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ABSTRACT 

Electromagnetic fields of a point charge moving on the axis of an 
infinitely long straight cylindrical superconducting pipe with a sud- 
den change of its cross section are found. The longitudinal coupling 
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be applied to some other geometries of interest. 
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1. INTRODUCTION 

The problem of finding the electromagnetic fields created by a charge moving 

through various geometric structures bounded by metallic walls has an important 

bearing on the accelerator theory. Apart from evident need for reliable evalua- 

tion of the energy loss into higher modes, there is also an important problem of 

evaluating the coupling impedance due to changes in the particle environment. 

While for a long bunch (in comparison to the relevant dimensions of the consid- . 

ered structure) there are several reliable numerical codes which do the job, they 

rapidly become too time consuming for short bunches. 

Here we present the results of calculations of electromagnetic fields radiated 

by a point charge moving on an axis of a cylindrical superconducting pipe with 

an abrupt change in its cross section. From them then we find the longitudinal 

coupling impedance. The geometry and the coordinate system (cylindrical) is 

sketched in Fig. 1. For certainty we consider the case of a charge coming out of the 

bigger pipe of the cross section radius a and entering the narrow pipe of the cross 

section radius b. The opposite case of a charge exiting from the narrow pipe and 

entering the bigger one can be considered in a similar way. Coupling impedance 

of a cross section change for a planar geometry was considered in Ref. 1. 

We see three reasons for conducting the present work. First, it is useful to 

consider a problem theoretically since it gives better understanding of details 

of the radiation process for given geometry. Second, the numerical results ob- 

tained here are in a sense complimentary to purely numerical results of existing 

codes, providing an answer in the parameter regions which can not be reached by 

existing codes. Third, the results may be interesting in themselves sometimes. 

For example, high frequency instabilities within bunches depend on the average 
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coupling impedance over a broad frequency band. Hence a simple summation over 

an independent cross section jumps is a rather good approximation in such cases. 

Besides, the case of a pipe with a flange (which is an interesting case in itself) 

can be obtained from our results in the limit a + 00. The approach developed 

here can also serve as a starting point for investigating other geometries (such as 

a cylindrical scraper, for example). 

The current density of a point charge moving on the axis of the pipe is 

j = e,O +@+e, G  “’ 6(r) S(z - cpt) , 

where cp is the charge velocity. If one defines the Fourier components of any 

vector V for the angular frequency w by expression 

+oO 
J dtV exp(iwt) , 

-CC3 

then the Fourier components of the current density is 

J=e,O+eeO+e, $-f$ exp (W/4 , 

where 6(r) is Dirac’s radial b-function. 
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2. ELECTROMAGNETIC FIELDS 

Due to symmetry of the problem electromagnetic field has only three nonzero 

components:.&, E,, and Ho. The Fourier components of the solutions of the 

Maxwell equations which satisfy the boundary condition E,(z) = 0 on the pipe 

wall for z < 0,r = a and the radiation condition at z + -oo (conversely, 

condition E,(Z) = 0 on the pipe wall for z > 0, r = b and the radiation condition 

at z + 00) are known.2 The radial component is: 

(2.1) 

where the synchronous (with the particle) part of the field is 

i,“- = (qT/m$) exp(ikz/P)[Kl(n-) + Il(n)&(m)/10(~a)] (2.2) 

and the radiated (reflected) part of the field is 

EP- = iC,B, (vn/a)J1 (vnr/a)X,, exp(--izX,,) . 

