V so that f(x) dx should be independent of time. Since x = l/$, 

the expression (5.9) can be made independent of t for small x and large t only 

by setting q = k. Thus, (5.9) seems to have the basic properties that we expect 

of it at small x: f(t, 5) - axm3i2 in the radiation era, and f(t,x) - omz-l well 

into the matter dominated era. It also has a term proportional to t-1x-3/2 to 

describe the behavior of loops that form during radiation domination, but that 

survive into the matter era. 

Unfortunately, there are no such simple interpretations for the parameters A 

and CL The parameter A was found to be roughly A = 0.18 f 0.06 where the 

range of values for A corresponds to the range of parameter space that has been 

explored. In general, A seems to be a function of ps, (or Nl), 6, and k. It tends 

to be largest when loop reconnection is very much suppressed. The parameter, 

cy is included to take into account the falloff of f(x) at x - 1. In fact, it does not 

provide a particularly good fit with either loop production function. However, 

since the model assumes that loop fragmentation takes place instantaneously, 

there is no reason to expect that the model would give the right values for f(x) 

near x - 1 anyway. With the loop production function al(x), the typical value 

for Q was around 2. With uz(x), a e-function cutoff ,8(1/Nl - x), should be 
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understood to multiply Eq. (5.9). With th is cutoff, higher values for (Y were 

possible depending on the value of Nf. For Nl = 10, the typical value of cy: was 

about 4. 

6. SUMMARY AND CONCLUSIONS 

I have extended the study presented in (I) of the evolution of a system of 

cosmic strings using an analytic formalism based on the work of Kibble? The 

scaling solution that is expected to describe string evolution in the radiation 

dominated era has been studied in great detail. The results of this analysis 

are summarized in Table 1 which gives approximate analytic formulas for the 

loop density parameter Q as a function of the loop reconnection factor 6 and the 

probability of self-intersection (represented by ps, or Nl depending on which loop 

production function is used). This formula for 0 can easily be translated into a 

formula for the number density of small loops in terms of 6, ps, (or Nl), and 7. 

The results for the small loop density seem to be in conflict with the loop density 

obtained in the numerical simulations of Albrecht and Turok by a factor of - 3 

(assuming psr 5 0.85 or Nl 2 10). This discrepancy does not depend of the form 

of the loop production function or any of the parameters in the model except for 

ps, and Nl. Albrecht and Turok’s value can be obtained only when the typical 

child loop size is very small i.e. if ps, N 0.95 or Nl N 60. Turok has suggested 

that such small loops may actually be seen in the simulations; however, the data 

from the simulations is not yet sufficient to confirm this. 

In Sec. 4, I tried to look for possible systematic errors in the numerical 

simulations that may result from their initial conditions. My approach was to 

solve Kibble’s evolution equations numerically starting from an initial condition 
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similar to that used by Albrecht and Turok. It was shown that the loop density 

can be underestimated by a factor as large as 2 or 3 when it is measured at 

t = 3t, as Albrecht and Turok have done. If ps, < 0.7, the lack of small loops 

in the initial state used for the numerical simulations can lead to very deceptive 

results. With these parameters, I have shown that the string system can have a 

transient behavior that mimics relaxation to a scaling solution. Eventually, this 

transient behavior disappears and string density begins to grow, but this may 

only occur on a time scale which is longer than the simulations can be run. The 

correct value for ps, seems to be greater than 0.7, so this type of transient may be 

unphysical. However, we will probably have to wait until the numerical results 

have been closely fit to an analytic model before we can be sure of this. 

The upper bound on Gp that comes from the primordial nucleosynthesis 

limit on the energy density of gravitational radiation has been calculated in 

somewhat more detail than in (I), and I have shown how this bound depends 

on the parameters and assumptions of the model. I have emphasized that this 

upper bound, Gp 2 4 x 10m6, is inconsistent with claims that objects that are 

gravitationally lensed by cosmic strings will have a typical separation of an arc 

minute or more. 

Finally, I have followed the evolution of the string system into the matter 

dominated era by integrating the evolution equations. Although the density of 

long strings at the matter era scaling solution remains to be found by numerical 

simulations, it clearly must be much less than the density in the radiation era. My 

calculations of string evolution through the transition from radiation domination 

to matter domination show that the transition probably takes much too long to 

be handled by a numerical simulation. Fortunately, the behavior of the string 
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system can be described fairly accurately by analytic fits to my results. The free 

parameters in these analytic formulas can be almost completely determined from 

the scaling solutions in both the radiation and the matter dominated eras. 

The next step in the study of cosmic strings must be to do a detailed analysis 

of the numerical simulations with an analytic model such as the one invented 

by Kibble which has been developed here. Without help from the numerical 

simulations, we are left with a large number of unknown parameters, so it is 

difficult to make any firm predictions with the analytic model alone. Similarly, 

if we rely on only the numerical simulations, we can never be sure that the 

simulations are not being influenced by some unknown systematic problem. Thus, 

probably the only way to solve the problem is to fit all the free parameters of the 

analytic model directly from the simulations. 
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FIGURE CAPTIONS 

The loop density parameter, u vs. loop size l/t using the loop production 

function al(x) with e = 1.5, 7 = l/m and 6 = 0.5. 

The loop density parameter, u vs. loop size t/t using the loop production 

function uz(x) with 7 = l/m and 6 = 0.5. 

The loop production efficiency is plotted as a function of ps, for the loop 

production function al(x) (solid lines) and for uz(x) (dotted lines). [The 

relationship between Q(X) and ps, is given in eq. (3.16).] 

Contour plot for the bound on Gp due to nucleosynthesis constraints on 

the density of gravitational radiation (using al(x)) as a function of ps, and 

l/r2 =PLst2/P. 

Contour plot for the bound on Gp due to nucleosynthesis constraints on 

the density of gravitational radiation (using az(x)) as a function of Nl and 

l/r2 = PLd2/P. 

The density of loops (with a factor of l-3/2 scaled out), u/y2 vs. the loop 

size l/t for different times as the scaling solution is approached from an 

initial condition with f(to,x) = 0, psr = 0.81 and 6 = 0.5. 

The density of long strings, l/r2 = pLst2/p is plotted as a function of time 

from an initial state without small loops for the following parameters: (a) 

P sI = 0.81 and FL = 0.47. (b) ps, = 0.62 and FL = 0.65. (c) psr = 0.62 and 

Fl = 0.55. (d) ps, = 0.62 and FL = 0.45. In all graphs, 6 = 0.5. 

Energy density of loops with radii greater than t, p,p/t2 vs. (2t/r)‘i2 at 

selected times starting with f(t,,,x) = 0 for ps, = 0.81 and 6 = 0.5 as in 

Fig 7(a). 
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9. Energy density of loops with radii greater than r, prp/t2 vs. (2t/r)li2 at 

selected times starting with f(to,x) = 0 for ps, = 0.62 and 6 = 0.5 as in 

Fig 7(b). 

10. The loop density parameter for the matter dominated era, am vs. loop size 

L/t using the loop production function al(x) with c = 1.5, rr = l/m, 

k = l/5 and 6 = 0.5. 
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