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ABSTRACT 
We review the important notion of the dynamic aperture of a storage ring 

with emphasis on its relation to general ideas of dynamical instability, notably 
the transition to chaos. Practical approaches to the problem are compared. 
We suggest a somewhat novel quantitative guide to the old problem of choosing 
machine tunes based on a heuristic blend of KAM theory and resonance selection 
rules. 

INTRODUCTION 
Nowadays, machine designers are much exercised by the dynamic apertures 

of their storage rings. Roughly speaking, the dynamic aperture, or non-linear 
acceptance, is the region around the central closed orbit in which single par- 
ticle motion is stable. The term itself only recently came into use but neatly 
encapsulates the essence of what it is meant to describe. 

Formerly, the aperture tout court of a synchrotron or storage ring was what 
is now variously described as the physical or mechanical acceptance or aper- 
ture; that is, the aperture determined by the vacuum chamber or other material 
obstruction presented to the beam. 

To explain the distinction, we recall that, in terms of action-angle variables 
of linearised motion (R.D. Ruth in Ref. l), J = (J,,J,,J,), 4 = (&,#J~,+~), the 
radial displacement of a particle at some azimuth 8 = s/R may be written 

de) = dZZCV+os (h + 5W)) + tl,(e) J~~;;cos (h + h(e)) . (I) . d 
6 

The vertical displacement y is similar and the Hamiltonian has the form 

H(4, J) = Y . J + {nonlinear terms in 4 and J}. (2) 

The actions, J, are exact invariants only insofar as the oscillations are linear, 
although perturbation methods may be used to find approximate invariants in 
certain other cases. The average of .7Z,Y over all the particles in the beam is 
the corresponding emittance, E=,~. Part of the displacement is attributed to 
the instantaneous momentum deviation from a central value, 6 = (p - po)/po, 

* Work supported by the Department of Energy, contract DE-AC03-76SF00515. 
+ Permanent address: CERN, CH-1211 Geneva 23. 

Invited paper presented at the 2nd Conference on the Intersections between 
Particle and Nuclear Physics, Lake Louise, Canada, 26-31 May 1986 



through the dispersion function, qz. The amplitude of the betatron part of the 
oscillation is given by the P-function. If the beams are bunched, 6 undergoes 
synchrotron oscillations and is also a dynamical variable, as indicated in (1). 
Often, however, synchrotron oscillations are so slow that they can be regarded 
as a parametric modulation of betatron motion. The p-, rl- and $-functions are 
determined by the focusing structure, independently of any particle. 

Generally, the phases 4 may take all values independently with equal prob- 
ability so that the mean square beam size is 

Similarly for (y2). T o avoid loss of particles in the tails of the distribution, 
these dimensions have to be significantly less than the physical aperture. How 
much less is different for e+e- storage rings, where the emittance is determined 
by radiation effects, and hadron colliders, where it depends essentially on the 
injection system. The beam size must also stand in a similar relationship to the 
dynamic aperture and, particularly in the new generation of large colliders and 
synchrotron light sources, this can turn out to be the more stringent requirement. 
The dynamic aperture is a 6-dimensional subset of (4, J) space. 

The number of betatron or synchrotron oscillations per turn (as J + 0) is 
called the tune of the machine and is also determined by the lattice, although 
small adjustments are easily made. The tune vector v = (vZ, vY, vs) plays a 
fundamental r61e in determining single-particle stability. Instability is associated 
with resonance conditions k . v = p where k = (ICI, k2, k3) E Z3 is an integer 
vector and p E Z is an integer related to the harmonic of the revolution frequency 
at which nonlinear terms drive the resonance. A working point diagram like 
Figure l(a) is a useful aid in the avoidance of resonances. 

Some resonances do not lead directly to instability but instead cause beating 
of amplitudes. Nonetheless it is important to avoid these too since the beating 
may lead to particle loss at the physical aperture. Thus, the two concepts of 
aperture are not completely distinct. 

If the machine were perfect, the betatron oscillations could be made lin- 
ear (with pure quadrupole focusing). The dynamic aperture would be infinite 
in both betatron degrees of freedom but the momentum acceptance would be 
almost zero. Since ag # 0, the natural chromaticity (i.e. betatron tune depen- 
dence on momentum) has to be compensated by the introduction of sextupoles. 
Careful arrangements of sextupole families are used in large machines to cancel 
the linear and quadratic parts of the chromaticity. A few other harmful effects, 
e.g. systematic excitation of low order resonances, can be removed at the same 
time. However the interactions of one sextupole with others (or itself on later 
turns) generate driving terms for resonances of arbitrarily high order and there 
remain the field errors (especially in superconducting magnets). 