Analogously two other components are: 

and 

P-3) 

(2.5) 

where 

k,“- = -i(qT/myP) exp(ikz//?)[Ko(rr) - Io(rr)Ko(ra)/Io(ra)] , P-6) 
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Ef- = CnB,(vz/a2)Jo(vnr/a) exp(-iA,,) (2.7) 

&f- = (qT/xc) exp(ikz/P)[Kr(rr) + Ir(rr)Ko(ra)/1o(ra)] , P-8) 

gr- = -ikC,B,(v,/a)J1 (v,g/a) exp(--iA,,) . P-9) 

Here k = w/c, r = k/y@, 7 = l/dm,Ko, K 1, I 0 and 11 are modified Bessel 

functions of the second and the first kind, respectively and of the zeroth and first 

order, correspondingly.& and 51 are Bessel functions of the first kind and the 

zeroth and the first order, correspondingly. The propagation constants A,, are 

A,, = dk2 - ui/a2 , (2.10) 

with the following choice of the sign of its imaginary part (that choice is defined 

by the radiation condition): 

ImX,, > 0 , (2.11) 

vn are defined by equation J-J(v~) = 0 and are understood to be ordered: 

211 < u2 < . . . . . < u, < u,+l..., n = 1,2, . ..oo. 

In the same way the Fourier components of the solutions of the Maxwell 

equations which satisfy the boundary condition E,(z) = 0 on the pipe wall for 

z > 0, r = b and the radiation condition at z + 00 are: 

g+ = p+ + E”R+ 
r r r 3 (2.12) 

where the synchronous part of the field is 

is+ = (qT/@) exp(ikz/P)[Kr(rr) + Ir(rr)KO(rb)/Io(rb)] , r 
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and the radiated (diffracted) part of the field is 

gR+ = -;C,B,+(v,/b)Jl(v,r/b)X*, exp(iz&) . r 

. 
Analogously two other components are: 

and 

ii+ = Es+ + gR+ 
6 e e ’ 

where 

is+ = -i(q,/,cyP) exp(ikz/P)[Ko(v) - Io(n)Ko(~b)/IO(~b)] , z 

i:’ = C,&(v~/b2)Jo(v,r/b) exp(izXa,) , 

@+ = (q+c) exp(ikz/P)[Kl(Tr) + Il(~r)Ko(~b)/I&b)] , 

gR+ = -ikC,B~(v,/b)J1(v,r/b) exp(izXa,) . 6 

The propagation constants Xbn are defined by 

Xb, = &qG ) 

with the same choice of the sign of its imaginary part 

ImXb, > 0 . 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

In all equations above B,f are unknown coefficients to be defined by the 

boundary and continuity conditions in the plane z = 0. 
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Each term in the expressions for the diffracted field describes either a nth 

wave propagating in the positive z direction, if k > v,/a, or an evanescent wave, if 

k < v,/a. Similarly, each term in the expressions for the reflected field describes 

either a nth wave propagating in the negative z direction, if k > v,/b, or an 

evanescent wave, if k < un/b. For any given k there are finite number of the 

propagating and infinite number of evanescent waves. 

3. BOUNDARY AND CONTINUITY CONDITIONS 

On a perfectly conducting wall the tangential component of the electric field 

should be zero. In our case that means that the radial component of electric field 

for all b < r < a should be zero at z = 0. For the charge entering the narrow pipe 

&(r,O) = 0 . (3.1) 

Conversely, for the charge exiting the narrow pipe 

i@(r,O) = 0 . (3.2) 

In the plane z = 0 but in the opening of the pipe all the fields components 

should be continuous: 

For 0 < r < b 

i$(r,O) = iZ,(r,O) , 

Ez(r,O) = E;(r,O) , 

i$(r,O) = i$(r,O) . 

P-3) 

(3.4) 

(3.5) 



Since three functions E,,E, and Ho are not arbitrary but are solutions of 

Maxwell equations one of them (3.4) or (3.5) is redundant. It is sufficient to 

. 
solve the system of two equations, for example (3.3),(3.4). 

At this point it is convenient to introduce the following notations 

K=ka, 

P = b/a , 

u = ra = ka/py , 

M = qk/my2p2 , 

G(r,d) = K&r) + Il(~r)&(~d)/Io(~d) , 

Go(r,d) = K&r) - Io(~r)&(~d)/Io(~d) , 

where d = a or b, then 

P-6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

E,“ = yMGl(r, b) exp(ikz/P) - iC,B~(u,/b)J1(unr/b)Xbn exp(izXb,) , (3.12) 

@ = -iMGo(r, b) exp(ikz/P) + C,&(u~/b2)Jo(unr/b) exp(iz&) , (3.13) 

@ = yPMGl(r, b) exp(ikz/P) - ikC,B~(y,/b)J~(u,g-lb) exp(iz&) , (3.14) 

& = 7MGl (r, a) exp(ikz/P)+iC,B, (un/a)J1 (unr/a)Aan exp(--izX,,) , (3.15) 

& = -iMGo(r,a) exp(ikz/P) + CnB;(u~/a2)Jo(unr/a) exp(--izX,,) , (3.16) 

&- = TPMGl(r, a) exp(ikz/p) - ikCnB,(un/a)J1(unr/a) exp(-izX,,) . (3.17) 
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Substitute now these expressions into equations (3.3),(3.4) and obtain the 

. following system of equations which define unknown coefficients B,f: 

C,B~$T,(v.r/b) = iM[Gl (r, b) - Gl(r, a)] + C,B,$o(v.r/a) , (3.18) 

irMG (r, a), ifb<r<a; 
= 

-iyM[Gl(r, b) - Gl(r,a)] - C,&~J~(unr/b)X~,, if r < b . 
(3.19) 

The system of transcendental equations (3.18),(3.19) can be transferred into 

a system of linear algebraic equations by using the following property of orthog- 

onality of Bessel functions on the interval 0, d: 

d 

/ 
rdrJo(u,r/d).7o(u,r/d) = cSnmd2Jf(un)/2 . (3.20) 

0 

To be able to use the orthogonality one needs first to substitute equation 

(3.19) containing the first order Bessel functions by equivalent equation contain- 

ing the zero order Bessel functions. This is achieved by means of integration 

equation (3.19) from r to a: 

iqGO(r, a), ifb<r<a; (3.21) 
= 

-iF[Go(r,b) - Go(r,a)] - C,&Jo(u,r/b)X~,, if r < b . 
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Using orthogonality (3.20) on the interval 0, b in equation (3.18) one gets: 

B; = &a + WmnB, , (3.23) 

where 

(3.24) 

b 

d, = 
2iM 

/ e&J34 o 
rdrJo(w./b)[Go(r,b) - Go(v)] , 

b 
fmn = 2ui 

u&a2 Jf (v,) / 
rdrJo (v,r/a) Jo (vmr/b) . (3.25) 

0 

Using orthogonality (3.20) on the interval 0, a in equation (3.21) one gets: 

B&J,2(vl) = Dl - EnXbnv’J2(Vn) f,,B,+ , 
+ 

(3.26) 

where 

b a 

D 1 = -;;y 
4 

rdrJo(vlr/a)Go(r,b) - / rdrJo(yr/a)Go(r,a)] . (3.27) 
0 0 

The same equation (3.26) can be obtained using condition (3.5) instead of (3.4). 

It is instructive to consider two limiting cases. If there is no jump, i.e., b = a, 

then it is easy to see that for all n BL = B; = 0 and there is no radiation. 

In the opposite limit when the pipe is closed, i.e. b = 0, E; = 0 for all 

0 < r < a, or: 

C,B,V,JI (v%r/a)dK2 - vz = iMa2yGr(r, a) . (3.28) 
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This equation can be solved exactly. Use, for example, the Kneser-Sommerfeld 

formula for zeroth order Bessel functions:3 

cm- Jo(w) Jo(v,X) 

n--l (u2 + vi) Jf(z+) 
= ~[lo(u)Ko(xu) - lo(xu)Ko(u)] , 

210(u) 
(3.29) 

where 0 5 x 5 X 5 1, Jo(v,) = 0. 