The oscillations are then necessarily non-linear and the betatron tunes, 
where they can be defined at all, are functions v(J) with many singularities 
and folds related to resonances and chaotic layers. It is impossible to avoid 
this, since the resonance planes form a dense web in v-space and, generically, 
there is no way of eliminating the tune-dependence on amplitude. It is now a 
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commonplace that the interactions of many resonances will inevitably lead to 
chaotic motion in some regions of the phase space. 

THE PRACTICAL APPROACH: TRACKING 
In practice, most estimates of dynamic aperture are made by computer 

tracking of particles through models of the lattice. Simulated random errors 
in magnetic fields or magnet positions may or may not be included. 

Limited computer time forces a number of compromises on us: fast algo- 
rithms (e.g. thin lens approximation) have to be preferred to more accurate but 
slower methods; only a 2- or 3-dimensional section of initial condition phase 
space can be sampled; the number of turns of the machine must be limited, 
typically to a few hundred; the sampling of possible errors has to be extremely 
limited; although tracking results are very strongly affected by the tune values, 
only a few of these can be tested, etc. 

In the face of such overwhelming difficulties, the practical stability criterion 
in fairly general use might be baldly paraphrased as: If, for a given lattice design, 
with a few typical sets of random errors, and a particular set of tune values, a 
particle with initial betatron emittances e,, eY, an initial momentum deviation 
6 and initial phase zero in all three degrees of freedom survives for (say) 400 
turns, then particles with the same amplitude and arbitrary phases will be stable 
for the same lattice with most other set of errors and most reasonable tunes. 
A “reasonable” tune satisfies a number of well-known criteria concerning the 
avoidance of the resonances one can expect to be driven in a given lattice. For 
hadron colliders particularly, one may add the further caveat that the tracked 
orbit must remain essentially indistinguishable from a linear motion. 

The dynamic aperture is then taken to be the set of all initial conditions 
generated in this way from the largest connected set of stable conditions (usually 
this includes the origin) in the sampling section. 

Clearly this stability criterion is far removed from anything which can be 
found in the mathematical theory of dynamical systems. From a strictly logical 
point of view, it also sounds like wild optimism since we know that even millions 
of turns of apparently regular, stable motion may be just the initial segment of a 
chaotic orbit which will eventually find its way to large amplitude-such orbits 
can sometimes be found more quickly by finely scanning the sampling section. 

Yet this approach seems to work quite well! 
It is difficult to believe that the survival of the last invariant torus is an 

adequate criterion for stability of a particle beam. With or without the help 
of external perturbations, particles may easily jump or bypass such a flimsy 
barrier. One cannot avoid including some narrow chaotic regions in the dynamic 
aperture. On the other hand, regular orbits, particularly those associated with 
resonant beating, may have to be rejected. 

It is not easy to distinguish regular from chaotic motion in systems with 
three degrees of freedom. Two-dimensional phase projections usually show only 
a cloud of points, but much more information can be obtained from watching 
a “movie” of the motion. Otherwise, computational means of making the dis- 
tinction include Lyapounov exponents, reversal tests (A. Wrulich in Ref. 1) and 
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Fig. 1 Tune diagram and C(Y) for K = {k E Z3 : llkll 5 7, k3 = 0} 

fractal dimensions of orbit power spectra (J.M. Jowett in Ref. 2). 

A GUIDE TO CHOOSING Y 
KAM theory suggests the definition of a function 

which, in a well-defined sense, measures the distance of Y from the resonance 
most likely to influence it a priori; large values of C(Y) indicate a better chance 
of stability. The sets of integer vectors K c Z3 and harmonics P c Z are chosen 
with the help of selection rules reflecting the best available judgment of which 
resonances are important, e.g., if the lattice has superperiodicity N, then p must 
be a multiple of N for the systematic resonances. Placing an upper bound on the 
order IlkI] limits k to an octahedron. Figure l(b) shows C(Y) in a small portion 
of the vz-vY plane. In one dimension, maximising C(Y) leads, in principle, to a 
v value related to the “golden mean” but its S-dimensional analogue is not yet 
fully understood. If detailed information on resonance widths were available, it 
could be incorporated into (4). The width of the peaks of C(Y) is also important. 
In other words, to accommodate the distribution of amplitudes, and therefore 
tunes, we should look for regions, rather than points, in v space where C(Y) is 
large. 
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