Take derivative over X 

cm- ~nJo(w) J&ax) = uro(xu) 

n-1 (~2 + vi) Jf (vn) 
2 [Kl(XU) + h(X~)~o(~)/~o(~)] - (3.30) 

Comparing (3.30) and (3.28) for b + 0 one gets 

2iMya2 

B’ = u(u2 + u;)J&),/n ’ 

This expression gives the radiation field produced in the Faraday cap. 

(3.31) 

4. RADIATION FIELD IN THE ULTRARELATIVISTIC LIMIT 

Equations (3.23) and (3.26) constitute an (infinite) system of linear algebraic 

* equations for unknown coefficients B, . We will solve it in the most interesting 

ultrarelativistic case 7 + 00. 

Introduce dimensionless coefficients g by the following expressions: 

B; = - 2iqag* 
7rc m’ 

Excluding gz from (3.23) we obtain system of equations for g; only: 

(4.1) 

(4.2) 



where 

Frn = ~L&P~Jo(Y,P) Jo(vlP)&z 
xbn 

(vi - u$p2) (vi - vFp2) ’ (4.4 

Notice that both diffracted and reflected fields are limited for 7 + 00 since 

B; do not depend on energy in this limit. 

Up to now all the relations are exact. Since we have no means for solving the 

infinite system (4.2) exactly, its approximate numerical solution is used. The sys- 

tem is truncated to a finite size and coefficients g; are found by matrix inversion. 

Table 1 gives an idea of the coefficients behavior as a function of their sequential 

number n for an example of a solution for an intermediate value p = 0.3 ,K = 10.0 

and the matrix size 20x20. The approximate expressions for the electromagnetic 

field components are then obtained using truncated expressions from Section 2. 

Figs.2 - 7 illustrate how the boundary and continuity conditions are satisfied by 

the same approximate solution. The discontinuity of the E, at the sharp corner of 

the boundary can never be approximated by any finite numbers of eigenfunctions. 

Nevertheless in all other regions the solution seems to be quite satisfactory. 
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5. LONGITUDINAL COUPLING IMPEDANCE 

The longitudinal coupling impedance can be obtained by integrating the syn- 

chronous component of EZ at r = 0 (i.e., along the particle path).4’5 In the 

ultrarelativistic limit 7 -b 00: 

Z(k) = $7 dzkz(r = 0, z) exp(-ikz) . (5.1) 
-CCl 

The synchronous term of Ez gives the following expression for the impedance 

per unit length: 

dZ’(k)/dz = $$lng . (54 

This term goes to zero in the ultrarelativistic limit. 

From the radiation part of the field E,” after performing the integration and 

some algebra we get: 

Z&(k) = --z&rp c g+ [ n ?& (.P+$cq-P~ngi(K-JG)] , 

(5.3) 

where &r/c = 20 = 377 Ohm is the impedance of the free space. 

The impedance for the case of a charge exiting the narrow pipe can be found 

from a similar formula: 

Z,&) = -Zl+rp[C,g,+(Kp - j/C) - p&Lg,(n + @qj] . (5.4) 

Figures 8-12 present real and Figs. 13-17 imaginary parts of longitudinal 

impedances Zi, and Zout for p = 0.9,0.7,0.5,0.3, and 0.1 as functions of the 

normalized frequency K = W/C. The resonance behavior of the impedance is 

clearly exhibited. 
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A wake function for a Gaussian bunch 

I(r) = qc/6uexp(-zg/202) 

can be found from the impedance by integration: 

+CO 

W(z0) = qc/4?r2a 
J 

drcexp(-tc2a2/2)[ReZ;,(tc) cos(nze) + Im.&(n) sin(nzo)] 
0 

(5.5) 3 

zc is distance behind the bunch and u is the bunch spread in units of a. If q 

is measured in Coulombs, then W will be measured in Volts. Fig. 18 gives an 

example of a wake function calculated by using expression (5.5) for a Gaussian 

bunch with the longitudinal spread Q = 1.0. 
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Table 1 

N Re& Iv,+ Reg; Img; 

1 0.7363D-02 0.9023D-02 0.5694D-01 -0.8929D-03 

2 -O.l253D-02 O.l742D-02 O.l269D-01 -O.l919D-02 

3 0.4227D-03 -0.7277D-03 -0.5915D-02 -0.3148D-02 

4 -0.2110D-03 0.4150D-03 -O.l447D-02 0.8925D-02 

5 O.l291D-03 -0.2831D-03 -0.2652D-04 0.2717D-02 

6 -0.9410D-04 0.2394D-03 0.3668D-03 -0.3403D-03 

7 0.8954D-04 -0.2110D-03 0.31921)-03 -O.l242D-02 

8 -0.5988D-04 O.l336D-03 O.l007D-03 -0.8242D-03 

9 0.4316D-04 -0.9365D-04 -0.8543D-04 -0.4475D-04 

10 -0.3249D-04 0.69311)-04 -O.l417D-03 0.42911)-03 

11 0.2523D-04 -0.53221)-04 -0.8227D-04 0.4134D-03 

12 -0.2008D-04 0.4201D-04 O.l407D-04 O.l064D-03 

13 O.l630D-04 -0.3389D-04 0.7093D-04 -O.l765D-03 

14 -O.l345D-04 0.2784D-04 0.6088D-04 -0.2423D-03 

15 O.l125D-04 -0.2321D-04 0.9319D-05 -O.l083D-03 

16 -0.95311)-05 O.l960D-04 -0.36241)-04 0.71961)-04 

17 0.81581)-05 -O.l674D-04 -0.4397D-04 O.l522D-03 

18 -0.7047D-05 O.l443D-04 -O.l638D-04 0.9466D-04 

19 0.6138D-05 -O.l255D-04 O.l864D-04 -0.2765D-04 

20 -0.5385D-05 O.llOOD-04 0.3281D-04 -O.l079D-03 
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FIGURE CAPTIONS 

Fig. 1. Geometry of the problem and the coordinate system 

(a) Incoming charge, (b) Outgoing charge. 

Fig. 2. An example showing how the continuity and boundary conditions 

are fulfilled by the real part of the radial electrical field component 

on the negative and on the positive sides of a jump (the truncated 

matrix size is 20x20, the ratio of the small to the large radii is 0.3) 

Fig. 3. The same as in Fig. 2 but for the imaginary part of the radial 

electric field component 

Fig. 4. The same as in Fig. 2 but for the real part of the longitudinal 

electric field component 

Fig. 5. The same as in Fig. 2 but for the imaginary part of the longitudinal 

electric field component 

Fig. 6. The same as in Fig. 2 but for the real part of the azimuthal magnetic 

field component 

Fig. 7. The same as in Fig. 2 but for the imaginary part of the azimuthal 

magnetic field component 

Fig. 8 The real parts of the longitudinal coupling impedances as a function 

of frequency [IC = aw/c,p = b/a = 0.9: (1) real part, Zi, (2) real 

part, Zout, matrix size in 60 x 601. 
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Fig. 9 The same as on Fig. 8 but for p = 0.7. 

Fig. 10 The same as on Fig. 8 but for p = 0.5. 

Fig. 11 The same as on Fig. 8 but for p = 0.3. 

Fig. 12 The same as on Fig. 8 but for p = 0.1. 

Fig. 13 The imaginary parts of the longitudinal coupling impedances as a 

function of frequency [K, = aw/c,p = b/a = 0.9 (1) real part, (2) 

imaginary part, for Zi, and 2 out are represented by the same curve, 

matrix size in 60 x 601. 

Fig. 14 The same as on Fig. 12 but for p = 0.7. 

Fig. 15 The same as on Fig. 12 but for p = 0.5. 

Fig. 16 The same as on Fig. 12 but for p = 0.3. 

Fig. 17 The same as on Fig. 12 but for p = 0.1. 

Fig. 18 An example of the wake function for incoming bunch with a Gaus- 

sian longitudinal charge distribution with 0 = a [p = 0.3; (1) wake 

function, (2) charge distribution]. 
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